Skip to main content

Design of Selective Gas Sensors Using Combinatorial Solution Deposition of Oxide Semiconductor Films

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1048 Accesses

Abstract

The study examined sensing behavior of multicompositional gas sensing materials prepared through combinatorial deposition of SnO2, ZnO, and WO3 sols. Selective detection of C2H5OH and CH3COCH3 in the presence of CO, C3H8, H2 and NO2 was accomplished by combinatorial manipulation of the gas sensor composition. A further tuning of the gas-sensing materials and gas-sensing temperature allowed discrimination between C2H5OH and CH3COCH3, which is a challenging issue due to their similar chemical nature. The discrimination of similar gases and selective gas detection are discussed with respect to the gas sensing mechanism. Combinatorial approach is very convenient and useful for determining an optimal composition for selective-gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamazoe, N., Review. Toward innovation of gas sensor technology, Sens. Actuators B 2005, 108, 2–14

    Article  Google Scholar 

  2. Park, C. O.; Akbar, S. A., Ceramics for chemical sensing, J. Mater. Sci. 2003, 38, 4611–4637

    Article  CAS  Google Scholar 

  3. Göpel, W.; Schierbaum, K., SnO2 sensors: current status and future prospects, Sens. Actuators B 1995, 26–27, 1–12

    Article  Google Scholar 

  4. Shimizu, Y.; Egashira, M., Basic aspects and challenges of semiconductor gas sensors, MRS Bull. 1999, 24, 18–24

    CAS  Google Scholar 

  5. Sberveglieri, G., Recent developments in semiconducting thin-film gas sensors, Sens. Actuators B 1995, 23, 103–109

    Article  Google Scholar 

  6. Yamazoe N., New approaches for improving semiconductive gas sensors, Sens. Actutators B 1991, 5, 7–19

    Article  Google Scholar 

  7. Comini, E., Review. Metal oxide nano-crystals for gas sensing, Anal. Chem. Acta. 2006, 568, 28–40

    Article  CAS  Google Scholar 

  8. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater. 2003, 15, 353–389

    Article  CAS  Google Scholar 

  9. Shimizu, Y.; Jono, A.; Hyodo, T.; Egashira, M., Preparation of large mesoporous SnO2 powder for gas sensor application, Sens. Actuators B 2005, 108, 56–61

    Article  Google Scholar 

  10. Carotta, M. C.; Guidi, V.; Malagù, C.; Vendemiati, B.; Zanni, A.; Martinelli, G.; Sacerdoti, M.; Licoccia, S.; Vona, M. L. D.; Traversa, E., Vanadium and tantalum-doped titanium oxide (TiTaV): a novel material for gas sensing, Sens. Actuators B 2000, 108, 89–96

    Google Scholar 

  11. Savage, N. O.; Akbar, S. A.; Dutta, P. K., Titanium dioxide based high temperature carbon monoxide selective sensor, Sens. Actuators B 2001, 72, 239–248

    Article  Google Scholar 

  12. Cho, P. -S.; Kim, K. -W.; Lee, J. -H., NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram. 2006, 17, 975–978

    Article  CAS  Google Scholar 

  13. Wang, Y.; Jiang, X.; Xia, Y., A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 2003, 125, 16176–16177

    Article  CAS  Google Scholar 

  14. Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M., Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater. 2003, 15, 997–1000

    Article  CAS  Google Scholar 

  15. Li, C., Zhang; D., Liu, X.; Han, S.; Tang, T.; Han, J.; Shou, C., In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 2003, 82, 1613

    Article  CAS  Google Scholar 

  16. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–624

    Article  CAS  Google Scholar 

  17. Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater. 2003, 15, 624–627

    Article  CAS  Google Scholar 

  18. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 2002, 81, 1869–1871

    Article  CAS  Google Scholar 

  19. Chiorino, A.; Ghiotti, G.; Prinetto, F.; Carotta, M. C.; Gnani, D.; Marinelli, G., Preparation and characterization of SnO2 and MoO x -SnO2 nanosized powders for thick film gas sensors, Sens. Actuators B 1999, 58, 338–349

    Article  Google Scholar 

  20. Chakraborty, S.; Sen, A.; Maiti, H. S., Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors, Sen. Actuators B 2006, 115, 610–613

    Article  Google Scholar 

  21. Choi, U. -S.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2, Sens. Actuators B 2005, 107, 397–401

    Article  Google Scholar 

  22. Tamaki, J.; Shimanoe, K.; Yamada, Y.; Yamamoto, Y.; Miura, N.; Yamazoe, N., Dilute hydrogen sulfide sensing properties of CuO-SnO2 thin film prepared by low-pressure evaporation method, Sens. Actuators B 1998, 49, 121–125

    Article  Google Scholar 

  23. Cabot, A.; Arbiol, J.; Cornet, A.; Morante, J. R.; Chen, F.; Liu, M., Mesoporous catalytic filters for semiconducting gas sensors, Thin Solid Films 2003, 436, 64–69

    Article  CAS  Google Scholar 

  24. Tulliani, J. M.; Moggi, P., Development of a porous layer catalytically activated for improving gas sensor performances, Ceram. Int. 2007, 22, 1199–1203

    Article  Google Scholar 

  25. Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P.; Irkaev, S., Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposties, Sens. Actuators B 2003, 93, 422–430

    Article  Google Scholar 

  26. Costello, B. P. J. de L.; Ewen, R. J.; Ratcliffe, N. M.; Sivenand, P. S., Thick film organic vapour sensors based on binary mixtures, Sens. Actuators B 2003, 92, 159–166

    Article  Google Scholar 

  27. Hyodo, T.; Abe, A.; Shimizu, Y.; Egashira, M., Gas-sensing properties of ordered mesoporous SnO2 and effect of coatings thereof, Sens. Actuators B 2003, 93, 590–600

    Article  Google Scholar 

  28. Shimizu, Y.; Bartolomeo, E. D.; Traversa, E.; Gusmano, G.; Hyodo, T.; Wada, K.; Egashira, M., Effect of surface modification on NO2 sensing properties of SnO2 varistor-type sensors, Sens. Actuators B 1999, 60, 118–124

    Article  Google Scholar 

  29. Zhang, G. -Y.; Guo, B.; Chen, J., MCo2O4 (M = Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors, Sens. Actuators B 2006, 114, 402–409

    Article  Google Scholar 

  30. Huang, J. R.; Li, G. Y.; Huang, Z. Y.; Huang, X. J.; Liu, J. H., Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor, Sens. Actuators B 2006, 114, 1059–1063

    Article  Google Scholar 

  31. Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532

    Article  CAS  Google Scholar 

  32. Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438

    Article  CAS  Google Scholar 

  33. Takeuchi, I.; Lauterbach J.; Fasolka, M. J., Combinatorial materials synthesis, Mater. Today 2005, 8, 18–22

    Article  CAS  Google Scholar 

  34. Schultz, P. G.; Xiang, X. -D., Combinatorial approaches to materials science, Curr. Opin. Solid State Mater. Sci. 1998, 3, 153–158

    Article  CAS  Google Scholar 

  35. Amis, E. J., Combinatorial materials science: Reaching beyond discovery, Nat. Mater. 2004, 3, 83–85

    Article  CAS  Google Scholar 

  36. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 2006, 5, 909–913

    Article  CAS  Google Scholar 

  37. Ng, H. T.; Chen, B.; Koehne, J. E.; Cassell, A. M.; Li, J.; Han, J; Meyyappan, M., Growth of carbon nanotubes: a combinatorial method to study the effects of catalysts and underlayers, J. Phys. Chem. B. 2003, 107, 8484–8489

    Article  CAS  Google Scholar 

  38. Kim, D. K.; Maier, W. F., Combinatorial discovery of new autoreduction catalysts for the CO2 reforming of methane, J. Catal. 2006, 238, 142–152

    Article  CAS  Google Scholar 

  39. Potyrailo, R. A.; Lemmon, J. P.; Terry, K. L., High-throughput screening of selectivity of melt polymerization catalysts using fluorescence spectroscopy and two-wavelength fluorescence imaging, Anal. Chem. 2003, 75, 4676–4681

    Article  CAS  Google Scholar 

  40. Yanase, I.; Ohtaki, T.; Watanabe, M., Combinatorial study on nano-particle mixture prepared by robot system, Appl. Surf. Sci. 2002, 18, 292–299

    Article  Google Scholar 

  41. Wroczynski, R. J.; Rubinsztajn, M.; Potyrailo, R. A., Evaluation of process degradation of polymer formulation utilizing high-throughput preparation and analysis methods, Macromol. Rapid Commun. 2004, 25, 264–269

    Article  CAS  Google Scholar 

  42. Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Fluroescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays, J. Comb. Chem. 2003, 5, 8–17

    Article  CAS  Google Scholar 

  43. Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A rare-Earth phosphor Containing one-dimensional chains identified through combinatorial methods, Science 1998, 279, 837–839

    Article  CAS  Google Scholar 

  44. Jiang, R.; Rong, C.; Chu, D., Combinatorial approach toward high-throughput analysis of direct methanol fuel cells, J. Comb. Chem. 2005, 7, 272–278

    Article  CAS  Google Scholar 

  45. Danielson, E.; Golden, J. H.; McFarland, E. W.; Reaves, C. M.; Weinberg, W. H.; Wu, X. D., A combinatorial approach to the discovery and optimization of luminescent materials, Nature 1997, 389, 944–948

    Article  CAS  Google Scholar 

  46. Matsumoto, Y.; Murakami, M.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Nakajima, K.; Chikyow, T.; Koinuma, H., Structural control and combinatorial doping of titanium dioxide thin films by laser molecular beam epitaxy, Appl. Surf. Sci. 2002, 189, 344–348

    Article  CAS  Google Scholar 

  47. Murakami, M.; Matsumoto, Y.; Nagano, M.; Hasegawa, T.; Kawasaki, T.; Koinuma, H., Combinatorial fabrication and characterization of ferromagnetic Ti-Co-O system, Appl. Surf. Sci. 2004, 223, 245–248

    Article  CAS  Google Scholar 

  48. Rende, D.; Schwarz, K.; Rabe, U.; Maier, W. F.; Arnold, W., Combinatorial synthesis of thin mixed oxide films and automated study of their piezoelectric properties, Prog. Solid State Chem. 2004, 223, 245–248

    Google Scholar 

  49. Cui, J.; Chu, Y. S.; Famodu O. O.; Furuya, Y.; Hattrick-Simpers, J.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; Takeuchi, I, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 2006, 5, 286–290

    Article  CAS  Google Scholar 

  50. Takeuchi, I.; Famodu, O. O.; Read, J. C.; Aronova, M. A.; Chang, K. -S.; Craciunescu, C.; Lofland, S. E.; Wuttig, M.; Wellstood, F. C.; Knauss, L.; Orozco, A., Identification of novel composition of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2003, 2, 180184

    Article  Google Scholar 

  51. Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754

    Article  CAS  Google Scholar 

  52. Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61

    Article  CAS  Google Scholar 

  53. Scheidtmann, J.; Frantzen, A.; Frenzer, G.; Maier, W. F., A combinatorial technique for the search of solid state gas sensor materials, Mater. Sci. Technol. 2005, 16, 119–127

    CAS  Google Scholar 

  54. Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconducting gas sensors as inorganic electronic nose, Appl. Phys. Lett. 2003, 83, 1255–1257

    Article  CAS  Google Scholar 

  55. Mitra, P.; Maiti, H. S., A wet-chemical process to form palladium oxide sensitiser layer on thin film zinc oxide based LPG sensor, Sens. Actuators B 2004, 97, 49–58

    Article  Google Scholar 

  56. Lee, H. -J.; Song, J. -H.; Yoon, Y. -S.; Kim, T. -S.; Kim, K. -J.; Choi, W. -K., Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption, Sens. Actuators B 2001, 79, 200–205

    Article  Google Scholar 

  57. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer S.; Moskovits, M., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett. 2005, 5, 667–673

    Article  CAS  Google Scholar 

  58. Baik, N. S.; Sakai, G.; Miura, N.; Yamazoe, N., Hydrothermally treated sol solution of tin oxide for thin film gas sensor, Sens. Actuators B 2000, 63, 74–79

    Article  Google Scholar 

  59. Li, H.; Wang, J.; Liu, H.; Zhang, H.; Li, X., Zinc oxide films prepared by sol—gel method, J. Cryst. Growth 2005, 275, e943–e946

    Article  CAS  Google Scholar 

  60. Kim, S. -J.; Cho, P. -S.; Lee, J -H.; Kang, C. -Y.; Kim, J. -S.; Yoon, S. -J., Preparation of multi-compositional gas sensing films by combinatorial solution deposition, Ceram. Int. 2008, 34, 827–831

    Article  CAS  Google Scholar 

  61. Nakagawa, H.; Okazaki, S.; Asakura, S.; Fukuda, K.; Akimoto, H.; Takahashi, S.; Shigemori, S., An automated car ventilation system, Sens. Actuators B 2000, 65, 133–137

    Article  Google Scholar 

  62. Ryabsev, S. V.; Shaposhnick, A. V.; Lukin, A. N.; Domashevskaya, E. P., Application of semiconductor gas sensors for medical diagnostics, Sens. Actuators B 1999, 59, 26–29

    Article  Google Scholar 

  63. Fleischer, M.; Simon, E.; Rumpel, E.; Ulmer, H.; Harbeck, M.; Wandel, M.; Fietzek, C.; Weimar, U.; Meixner, H., Detection of volatile compounds correlated to human diseases trough breath analysis with chemical sensors, Sens. Actuators B 2002, 83, 245–249

    Article  Google Scholar 

  64. Yu, J. -B.; Byun, H. -G.; So, M. -S.; Huh, J. -S., Analysis of diabetic patient’s breath with conducting polymer sensor array, Sens. Actuators B 2005, 108, 305–308

    Article  Google Scholar 

  65. Gong, H.; Wang, Y. J.; Teo, S. C.; Huang, L., Interaction between thin-film tin oxide gas sensor and five organic vapors, Sens. Actuators B 1999, 54, 232–235

    Article  Google Scholar 

  66. Jie, Z.; Li-Hua, H.; Shan, G.; Hui, Z.; Jing-Gui, Z., Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating, Sens. Actuators B 2006, 115, 460–464

    Article  Google Scholar 

  67. Liu, Y.; Koep, E.; Liu, M., A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition, Chem. Mater. 2005, 17, 3997–4000

    Article  CAS  Google Scholar 

  68. Chen, Y. J.; Nie, L.; Xue, X. Y.; Wang, Y. G.; Wang, T. H., Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity, Appl. Phys. Lett. 2006, 88, 083105

    Article  Google Scholar 

  69. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 2004, 84, 3654–3656

    Article  CAS  Google Scholar 

  70. Zhu, B. L.; Xie, C. S.; Wang, W. Y.; Huang, K. J.; Hu, J. H., Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2, Mater. Lett. 2004, 58, 624–629

    Article  CAS  Google Scholar 

  71. Li, X.; Zhang, G.; Cheng, F.; Guo, B.; Chen, J., Synthesis, characterization, and gas-sensor application of WO3 nanocuboids, J. Electrochem. Soc. 2006, 153, H133–H137

    Article  CAS  Google Scholar 

  72. Jing, Z.; Wang, Y.; Wu, S., Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method, Sens. Actuators B 2006, 113, 177–181

    Article  Google Scholar 

  73. Jing, Z.; Wu, S., Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors, Mater. Lett. 2006, 60, 952–956

    Article  CAS  Google Scholar 

  74. Jiang, Y.; Song, W.; Xie, C.; Wang, A.; Zeng, D.; Hu, M., Electrical conductivity and gas sensitivity to VOCs of V-doped ZnFe2O4 nanoparticles, Mater. Lett. 2006, 60, 1374–1378

    Article  CAS  Google Scholar 

  75. Ho, J. -J.; Fang, Y. K.; Wu, K. H.; Hsieh, W. T.; Chen, C. H.; Chen, G. S.; Ju, M. S.; Lin, J. -J.; Hwang, S. B., High sensitivity and ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure of legal drink-drive limit detecting, Sens. Actuators B 1998, 50, 227–233

    Article  Google Scholar 

  76. Costello, B. P. J. de L.; Ewen, R. J.; Guernion, N.; Ratcliffe, N. M., Highly sensitive mixed oxide sensors for detection of ethanol, Sens. Actuators B 2002, 87, 207–210

    Article  Google Scholar 

  77. Xue, X. Y.; Chen, Y. J.; Wang, Y. G.; Wang, T. H., Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Appl. Phys. Lett. 2005, 86, 233101–233103

    Article  Google Scholar 

  78. Reddy, C. V. G.; Cao, W.; Tan, O. K.; Zhu, W., Preparation of Fe2O3(0.9)-SnO2(0.1) by hydrazine method: application as an alcohol sensor, Sens. Actuators B 2002, 81, 170–175

    Article  Google Scholar 

  79. Ivanovskaya, M.; Kotsikau, D.; Faglia, G.; Nelli, P., Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol, Sens. Actuators B 2003, 96, 498–503

    Article  Google Scholar 

  80. Reddy, C. V. G.; Cao, W.; Tan, O. K.; Zhu, W.; Akbar, S. A., Selective detection ethanol vapor using xTiO2-(1-x)WO3 based sensor, Sens. Actuators B 2003, 94, 99–102

    Article  Google Scholar 

  81. Neri, G.; Bonavita, A.; Rizzo, G.; Galvagno, S.; Capone, S.; Siciliano, P., A study of the catalytic activity and sensitivity to different alcohols of CeO2-Fe2O3 thin films, Sens. Actuators B 2005, 111–112, 78–83

    Article  Google Scholar 

  82. Jinakawa, T.; Sakai, G.; Tamaki, J.; Miura, N.; Yamazoe, N., Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensor modified with acidic or basic oxides, J. Mol. Catal. Chem. 2000, 155, 193–2000

    Article  Google Scholar 

  83. Tsuboi, T.; Ishii, K.; Tamura, S., Themal oxidation of acetone behind reflected shock wave, in Proceedings of the 17th International Colloquium on the Synamics of Explosions and Reactive Systems, Heidelberg, Germany, July 25–30, 1990

    Google Scholar 

  84. Kim, K. -W.; Cho, P. -S.; Kim, S. -J.; Lee, J -H.; Kang, C. -Y.; Kim, J. -S.; Yoon, S. -J., The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors, Sens. Actuators B 2007, 123, 318–324

    Article  Google Scholar 

  85. Kang, C. -Y.; Yoon, S. -J.; Kim, J. -S.; Lee, J -H.; Kim, K. -W.; Cho, P. -S., Multi-functional Olfactory Sensor Using LTCC and Method of Making, Korean Patent KR 10-0655367-0000: 2005

    Google Scholar 

Download references

Acknowledgments

This work was supported by KOSEF NRL program grant funded by the Korean government (MEST) (No.R0A-2008-000-20032-0) and by a grant from the Core Technology Development Program funded by the Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Heun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Lee, JH., Kim, SJ., Cho, PS. (2009). Design of Selective Gas Sensors Using Combinatorial Solution Deposition of Oxide Semiconductor Films. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_12

Download citation

Publish with us

Policies and ethics