Skip to main content

Agrobacterium-mediated transformation has revolutionized agriculture as well as basic research in plant molecular biology, by enabling the genetic modification of a wide variety of plant species. Advances in binary vector design and selection strategies, coupled with improvements in regeneration technology and gene delivery mechanisms, have dramatically extended the range of organisms, including grains, that can be transformed. Recent innovations have focused on methods to stack multiple transgenes, to eliminate vector backbone sequences, and to target transgene insertion to specific sites within the host genome. Public unease with the presence of foreign DNA sequences in crop plants has driven the development of completely marker-free transformation technology and molecular strategies for transgene containment. Among the many useful compounds produced in genetically modified plants are biodegradable plastics, primary and secondary metabolites with pharmaceutical properties, and edible vaccines. Crop plant productivity may be improved by introducing genes that enhance soil nutrient utilization or resistance to viral, bacterial, or fungal diseases. Other transgenes have been shown to confer increased tolerance to many of the environmental constraints, including drought, extreme temperature, high salinity, and heavy metal soil contamination, faced by resource-poor farmers attempting to cultivate marginally arable land. Early applications of plant biotechnology focused primarily on traits that benefit farmers in industrialized regions of the world, but recent surveys document the degree to which this pattern is changing in favor of modified crops that contribute to enhanced ecological and human health. Documented decreases in the use of pesticides attributable to genetically engineered plants are harbingers of the health and environmental benefits that can be expected from transgenic crop plants designed to decrease reliance on harmful agrochemicals. As one thread in a network that also includes integrated pest and soil fertility management, a reduced emphasis on monoculture, and traditional crop breeding, plant genetic modification has the potential to help those who currently suffer from inadequate access to a full complement of nutrients. The development of “golden rice” illustrates the possibility to imbue a plant with enhanced nutritional value, but also the challenges posed by intellectual property considerations and the need to introduce novel traits into locally adapted varieties. Implementation of plant genetic modification within a framework of sustainable agricultural development will require increased attention to potential ecological impacts and technology-transcending socioeconomic ramifications. Successful technology transfer initiatives frequently involve collaborations between scientists in developing and industrialized nations; several non-profit agencies have evolved to facilitate formation of these partnerships. Capacity building is a core tenet of many such programs, and new paradigms for incorporation of indigenous knowledge at all stages of decision-making are under development. The complex (and sometimes controversial) social and scientific issues associated with the technology notwithstanding, Agrobacterium-mediated enhancement of agronomic traits provides novel approaches to address commercial, environmental, and humanitarian goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16: 2734-2748

    Article  PubMed  CAS  Google Scholar 

  • Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7: 356-364

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10: 594-602

    Article  PubMed  CAS  Google Scholar 

  • Al-Babili S, Beyer P (2005) Golden Rice-five years on the road-five years to go? Trends Plant Sci 10: 565-573

    Article  PubMed  CAS  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7: 649-659

    Article  PubMed  CAS  Google Scholar 

  • Alia, Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16: 155-161

    Article  PubMed  CAS  Google Scholar 

  • Al-Kaff NS, Kreike MM, Covey SN, Pitcher R, Page AM, Dale PJ (2000) Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppres-sion of a 35S promoter-regulated transgene. Nat Biotechnol 18: 995-999

    Article  PubMed  CAS  Google Scholar 

  • Altenbach SB, Kuo CC, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J (1992) Accumulation of a Brazil nut albumin in seeds of trans-genic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18: 235-245

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258

    Article  PubMed  CAS  Google Scholar 

  • Arntzen C, Plotkin S, Dodet B (2005) Plant-derived vaccines and antibodies: po-tential and limitations. Vaccine 23: 1753-1756

    Article  PubMed  CAS  Google Scholar 

  • Atkinson HJ, Green J, Cowgill S, Levesley A (2001) The case for genetically modified crops with a poverty focus. Trends Biotechnol 19: 91-96

    Article  PubMed  CAS  Google Scholar 

  • Baertlein DA, Lindow SE, Panopoulos NJ, Lee SP, Mindrinos MN, Chen TH (1992) Expression of a bacterial ice nucleation gene in plants. Plant Physiol 100: 1730-1736

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276: 726-733

    Article  PubMed  CAS  Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98: 2899-2904

    Article  PubMed  CAS  Google Scholar 

  • Bardor M, Faye L, Lerouge P (1999) Analysis of the N-glycosylation of recombi-nant glycoproteins produced in transgenic plants. Trends Plant Sci 4: 376-380

    Article  PubMed  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to ob-tain plants with multiple stress tolerance? Trends Plant Sci 6: 284-286

    Article  PubMed  CAS  Google Scholar 

  • Barton KA, Binns AN, Matzke AJ, Chilton M-D (1983) Regeneration of intact to-bacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043

    Article  PubMed  CAS  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23: 57-62

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112: 1479-1490

    PubMed  CAS  Google Scholar 

  • Baulcombe D (1994) Replicase-mediated resistance: a novel type of virus resis-tance in transgenic plants? Trends Microbiol 2: 60-63

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sciences 316: 1194-1199

    CAS  Google Scholar 

  • Beck DL, Van Dolleweerd CJ, Lough TJ, Balmori E, Voot DM, Andersen MT, O’Brien IE, Forster RL (1994) Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc Natl Acad Sci USA 91: 10310-10314

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nu-cleic Acids Res 12: 8711-8720

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton M-D (1983) A chimeric antibiotic resistance gene as a selectable marker for plant transformation. Nature 304: 184-187

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous or-ganomercurials by genetically engineered plants. Nat Biotechnol 18: 213-217

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of me-thylmercury pollution: merB expression in Arabidopsis thaliana confers resis-tance to organomercurials. Proc Natl Acad Sci USA 96: 6808-6813

    Article  PubMed  CAS  Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accu-mulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211: 841-845

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk N, Borisjuk L, Komarnytsky S, Timeva S, Hemleben V, Gleba Y, Raskin I (2000) Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat Biotechnol 18: 1303-1306

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellu-losics: a better control of synthesis for new and improved uses. Trends Plant Sci 8: 576-581

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ (2006) Engineering the essence of plants. Nat Biotechnol 24: 1359-1361

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: get-ting a handle on phosphate. Trends Plant Sci 7: 118-125

    Article  PubMed  CAS  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8: 90-95

    Article  PubMed  CAS  Google Scholar 

  • Broerse JEW (1998) Towards a new development strategy: How to include small-scale farmers in the biotechnological innovation process. Eburon Publishers, The Netherlands

    Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433: 629-633

    Article  PubMed  CAS  Google Scholar 

  • Brown J (1998) How to feed the world, in two contradictory lessons. Trends Plant Sci 3: 409-410

    Article  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Meta-bolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21: 1082-1087

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95: 6531-6536

    Article  PubMed  CAS  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE (2003) Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc Natl Acad Sci USA 100: 1519-1523

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of trans-genic potato by expressing a nonallergenic seed albumin gene from Amaran-thus hypochondriacus. Proc Natl Acad Sci USA 97: 3724-3729

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (2004) Valencene synthase-a biochemical magician and harbinger of transgenic aromas. Trends Plant Sci 9: 266-269

    Article  PubMed  CAS  Google Scholar 

  • Chargelegue D, Obregon P, Drake PM (2001) Transgenic plants for vaccine pro-duction: expectations and limitations. Trends Plant Sci 6: 495-496

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tume-faciens. Plant Physiol 115: 971-980

    PubMed  CAS  Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1: 423-431

    Article  Google Scholar 

  • Chung SM, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10: 357-361

    Article  PubMed  CAS  Google Scholar 

  • Chung SM, Vaidya M, Tzfira T (2006) Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Plant Sci 11: 1-4

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7: 309-315

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Bio-technol 23: 27-33

    Article  CAS  Google Scholar 

  • Comai L, Faccioti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Ex-pression in plants of a mutant aroA gene from Salmonella typhimurium con-fers tolerance to glyphosate. Nature 370: 741-744

    Article  Google Scholar 

  • Conrad U (2005) Polymers from plants to develop biodegradable plastics. Trends Plant Sci 10: 511-512

    PubMed  CAS  Google Scholar 

  • Conway G (1997) The doubly green revolution: Food for all in the twenty-first century. Comstock Publishing Associates Cornell University Press, Ithaca, NY

    Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88: 10558-10562

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20: 567-574

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Irwin JA, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breeding 111: 1-22

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to in-fection. Nature 411: 826-833

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20: 581-586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: produc-tion of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6: 219-226

    Article  PubMed  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 en-hances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23: 890-895

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that ex-press at a predictable level, or alleles that are differentially silenced. Genes Dev 14: 2869-2880

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3: 1681-1689

    PubMed  Google Scholar 

  • De Block MD, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Montagu MV, Leemans J (1987) Engineering her-bicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513-2518

    PubMed  Google Scholar 

  • de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD (2006) E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Bio-technol 24: 68-75

    Article  CAS  Google Scholar 

  • de Feyter R, Young M, Schroeder K, Dennis ES, Gerlach W (1996) A ribozyme gene and an antisense gene are equally effective in conferring resistance to to-bacco mosaic virus on transgenic tobacco. Mol Gen Genet 250: 329-338

    Article  PubMed  Google Scholar 

  • de la Fuente JM, Ramìrez-Rodrìguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate syn-thesis. Science 276: 1566-1568

    Article  PubMed  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21: 439-442

    Article  PubMed  CAS  Google Scholar 

  • Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, fer-ritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17: 192-196

    Article  PubMed  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125: 2059-2067

    Article  PubMed  CAS  Google Scholar 

  • D’Halluin K, Bossut M, Bonne E, Mazur B, Leemans J, Botterman J (1992) Trans-formation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resis-tance in transgenic plants. Bio/Technology 10: 309 - 314

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase ex-pression. Nat Biotechnol 20: 1140-1145

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2005) A two-for-one in tomato nutritional enhancement. Nat Biotech-nol 23: 825-826

    Article  CAS  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51: 487-496

    Article  PubMed  CAS  Google Scholar 

  • Dus Santos MJ, Carrillo C, Ardila F, Ríos RD, Franzone P, Piccone ME, Wigdorovitz A, Borca MV (2005) Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine 23: 1838-1843

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using isopentenyl transferase gene. Proc Natal Acad USA 94: 2117-2121

    Article  CAS  Google Scholar 

  • Edwards G (1999) Tuning up crop photosynthesis. Nat Biotechnol 17: 22-23

    Article  PubMed  CAS  Google Scholar 

  • Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Braford SB, Fink C, Flick J, O’Connell KM, Fraley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in trans-genic petunia plants. Somat Cell Mol Genet 13: 67-76

    Article  PubMed  CAS  Google Scholar 

  • Erikson O, Hertzberg M, Näsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22: 455-458

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin bio-synthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18: 784-788

    Article  PubMed  CAS  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300: 758-762

    Article  PubMed  CAS  Google Scholar 

  • Falconi CA (2002) Briefing paper 42: Agricultural biotechnology research capac-ity in for developing countries. International Service for National Agricultural Research (ISNAR).

    Google Scholar 

  • Farré EM, Bachmann A, Willmitzer L, Trethewey RN (2001) Acceleration of po-tato tuber sprouting by the expression of a bacterial pyrophosphatase. Nat Biotechnol 19: 268-272

    Article  PubMed  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71-82

    Article  CAS  Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20: 291-296

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resis-tance. Trends Genet 16: 449-455

    Article  PubMed  CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic pa-paya plants from Agrobacterium-mediated transformation of somatic em-bryos. Plant Cell Rep 12: 245-249

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803-4807

    Article  PubMed  CAS  Google Scholar 

  • François IEJA, Van Hemelrijck W, Aerts AM, Wouters PFJ, Proost P, Broekaert WF, Cammue BPA (2004) Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci 166: 113-121

    Article  CAS  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 over-expression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14: 1114-1124

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by ex-pression of a plant defensin peptide. Nat Biotechnol 18: 1307-1310

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Simon-Mateo C (2006) A micropunch against plant viruses. Nat Bio-technol 24: 1358-1359

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99: 15898-15903

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98: 11444-11449

    Article  PubMed  CAS  Google Scholar 

  • Gelvin S (2003a) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21: 95-98

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003b) Agrobacterium-mediated plant transformation: the biology be-hind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37

    Article  PubMed  CAS  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18: 1151-1155

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: Cre-ative tools for plant biotechnol-ogy. Trends Biotechnol 21: 550-555

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Aquilani R, Dharmapuri S (2000) Metabolic engineering of plant ca-rotenoids. Trends Plant Sci 5: 406-409

    Article  PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection--a new platform for ex-pressing recombinant vaccines in plants. Vaccine 23: 2042-2048

    Article  PubMed  CAS  Google Scholar 

  • Goderis IJ, De Bolle MF, François IE, Wouters PF, Broekaert WF, Cammue BP (2002) A set of modular plant transformation vectors allowing flexible inser-tion of up to six expression units. Plant Mol Biol 50: 17-27

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36: 415-437

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nu-trient input into the environment compatible with maintaining crop produc-tion? Trends Plant Sci 9: 597-605

    Article  PubMed  CAS  Google Scholar 

  • Goregaoker SP, Eckhardt LG, Culver JN (2000) Tobacco mosaic virus replicase-mediated cross-protection: contributions of RNA and protein-derived mecha-nisms. Virology 273: 267-275

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17: 282-286

    Article  PubMed  CAS  Google Scholar 

  • Gressel J, Ehrlich G (2002) Universal inheritable barcodes for identifying organ-isms. Trends Plant Sci 7: 542-544

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9: 399-405

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn B, Hohn T, Walden R (1986) “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83: 3282-3286

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium-mediated deliv-ery of infectious maize streak virus into maize plants. Nature 325: 177-179

    Article  CAS  Google Scholar 

  • Guerinot ML (2001) Improving rice yields-ironing out the details. Nat Biotechnol 19: 417-418

    Article  PubMed  CAS  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23: 275-282

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Boerjan W (2003) Stacking transgenes in forest trees. Trends Plant Sci 8: 363-365

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93: 9975-9979

    Article  PubMed  CAS  Google Scholar 

  • Han KH, Ma CP, Strauss SH (1997) Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Res 6: 415-420

    Article  CAS  Google Scholar 

  • Hanley Z, Slabas T, Elborough KM (2000) The use of plant biotechnology for the production of biodegradable plastics. Trends Plant Sci 5: 45-46

    Article  PubMed  CAS  Google Scholar 

  • Hannin M, Volrath S, Bogucki A, Briker M, Ward E, Paskowski J (2001) Gene targeting in Arabidopsis. Plant J 28: 671-677

    Article  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19: 1168-1172

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418: 244-251

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Chilton M-D (1996) “Agrolistic” transformation of plant cells: integra-tion of T-strands generated in planta. Proc Natl Acad Sci USA 93: 14978-14983

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Das A, Chilton M-D (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91: 7603-7607

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4: 226-231

    Article  PubMed  Google Scholar 

  • Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium-transformed population for plants con-taining only T-DNA sequences. Plant J 19: 727-734

    Article  PubMed  CAS  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714-716

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20: 575-580

    Article  PubMed  CAS  Google Scholar 

  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 22: 1105-1109

    Article  PubMed  CAS  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical Focus:a guide to Agrobacte-rium binary Ti vectors. Trends Plant Sci 5: 446-451

    Article  PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22: 1415-1422

    Article  PubMed  CAS  Google Scholar 

  • Heritage J (2005) Transgenes for tea? Trends Biotechnol 23: 17-21

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Block MD, Messens E, Hernalsteens JP, Montagu MV, Schell J (1983a) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987-995

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983b) Expression of chimaeric genes transferred into plant cells using a Ti plasmid derived vector. Nature 303: 209-213

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, Simpson J, Martinez-Trujillo M (2005) Transgenic plants: an historical perspective. Methods Mol Biol 286: 3-32

    PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342: 76-78

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282

    Article  PubMed  CAS  Google Scholar 

  • High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deploy-ment of Bt rice. Trends Plant Sci 9: 286-292

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160-163

    Article  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/ Technology 6: 915-922

    CAS  Google Scholar 

  • Hirsch RE, Sussman MR (1999) Improving nutrient capture from soil by the ge-netic manipulation of crop plants. Trends Biotechnol 17: 356-361

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, de Pater BS, Fellinger AJ, Hooykaas PJ, Schilperoort RA (1984) The limited host range on an Agrobacterium tumefaciens strain extended by a cy-tokinin gene from a wide host range T-region. EMBO J 3: 3043-3047

    PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179-180

    Article  CAS  Google Scholar 

  • Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from trans-genic plants. Curr Opin Biotechnol 12: 139-143

    Article  PubMed  CAS  Google Scholar 

  • Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8: 51-53

    Article  PubMed  CAS  Google Scholar 

  • Hood EE (2004) Where, oh where has my protein gone? Trends Biotechnol 22: 53-55

    Article  PubMed  CAS  Google Scholar 

  • Hood EE (2003) Selecting the fruits of your labors. Trends Plant Sci 8: 357-358

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168: 1291-1301

    PubMed  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) In-heritance of functional foreign genes in plants. Science 223: 496-498

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308: 688-690

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002a) Enhancing the crops to feed the poor. Nature 418: 678-684

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Rozelle S, Pray C, Wang Q (2002b) Plant biotechnology in China. Sci-ence 295: 674-676

    CAS  Google Scholar 

  • Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG (2002c) Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50: 333-344

    Article  PubMed  CAS  Google Scholar 

  • Iglesias V, Moscone E, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A (1997) Molecular and cytogenetic analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251-1264

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefa-ciens. Nat Biotechnol 14: 745-750

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106

    Article  PubMed  CAS  Google Scholar 

  • James C (2005) Executive summary: Brief 34, Global status of commercialized biotech/GM crops: 2005. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca NY

    Google Scholar 

  • Jarchow E, Grimsley NH, Hohn B (1991) virF, the host range-determining viru-lence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci USA 88: 10426-10430

    Article  PubMed  CAS  Google Scholar 

  • Jin SG, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the su-pervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169: 4417-4425

    PubMed  CAS  Google Scholar 

  • Jung C, Cai D, Kleine M (1998) Engineering nematode resistance in crop species. Trends Plant Sci 3: 266-271

    Article  Google Scholar 

  • Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10: 103-105

    PubMed  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193-195

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improv-ing plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricci P (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11: 223-235

    Article  PubMed  CAS  Google Scholar 

  • Kempin SA, Liljegren SJ, Block LM, Rounsley SD, Yanofsky MF, Lam E (1997) Targeted disruption in Arabidopsis. Nature 389: 802-803

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70-73

    Article  CAS  Google Scholar 

  • Kleter GA, van der Krieken WM, Kok EJ, Bosch D, Jordi W, Gilissen LJ (2001) Regulation and exploitation of genetically modified crops. Nat Biotechnol 19: 1105-1110

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rup-precht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and gly-cosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100: 8013-8018

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343: 15-41

    PubMed  CAS  Google Scholar 

  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 98: 11539-11544

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple com-plex patterns of integration. Plant J 11: 945-957

    Article  PubMed  CAS  Google Scholar 

  • Kooter JM, Matzke AM, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4: 340-347

    Article  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Arkhipov A, Hohn B (1998) Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat Biotechnol 16: 1054-1059

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2001a) Biomonitoring the genotoxicity of environmental factors with transgenic plants. Trends Plant Sci 6: 306-310

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk O, Titov V, Hohn B, Kovalchuk I (2001b) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat Biotech-nol 19: 568-572

    Article  CAS  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioreme-diation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55: 661-672

    Article  PubMed  Google Scholar 

  • Krattiger AF (1999) Networking biotechnology solutions with developing coun-tries: the mission and strategy of the International Service for the Acquisition of Agri-biotech Applications. In T Hohn, KM Leisinger, eds, Biotechnology of food cropsi n developing countries. Springer-Verlag Wien, New York, pp 25-33

    Google Scholar 

  • Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoe-nolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17: 76-80

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB, Cho D, Li X, Jiao D, Pinto M, Miyao M, Matsuoka M (2001) Introduc-tion of genes encoding C4 photosynthesis enzymes into rice plants: physio-logical consequences. In Rice biotechnology: improving yield, stress tolerance and grain quality, Wiley, Chichester (Novartis Foundation Symposium 236), pp 100-116

    Google Scholar 

  • Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci 6: 155-159

    Article  PubMed  CAS  Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua N-H (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17: 916-919

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24: 109-114

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2: 415-425

    Article  PubMed  CAS  Google Scholar 

  • Leisinger KM (1999) The contribution of genetic engineering to the fight against hunger in developing countries. In T Hohn, KM Leisinger, eds, Biotechnology of food crops in developing countries. Springer-Verlag Wien, New York, pp 1-19

    Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127: 1256-1265

    Article  PubMed  CAS  Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14: 736-740

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combina-torial modification of multiple lignin traits in trees through multigene cotrans-formation. Proc Natl Acad Sci USA 100: 4939-4944

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Sanchez A, Angeles E, Singh S, Domingo J, Huang N, Khush GS (2001) Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics 159: 757-765

    PubMed  CAS  Google Scholar 

  • Lin L, Liu YG, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100: 5962-5967

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regu-lation of Gene Expression and Virus Resistance. Plant Cell 5: 1749-1759

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Burton S, Glancy T, Li ZS, Hampton R, Meade T, Merlo DJ (2003) Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21: 1222-1228

    Article  PubMed  CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102: 2232-2237

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33: 323-334

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the com-plexing role of organic acids. Trends Plant Sci 6: 273-278

    Article  PubMed  CAS  Google Scholar 

  • Ma JK (2000) Genes, greens, and vaccines. Nat Biotechnol 18: 1141-1142

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005a) Plant-derived pharmaceuticals--the road forward. Trends Plant Sci 10: 580-585

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Chargelegue D, Obregon P, Prada A (2005b) Antibody proc-essing and engineering in plants, and new strategies for vaccine production. Vaccine 23: 1814-1818

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268: 716-719

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reduc-toisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98: 8915-8920

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7: 366-373

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg R (1990) Induc-tion of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737-741

    Article  CAS  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombina-tion of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101: 6852-6857

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for effi-cient transient expression in plants. Nat Biotechnol 23: 718-723

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Haq TA, Clements JD, Arntzen CJ (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes express-ing a synthetic LT-B gene. Vaccine 16: 1336-1343

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89: 11745-11749

    Article  PubMed  CAS  Google Scholar 

  • Matthews P, Wang M, Waterhouse P, Thornton S, Fieg S, Gubler F, Jacobsen J (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7: 195-202

    Article  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1: 142-148

    Article  PubMed  CAS  Google Scholar 

  • May G, Afza R, Mason H, Wiecko A, Novak F, Arntzen C (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Biotechnology 13: 486-492

    Article  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismu-tase. Plant Physiol 111: 1177-1181

    PubMed  CAS  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice qual-ity, and vine life. Nat Biotechnol 20: 613-618

    Article  PubMed  CAS  Google Scholar 

  • Miao ZH, Lam E (1995) Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J 7: 359-365

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High effi-ciency transgene segregation in co-transformed maize plants using an Agro-bacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11: 381-396

    Article  PubMed  CAS  Google Scholar 

  • Mitter N, Sulistyowati E, Graham MW, Dietzgen RG (2001) Suppression of gene silencing: a threat to virus-resistant transgenic plants? Trends Plant Sci 6: 246-247

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photo-synthesis and growth. Nat Biotechnol 19: 965-969

    Article  PubMed  CAS  Google Scholar 

  • Moar W (2003) Breathing new life into insect-resistant plants. Nat Biotechnol 21: 1152-1154

    Article  PubMed  CAS  Google Scholar 

  • Mol J, Holton T, Koes R (1995) Floriculture: genetic engineering of commercial traits. Trends Biotechnol 13: 350-355

    Article  CAS  Google Scholar 

  • Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8: 70-75

    Article  PubMed  CAS  Google Scholar 

  • Morse S, Bennett R, Ismael Y (2004) Why Bt cotton pays for small-scale produc-ers in South Africa. Nat Biotechnol 22: 379-380

    Article  PubMed  CAS  Google Scholar 

  • Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resis-tance to bacterial diseases through genetic engineering. Trends Biotechnol 16: 203-210

    Article  PubMed  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19: 470-474

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710-713

    Article  CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is de-ficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91: 12760-12764

    Article  PubMed  CAS  Google Scholar 

  • Negretto DB, Jolley MB, Beer SB, Wenck AR, Hansen G (2000) The use of phos-phomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19: 798-803

    Article  Google Scholar 

  • Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3: 249-258

    Article  PubMed  CAS  Google Scholar 

  • Newell CA (2000) Plant transformation technology. Developments and applica-tions. Mol Biotechnol 16: 53-65

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Xu W, Rosenow DT, Mullett JE, McIntyre L (1996) Use of biotech-nology in sorghum breeding. In Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet,, Texas, Sept 22-27, 1997 INTSORMIL/ICRISAT, pp 412-424

    Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7: 661-667

    Article  CAS  Google Scholar 

  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Biotechnol 22: 1110-1114

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased lev-els of the antioxidant chlorogenic acid. Nat Biotechnol 22: 746-754

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Ex-pression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24: 1420-1428

    Article  PubMed  CAS  Google Scholar 

  • Normile D (2000) Agricultural biotechnology. Monsanto donates its share of golden rice. Science 289: 843-845

    Article  PubMed  CAS  Google Scholar 

  • Nottingham S (1998) Eat your genes: how genetically modified food is entering our diet. Zed Books Ltd, New York

    Google Scholar 

  • Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24: 437-446

    Article  PubMed  CAS  Google Scholar 

  • O’Connell K, Goodman R, Handelsmar J (1996) Engineering the rhizosphere: ex-pressing a bias. Trends Biotechnol 14: 83-88

    Article  Google Scholar 

  • Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible in-hibition of tomato fruit senescence by antisense RNA. Science 254: 437-439

    Article  PubMed  CAS  Google Scholar 

  • Offringa R, de Groot MJA, Haagsman HJ, Does MP, van den Elzen PJM, Hooykaas PJJ (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9: 3077-3084

    PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9: 433-440

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18: 1162-1166

    Article  PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23: 482-487

    Article  PubMed  CAS  Google Scholar 

  • Pang SZ, Slightom JL, Gonsalves D (1993) Different mechanisms protect trans-genic tobacco against tomato spotted wilt and impatiens necrotic spot To-spoviruses. Biotechnol 11: 819-824

    Article  CAS  Google Scholar 

  • Peña L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19: 500-506

    Article  PubMed  Google Scholar 

  • Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8: 355-357

    Article  PubMed  CAS  Google Scholar 

  • Peralta EG, Hellmiss R, Ream W (1986) Overdrive, a T-DNA transmission en-hancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137-1142

    PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7: 199-203

    Article  PubMed  CAS  Google Scholar 

  • Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC (2004) Fusion proteins com-prising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 22: 732-738

    Article  PubMed  CAS  Google Scholar 

  • Peterson RK, Arntzen CJ (2004) On risk and plant-based biopharmaceuticals. Trends Biotechnol 22: 64-66

    Article  PubMed  CAS  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20: 607-612

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EA, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123-132

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dunn K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance un-der drought stress. Plant Physiol J 152: 525-532

    CAS  Google Scholar 

  • Pink D, Puddephat I (1999) Deployment of disease resistance genes by plant transformation - a ‘mix and match’ approach. Trends Plant Sci 4: 71-75

    Article  PubMed  Google Scholar 

  • Poirier Y (1999) Green chemistry yields a better plastic. Nat Biotechnol 17: 960-961

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplasic, produced in transgenic plants. Science 256: 520-523

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (2001) Golden rice and beyond. Plant Physiol 125: 1157-1161

    Article  PubMed  CAS  Google Scholar 

  • Powell-Abel P, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743

    Article  Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21: 373-375

    Article  PubMed  CAS  Google Scholar 

  • Prins M, de Haan P, Luyten R, van Veller M, van Grinsven MQ, Goldbach R (1995) Broad resistance to tospoviruses in transgenic tobacco plants express-ing three tospoviral nucleoprotein gene sequences. Mol Plant Microbe Interact 8: 85-91

    PubMed  CAS  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in de-veloping countries. Science 299: 900-902

    Article  PubMed  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22: 739-745

    Article  PubMed  CAS  Google Scholar 

  • Ralley L, Enfissi EM, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39: 477-486

    Article  PubMed  CAS  Google Scholar 

  • Regensburg-Tuink AJG, Hooykaas PJJ (1993) Transgenic N. glauca plants ex-pressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69-71

    Article  PubMed  CAS  Google Scholar 

  • Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20: 1256-1260

    Article  PubMed  CAS  Google Scholar 

  • Richter LJ, Thanavala Y, Arntzen CJ, Mason HS (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol 18: 1167-1171

    Article  PubMed  CAS  Google Scholar 

  • Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18: 666-669

    Article  PubMed  Google Scholar 

  • Romero C, Bellés JM, Vayé JL, Serrano R, Culiáñez-Marciá FA (1997) Expres-sion of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201: 293-297

    Article  PubMed  CAS  Google Scholar 

  • Rommens C (2004) All-native DNA transformation: a new approach to plant ge-netic engineering. Trends Plant Sci 9: 457-464

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135: 421-431

    Article  PubMed  CAS  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302: 1917-1919

    Article  PubMed  CAS  Google Scholar 

  • Rovere CV, del Vas M, Hopp HE (2002) RNA-mediated virus resistance. Curr Opin Biotechnol 13: 167-172

    Article  CAS  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic to-bacco seedlings during stress. Nat Biotechnol 15: 988-991

    Article  PubMed  CAS  Google Scholar 

  • Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100: 4429-4434

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of trans-genic yellow poplar for mercury phytoremediation. Nat Biotechnol 16: 925-928

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93: 3182-3187

    Article  PubMed  CAS  Google Scholar 

  • Rushton P (2002) Exciting prospects for plants with greater disease resistance. Trends Plant Sci 7: 325

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin me-tabolism in transgenic rice. Nat Biotechnol 21: 909-913

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24: 105-109

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and fu-ture challenges. Trends Plant Sci 10: 297-304

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (2004) Molecular ecotoxicology of plants. Trends Plant Sci 9: 406-413

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance - de-riving resistance genes from the parasite’s own genome. J Theor Biol 113: 395-405

    Article  Google Scholar 

  • Sarhan F, Danyluk J (1998) Engineering cold-tolerant crops - throwing the master switch. Trends Plant Sci 3: 289-290

    Article  Google Scholar 

  • Sattler SE, Cheng Z, DellaPenna D (2004) From Arabidopsis to agriculture: engi-neering improved Vitamin E content in soybean. Trends Plant Sci 9: 365-367

    Article  PubMed  CAS  Google Scholar 

  • Scheid O (2004) Either/or selection markers for plant transformation. Nat Bio-technol 22: 398-399

    Article  CAS  Google Scholar 

  • Scheller J, Gührs KH, Grosse F, Conrad U (2001) Production of spider silk pro-teins in tobacco and potato. Nat Biotechnol 19: 573-577

    Article  PubMed  CAS  Google Scholar 

  • Serageldin I (1999) Biotechnology and food security in the 21st century. Science 285: 387-389

    Article  PubMed  CAS  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102: 12265-12269

    Article  PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev En-tomol 47: 845-881

    Article  CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other meta-bolic effects. Plant J 20: 401-412

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85

    Article  PubMed  CAS  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5: 354-357

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto K (2002) Picking genes in the rice genome. Nat Biotechnol 20: 983-984

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098-2100

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9: 70-75

    Article  PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217: 367-373

    Article  PubMed  CAS  Google Scholar 

  • Sithole-Niang I (2001) Future of plant science in Zimbabwe. Trends Plant Sci 6: 493-494

    Article  PubMed  CAS  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotech-nol 17: 1011-1016

    Article  CAS  Google Scholar 

  • Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quan-tity and quality. Trends Plant Sci 5: 291-298

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Bryant JA (1999) DREB takes the stress out of growing up. Nat Bio-technol 17: 229-230

    Article  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320

    Article  PubMed  CAS  Google Scholar 

  • Smyth S, Khachatourians GG, Phillips PW (2002) Liabilities and economics of transgenic crops. Nat Biotechnol 20: 537-541

    Article  PubMed  CAS  Google Scholar 

  • Snow A (2002) Transgenic crops - why gene flow matters. Nat Biotechnol 20: 542

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003a) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to po-tato late blight. Proc Natl Acad Sci USA 100: 9128-9133

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003b) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21: 914-919

    Article  PubMed  CAS  Google Scholar 

  • Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant re-sistance to viruses. Nat Rev Microbiol 3: 789-798

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22: 627-629

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN, Jr. (2005) Monitoring the presence and expression of transgenes in living plants. Trends Plant Sci 10: 390-396

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Jilka JM, Hood EE, Turner DD, Bailey MR, Mayor JM, Woodard SL, Beifuss KK, Horn ME, Delaney DE, Tizard IR, Howard JA (2001) Plant-based vaccines: unique advantages. Vaccine 19: 2742-2748

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8: 179-187

    Article  PubMed  CAS  Google Scholar 

  • Tabe L, Higgins TJV (1998) Engineering plant protein composition for improved nutrition. Trends Plant Sci 3: 282-286

    Article  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182: 302-305

    Article  PubMed  CAS  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96: 14153-14158

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nico-tianamine aminotransferase genes. Nat Biotechnol 19: 466-469

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of the transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510

    Article  PubMed  CAS  Google Scholar 

  • Taylor CG, Fuchs B, Collier R, Lutke WK (2006) Generation of composite plants using Agrobacterium rhizogenes. Methods Mol Biol 343: 155-167

    PubMed  Google Scholar 

  • Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Develop-ment and application of transgenic technologies in cassava. Plant Mol Biol 56: 671-688

    Article  PubMed  CAS  Google Scholar 

  • Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechno-logical tool for the control of virus diseases in plants. Virus Res 102: 85-96

    Article  PubMed  CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030-1034

    Article  PubMed  CAS  Google Scholar 

  • Thro AM, Fregene M, Taylor N, Raemakers KCJJM, Puonit-Kaerlas J, Schöpke C, Visser R, Potrykus I, Fauquet C, Roca W, Hershey C (1999) Genetic bio-technologies and cassava-based development. In T Hohn, KM Leisinger, eds, Biotechnology of food crops in developing countries. Springer-Verlag Wien, New York, pp 143-185

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11: 1369-1376

    Article  CAS  Google Scholar 

  • Toenniessen G (1995) Plant biotechnology and developing countries. Trends Bio-technol 13: 404-409

    Article  CAS  Google Scholar 

  • Torisky RS, Kovacs L, Avdiushko S, Newman JD, Hunt AG, Collins GB (1997) Development of a binary vector system for plant transformation base on the supervirulent Agrobacterium tumefaciens strain Chry 5. Plant Cell Rep 17: 102-108

    Article  CAS  Google Scholar 

  • Tzfira T, Tian G-W, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57: 503-516

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobac-terium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99: 10435-10440

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23: 567-569

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Zuker A, Altman A (1998) Forest-tree biotechnology: genetic transfor-mation and its application to future forests. Trends Biotechnol 16: 439-446

    Article  CAS  Google Scholar 

  • Uhrig JF (2003) Response to Prins: broad virus resistance in transgenic plants. Trends Biotechnol 21: 376-377

    Article  PubMed  CAS  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium Hirsutum L.) plants. Bio/Technology 5: 263-266

    Article  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12: 455-461

    Article  PubMed  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from in-sect attack. Nature 328: 33-37

    Article  CAS  Google Scholar 

  • Van de Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hy-gromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299-302

    Article  Google Scholar 

  • van der Biezen EA (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci 6: 89-91

    Article  PubMed  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc re-sistance and accumulation. Plant Physiol 119: 1047-1055

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007-3019

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the in-tron in transgenic plants and its use in monitoring early events in Agrobacte-rium-mediated plant transformation. Mol Gen Genet 220: 245-250

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (2003) The science and politics of plant biotechnology--a personal per-spective. Nat Biotechnol 21: 849-851

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16: 651-659

    Article  PubMed  CAS  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18: 779-783

    Article  PubMed  CAS  Google Scholar 

  • Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agro-bacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nu-cleic Acids Res 26: 2729-2734

    Article  CAS  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979-982

    Article  PubMed  CAS  Google Scholar 

  • Walden R, Wingender R (1995) Gene-transfer and plant-regeneration techniques. Trends Biotechnol 13: 324-331

    Article  CAS  Google Scholar 

  • Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10: 610-614

    Article  PubMed  CAS  Google Scholar 

  • Wenck A, Czako M, Kanevski I, Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34: 913-922

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral ele-ments. Trends Plant Sci 10: 586-593

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Sweet J, Poppy GM (2003) Risk assessment of GM plants: avoid-ing gridlock? Trends Plant Sci 8: 208-212

    Article  PubMed  CAS  Google Scholar 

  • Williams M (1995) Genetic engineering for pollination control. Trends Biotechnol 13: 344-349

    Article  CAS  Google Scholar 

  • Wilson TM (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci USA 90: 3134-3141

    Article  PubMed  CAS  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characteri-zation of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38: 123-130

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen Z, Qu L (2004) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168: 297-302

    Article  CAS  Google Scholar 

  • Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain poly-unsaturated fatty acids in plants. Nat Biotechnol 23: 1013-1017

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24: 1441-1447

    Article  PubMed  CAS  Google Scholar 

  • Xie M, He Y, Gan S (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol 19: 677-679

    Article  PubMed  CAS  Google Scholar 

  • Xie ZP, Auberson-Huang L, Malnoë P, Yao H, Kaeppeli O (2002) Comparison of driving forces in sustainable food production and the future of plant biotech-nology in Switzerland and China. Trends Plant Sci 7: 416-418

    Article  PubMed  Google Scholar 

  • Xue Z, Zhi D, Xue G, Zhang H, Zhao Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ anti-porter gene with improved grain yields in saline soils in the field and a re-duced level of leaf Na+. Plant Sci 167: 849-859

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: chal-lenges and opportunities. Trends Plant Sci 10: 615-620

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Yie Y, Zhu F, Liu Y, Kang L, Wang X, Tien P (1997) Ribozyme-mediated high resistance against potato spindle tuber viroid in transgenic po-tatoes. Proc Natl Acad Sci USA 94: 4861-4865

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester E (1985) Molecular and genetic analysis of factors controlling host range in Agrobacte-rium tumefaciens. Mol Gen Genet 201: 237-348

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engi-neering the provitamin A (ȕ-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305

    Article  PubMed  CAS  Google Scholar 

  • Yimin D, Mervis J (2002) Transgenic crops. China takes a bumpy road from the lab to the field. Science 298: 2317-2319

    Article  PubMed  CAS  Google Scholar 

  • Zambryski PC, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without altera-tion of their normal regeneration capacity. EMBO J 2: 2143-2150

    PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in trans-genic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98: 12832-12836

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7: 611-621

    Article  PubMed  CAS  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21: 1493-1497

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44: 789-798

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66-71

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agro-bacterium-mediated transformation. Cell 125: 749-760

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Na-ture 428: 764-767

    CAS  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18: 442-445

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13: 173-180

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Møller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19: 157-161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banta, L.M., Montenegro, M. (2008). Agrobacterium and Plant Biotechnology. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_3

Download citation

Publish with us

Policies and ethics