Skip to main content

Cryopreservation of Orthodox (Desiccation Tolerant) Seeds

  • Chapter
Plant Cryopreservation: A Practical Guide

Although there are several methods of ex situ plant conservation, seed banking is the most efficient for many species, particularly for ease of application and the amount of diversity conserved (Linington and Pritchard 2001). Indeed, seed storage is the main form of ex situ plant genetic resources (PGR) conservation globally, representing about 90% of all collections, the vast majority of which are crops, including cultivars (FAO 1996). More than half the world’s PGR accessions are held in medium-term or long-term storage conditions. For long-term storage, the international standards are drying at 10–25°C and 10–15% RH to 3–7% moisture content, followed by storage at about –18°C (FAO/IPGRI 1994). Whilst less than expected seed longevity at about –20°C is known for “intermediate” or Type II seeds (see Pritchard 2004), ‘orthodox’ Type I seeds can also age quicker at seed bank temperatures than predicted by the seed viability equations (for explanation see Pritchard and Dickie 2003). This was revealed by an elegant experiment in which orthodox Hordeum vulgare ssp distichium cv. Proctor seed, ageing at warm temperatures, was interrupted by transfer to –20°C, which indicated longevity parameters associated with storage at –6°C (Roberts and Ellis 1977). This observation, combined with comparisons between actual performance and extrapolation of longevity to sub-zero temperatures, suggests that the benefits of all sub-zero storage temperatures may be less than previously thought (Dickie et al. 1990; Pritchard 1995; Pritchard and Dickie 2003; Walters et al. 2004). Although the modelling of seed longevity at sub-zero temperatures is a challenge, such cooling generally enhances dry seed longevity (Dickie et al. 1990; Pritchard and Seaton 1993; Walters et al. 2004). Consequently, cryopreservation may be of particular importance for the long-term (10-100s years) storage of otherwise inherently short-lived orthodox seeds (Pritchard 1995; Pritchard and Seaton 1993; Pritchard et al. 1999b; Walters et al. 2004; Pritchard 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown HT, Escombe F (1897-1898) Note on the influence of very low temperatures on the germinative power of seeds. Proc Roy Soc 62: 160-165

    Google Scholar 

  • Busse WF (1930) Effect of low temperatures on germination of impermeable seeds. Bot Gaz 89: 169-179

    Article  CAS  Google Scholar 

  • Busse WF, Burnham CR (1934) Some effects of low temperatures on seeds. Bot Gaz 90: 399-411

    Article  Google Scholar 

  • Crane J, Kovach D, Gardner C, Walters C (2006) Triacylglycerol phase and ‘intermediate’ seed storage physiology: A study of Cuphea carthagenesis. Planta 223: 1081-1089

    Article  PubMed  CAS  Google Scholar 

  • Crane J, Miller AL, van Roekel JW, Walters CW (2003) Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217: 699-708

    Article  PubMed  CAS  Google Scholar 

  • Darwin Initiative (2005) Cryoconservation Centre of Excellence for Sub-Sahara Africa. http://www.darwin.gov.uk/projects/details/14056.html

  • Daws MI, Davies J, Vaes E, van Gelder R, Pritchard HW (2007) Two-hundredyear seed survival of Leucospermum and two other woody species from the Cape Floristic region, South Africa. Seed Sci Res (in press)

    Google Scholar 

  • De Candolle A (1865) De la germination sous les degrees divers de temperature constante. Arch Sci Phys Nat 24: 243-282

    Google Scholar 

  • De Candolle C, Pictet R (1879) Recherches concernant l’action des basses temperatures sur la faculte germinative des graines. Arch Sci Phys Nat 2, 354: 629

    Google Scholar 

  • Dewar J, McKendrick JG (1892). On liquid air. Proc Roy Inst 12: 699

    Google Scholar 

  • Dickie JB, Ellis RH, Kraak HL, Ryder K, Tompsett PB (1990) Temperature and seed storage longevity. Ann Bot 65: 197-204

    Google Scholar 

  • Edwards M, Colin M (1834) De l’influence de la temperature sur la germination. Ann Sci Nat II, 1: 257-270

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1990) An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41: 1167-1174

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci Res 1: 69-72

    Google Scholar 

  • European Union (2006) Cost Action 871. Cryopreservation of crop species in Europe. http://ewi-vlaanderen.be/documenten/COST_871_MoU.pdf

  • FAO (1996) The State of the World’s Plant Genetic Resources for Food and Agriculture. FAO, Rome, Italy

    Google Scholar 

  • FAO/IPGRI (1994) Genebank Standards. FAO, Rome, Italy

    Google Scholar 

  • Gonzalez-Benito ME, Fernandez-Llorente F, Perez-Garcia F (1998) Interaction between cryopreservation, rewarming rate and seed humidification on the germination of two Spanish endemic species. Ann Bot 82: 683-686

    Article  Google Scholar 

  • Hamilton KN, Ashmore SE, Drew RA (2005) Investigations on desiccation and freezing tolerance of Citrus australasica seed for ex situ conservation. pp 157-161 In: Adkins SW, Ainsley PJ, Bellairs SM, Coates DJ, Bell LC (eds) Proceedings of the 5th Australian Workshop on Native Seed Biology, Brisbane, Queensland, June 2004, ACMER

    Google Scholar 

  • Hor YL, Kim YJ, Ugap A, Chabrillange N, Sinniah UR, Engelmann F, Dussert S (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95: 1153-1161

    Article  PubMed  CAS  Google Scholar 

  • Lambardi M, De Carlo A, Biricolti S, Puglia AM, Lombardo G, Siragusa M, De Pasquale F (2004) Zygotic and nucellar embryo survival following dehydration/cryopreservation of Citrus intact seeds. CryoLetters 25: 81-90

    PubMed  CAS  Google Scholar 

  • Leprince O, van Aelst AC, Pritchard HW, Murphy DJ (1998) Oleosins prevent oil-body coalescence during seed imbibition as suggested by a lowtemperature scanning electron microscopy study of desiccation-tolerant and sensitive oilseeds. Planta 204: 109-119

    Article  CAS  Google Scholar 

  • Linington SH, Pritchard HW (2001) Gene banks. pp 165-181 In: Levin SA (editor in chief) Encyclopedia of Biodiversity. Vol 3. Academic Press, New York

    Google Scholar 

  • Lipman CB (1936) Normal viability of seeds and bacterial spores after exposure to temperatures near the absolute zero. Plant Physiol 11: 201-205

    Article  PubMed  CAS  Google Scholar 

  • Lipman CB, Lewis GN (1934) Tolerance of liquid air temperatures by seed of higher plants for sixty days. Plant Physiol 9: 392-394

    Article  PubMed  CAS  Google Scholar 

  • Pritchard HW (1995) Cryopreservation of seeds. pp 133-144 In: Day JG, McLellan MR (eds) Methods in Molecular Biology. Vol 38. Cryopreservation and Freeze-drying Protocols. Humana Press Inc., Totowa, NJ

    Google Scholar 

  • Pritchard HW (2002) Cryopreservation and global warming! CryoLetters 23: 281-282

    PubMed  CAS  Google Scholar 

  • Pritchard HW (2004) Classification of seed storage ‘types’ for ex situ conservation in relation to temperature and moisture. pp 139-161 In: Guerrant EO, Havens K, Maunder M (eds) Ex situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Washington DC, USA

    Google Scholar 

  • Pritchard HW (2006) Cryo network. Kew Scientist 30: 3 (http://www.rbgkew.org.uk/kewscientist/ks_30.pdf)

  • Pritchard HW (2007) Cryopreservation of desiccation tolerant seeds. pp 183-199 In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana Press Inc., Totowa, NJ

    Google Scholar 

  • Pritchard HW, Dickie JB (2003) Predicting seed longevity: Use and abuse of seed viability equations. pp 653 -722 In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Pritchard HW, Manger KR, Prendergast FG (1988) Changes in Trifolium arvense seed quality following alternating temperature treatment using liquid nitrogen. Ann Bot 62: 1-11

    Google Scholar 

  • Pritchard HW, Poynter AC, Seaton PT (1999a) Interspecific variation in orchid seed longevity in relation to ultra-drying and cryopreservation. Lindleyana 14: 92-101

    Google Scholar 

  • Pritchard HW, Seaton PT (1993) Orchid seed storage. Historical perspective, current status and future prospects. Selbyana 14: 89-104

    Google Scholar 

  • Pritchard HW, Wood CB, Amritphale D, Magill W, Benson EE (1999b) Freezinginduced dormancy in dried Carica papaya seeds: A new cryobiological syndrome? Cryobiology 38: 308

    Google Scholar 

  • Reed BM, Kovalchuk I, Kushnarenko S, Meier-Dinkel A, Schoenweiss K, Pluta S, Straczynska K, Benson EE (2004) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant cryopreservation laboratories. CryoLetters 25: 341-352

    PubMed  Google Scholar 

  • Roberts EH, Ellis RH (1977) Prediction of seed longevity at sub-zero temperatures and genetic resources conservation. Nature 268: 431-433

    Article  Google Scholar 

  • Roberts EH, Ellis RH (1989) Water and seed survival. Ann Bot 63: 39-52

    Google Scholar 

  • Sakai A, Noshiro M (1975) Some factors contributing to the survival of crop seeds cooled to the temperature of liquid nitrogen. pp 317-326 In: Frankel OH, Hawkes JG (eds) Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Selby AD (1901) Germination of the seeds of some common cultivated plants after prolonged immersion in liquid air. Bull Torrey Bot Club 28: 675-679

    Article  Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. pp 199-226 In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Stanwood PC, Bass LN (1978) Ultracold preservation of seed germplasm. pp 361- 371 In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress. Academic Press, New York

    Google Scholar 

  • Stushnoff C, Juntilla O (1978) Resistance to low temperature injury in hydrated lettuce seed by supercooling. pp 241-247 In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications, Academic Press, New York

    Google Scholar 

  • Sun WQ (2002) Methods for the study of water relations under desiccation stress. pp 47-91 In: Black M, Pritchard HW (eds) Desiccation and Survival in Plants: Drying Without Dying. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Thiselton-Dyer W (1899) On the influence of the temperature of liquid hydrogen on the germinative power of seeds. Proc Roy Soc 65: 361-368

    Article  CAS  Google Scholar 

  • Vertucci CW (1989a) Effects of cooling rate on seeds exposed to liquid nitrogen temperatures. Plant Physiol 90: 1478-1485

    Article  PubMed  Google Scholar 

  • Vertucci CW (1989b) Relationship between thermal transitions and freezing injury in pea and soybean seeds. Plant Physiol 90: 1121-1128

    Article  PubMed  Google Scholar 

  • Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C (2006) Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224: 1415-1426

    Article  PubMed  CAS  Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48: 229-244

    Article  PubMed  Google Scholar 

  • Wartman E (1860) Note relative a l’influence de froids excessifs sur la graines. Arch Sci Phys Nat 8: 227

    Google Scholar 

  • Wood C, Berjak P, Offord C (2005) Strengthening seed cryo-biology research. SAMARA 9 6 http://www.rbgkew.org.uk/msbp/inform/samara/samara9_english.pdf

  • Wood CB, Wood CB, Pritchard HW, Amritphale D (2000) Desiccation-induced dormancy in papaya (Carica papaya L.) is alleviated by heat shock. Seed Sci Res 10: 135-145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pritchard, H.W., Nadarajan, J. (2008). Cryopreservation of Orthodox (Desiccation Tolerant) Seeds. In: Reed, B.M. (eds) Plant Cryopreservation: A Practical Guide. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72276-4_19

Download citation

Publish with us

Policies and ethics