Skip to main content

Polymer Matrix Composites

  • Chapter
  • First Online:
Composite Materials

Abstract

Polymer matrix composites (PMCs) have established themselves as engineering structural materials, not just as laboratory curiosities or cheap stuff for making chairs and tables. This came about not only because of the introduction of high-performance fibers such as carbon, boron, and aramid but also because of some new and improved matrix materials (see Chap. 3). Nevertheless, glass fiber reinforced polymers represent the largest class of PMCs. Carbon fiber reinforced PMCs are perhaps the most important structural composites; especially in the aerospace field. In this chapter, we discuss polymer composite systems containing glass, aramid, polyethylene, boron, and carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allred RE, Newmeister GC, Doak TJ, Cochran RC, Coons AB (1997). In: Composites ’97 Manufacturing and Tooling, Paper #EM97-110, Society of Manufacturing Engineering. Dearborn, MI

    Google Scholar 

  • Anderson BW (1984) In: Advances in fracture research, ICF4, vol 1, New Delhi, Pergamon Press, Oxford, p 607

    Google Scholar 

  • Baker A (1983) Met Forum 6:81

    Google Scholar 

  • Bergmann HW (1984) In: Advances in fracture research, ICF4, vol 1, New Delhi, Pergamon Press, Oxford, p 569

    Google Scholar 

  • Biro DA, Pleizier G, Deslandes Y (1992) J Mater Sci Lett 11:698

    Article  Google Scholar 

  • Brøndsted P, Lilholt H, Lystrup A (2005) Annu Rev Mater Res 35:505

    Article  Google Scholar 

  • Brown JR, Chappell PJC, Mathys Z (1992) J Mater Sci 27:3167

    Article  Google Scholar 

  • Chen CH, Springer GS (1976) J Composite Mater 10:2

    Article  Google Scholar 

  • Clark D, Wadsworth NJ, Watt W (1974) In: Carbon fibres, their place in modern technology. The Plastics Institute, London, p 44

    Google Scholar 

  • Cogswell FN (1992) Thermoplastic aromatic polymer composites. Butterworth-Heinemann, Oxford, p 136

    Book  Google Scholar 

  • Collings TA, Stone DEW (1985) Composites 16:307

    Article  Google Scholar 

  • Diefendorf RJ (1985) In: Tough composite materials. Noyes Publishing, Park Ridge, NJ, p 191

    Google Scholar 

  • Donnet J-B, Bansal RC (1984) Carbon fibers. Marcel Dekker, New York, p 109

    Google Scholar 

  • Drzal LT, Rich MJ, Lloyd PF (1983a) J Adhes 16:1

    Article  Google Scholar 

  • Drzal LT, Rich MJ, Koenig MF, Lloyd PF (1983b) J Adhes 16:133

    Article  Google Scholar 

  • Ehlert GJ, Lin Y, Galan U, Sodano HA (2010) J Solid Mech Mater Eng 4:1687

    Article  Google Scholar 

  • Ehrburger P, Donnet JB (1980a) Philos Trans R Soc Lond A294:495

    Article  Google Scholar 

  • Eriksen RH (1976) Composites 7:189

    Article  Google Scholar 

  • Friedrich K (1985) Compos Sci Technol 22:43

    Article  Google Scholar 

  • Goel A, Chawla KK, Vaidya UK, Koopman M (2008) J Mater Sci 43:4423

    Article  Google Scholar 

  • Hancox NL (1983) In: Fabrication of composite materials. North-Holland, Amsterdam, p 1

    Google Scholar 

  • Hild DN, Schwartz P (1992a) J Adhes Sci Technol 6:879

    Article  Google Scholar 

  • Hild DN, Schwartz P (1992b) J Adhes Sci Technol 6:897

    Article  Google Scholar 

  • Hull D (1981) An introduction to composite materials. Cambridge University Press, Cambridge, p 42

    Google Scholar 

  • Hull D (1994) Mater Sci Eng A184:173

    Article  Google Scholar 

  • Ishida H, Koenig JL (1978) J Colloid Interface Sci 64:555

    Article  Google Scholar 

  • Jangehud I, Serrano AM, Eby RK, Meador MA (1993) In: Proc. 21st biennial conference on carbon, Buffalo, NY, June 13–18

    Google Scholar 

  • Kaas RL, Kardos JL (1971) Polym Eng Sci 11:11

    Article  Google Scholar 

  • Kaplan SL, Rose PW, Nguyen HX, Chang HW (1988) SAMPE Quart 19:55

    Google Scholar 

  • Kardos JL (1985) In: Molecular characterization of composite interfaces. Plenum, New York, p 1

    Google Scholar 

  • Knox CE (1982) In: Handbook of composite materials. Van Nostrand Reinhold, New York, p 136

    Book  Google Scholar 

  • Krause W, Henning F, Troster S, Geiger O, Eyerer P (2003) J Thermoplastic Compos Mater 16:292

    Article  Google Scholar 

  • Li ZF, Netravali AN, Sachse W (1992) J Mater Sci 27:4625

    Article  Google Scholar 

  • Lockwood RJ, Alberino LM (1981) In: Advances in urethane science and technology. Technomic, Westport, CT

    Google Scholar 

  • J.A. Manson (1994). In: High performance composite: commonalty of phenomena, Chawla KK, Liaw PK, and Fishman SG (eds) The Minerals, Metals & Materials Society, Warrendale, PA, p 1

    Google Scholar 

  • Mayer NJ (1974) Engineering applications of composites. Academic, New York, p 24

    Google Scholar 

  • McKee D, Mimeault V (1973) In: Chemistry and physics of carbon, vol 8. Marcel Dekker, New York, p 151

    Google Scholar 

  • Meyer RW (1985) Handbook of pultrusion technology. Chapman & Hall, New York

    Google Scholar 

  • NASA (1980) Risk to the public from carbon fibers released in civil aircraft accidents, SP-448. NASA, Washington, DC

    Google Scholar 

  • Pickering SJ (2006) Compos A Appl Sci Manuf 37:1206

    Article  Google Scholar 

  • Pipes RB, Pagano NJ (1970) J Compos Mater 1:538

    Google Scholar 

  • Plueddemann EP (1974a) In: Interfaces in polymer matrix composites. Academic, New York, p 174

    Google Scholar 

  • Riggs DM, Shuford RJ, Lewis RW (1982) Handbook of composites. Van Nostrand Reinhold, New York, p 196

    Book  Google Scholar 

  • Sands JM, Fink BK, McKnight SH, Newton CH, Gillespie JW Jr, Palmese GR (2001) Clean Prod Process 2:228

    Article  Google Scholar 

  • Shibley AM (1982) Handbook of composite materials. Van Nostrand Reinhold, New York, p 448

    Google Scholar 

  • Shirrel CD, Sandow FA (1980) Fibrous composites in structural design. Plenum, New York, p 795

    Book  Google Scholar 

  • Slobodzinsky A (1982) Handbook of composite materials. Van Nostrand Reinhold, New York, p 368

    Book  Google Scholar 

  • Sturgeon JB (1978) In: Creep of engineering materials. A Journal of Strain Analysis Monograph, p 175

    Google Scholar 

  • Tarnopol’skii YM, Bail’ AI (1983) In: Fabrication of composites. North-Holland, Amsterdam, p 45

    Google Scholar 

  • Vaidya UK, Chawla KK (2008) Int Mater Rev 53:185

    Article  Google Scholar 

  • Waddon AJ, Hill MJ, Keller A, Blundell DJ (1987) J Mater Sci 27:1773

    Article  Google Scholar 

  • Xu ZR, Ashbee KHG (1994) J Mater Sci 29:394

    Article  Google Scholar 

Further Reading

  • Advani SG (ed) (1994) Flow and rheology in polymer composites manufacturing. Elsevier, Amsterdam

    Google Scholar 

  • Ehrburger P, Donnet JB (1980b) Interface in composite materials. Philos Trans R Soc Lond A294:495

    Article  Google Scholar 

  • Kelly A, Mileiko ST (eds) (1983) Fabrication of composites. North-Holland, Amsterdam

    Google Scholar 

  • Plueddemann EP (ed) (1974b) Interfaces in polymer matrix composites. Academic, New York

    Google Scholar 

  • Vaidya U (2011) Composites for automotive, truck and mass transit. DEStech Pub, Lancaster, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan K. Chawla .

Problems

Problems

  1. 5.1.

    Why are prepregs so important in polymer matrix composites? What are their advantages? Describe the different types of prepregs.

  2. 5.2.

    Randomly distributed short fibers should result in more or less isotropic properties in an injection molded composite. But this is generally not true. Why? What are the other limitations of injection molding process?

  3. 5.3.

    In a thermally cured PMC, the fiber surface treatments have been well established for certain systems. For example, silanes are used on glass fiber in an epoxy matrix while an oxidizing treatment to carbon fiber for use in an epoxy matrix. What would be the effect of electron beam curing on the interface development in a PMC?

  4. 5.4.

    Describe the major differences in the processing of composites having a thermoset matrix and those having a thermoplastic matrix.

  5. 5.5.

    What are the important factors in regard to fire resistance of PMCs?

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (2012). Polymer Matrix Composites. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74365-3_5

Download citation

Publish with us

Policies and ethics