Skip to main content

Combination of Antiangiogenic Therapy with Other Anticancer Therapies

  • Chapter
Angiogenesis
  • 2774 Accesses

The study of angiogenesis in malignant tumors has a long history of more than 200 years. Formal modern studies of tumor angiogenesis and the search for therapeutic antiangiogenic agents have progressed very rapidly over the past 30 years. First generation antiangiogenic agents were very important because they allowed the opportunity to validate the concepts that blocking angigoegenesis could be therapeutically important in cancer and that a role could be found for such molecules in combination therapeutic regimens for cancer. Through the 1970s and 1980s, investigators faced a dilemma regarding how to incorporate agents that “choked-off” the tumor blood supply into multi-component therapeutic regimens that had been developed empirically over many years. TNP470, a synthetic molecule derived from a fungal toxin, and minocycline, a tetracycline, were very useful in the preclinical studies that demonstrated that antiangiogenic therapy could enhance the activity to cytotoxic chemostherapy and radiation therapy. These fisrt generation molecules failed to reach clinical approval, but very quickly antiangiogenic kinase inhibitor and antiangiogenic antibodies, especially bevacizumab, demonstrated very similar effects in preclinical models and entered clinical trial. Returning to early observations, cytotoxic therapies administered in continuous low dose regimens can take best advantage of the toxicity of these molecules toward endothelial cells in ‘metronomic’ regimens. Most recently, large genomics efforts have been devoted to identifying differences between normal endothelium and tumor endothelium with a goal to define highly selective tumor endothelial targets for therapeutic attack. The antiangiogenic therapies that have become approved drugs are administered to patients as important components for combination tereatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teicher BA: A systems approach to cancer therapy (antiangiogenics + standard cytotoxics mechanism(s) of interaction. Cancer Met Rev 199; 15: 247–72.

    Google Scholar 

  2. Steiner R. Angiostatic activity of anticancer agents in the chick embryo chorioallantoic membrance (CHE-CAM) assay. In: Steiner R, Weisz PB, Langer R (eds), Angiogenesis: key principles–science, technology, medicine; Birkhauser Verlaga, Basel, 1992; EXS 61: 449–54.

    Google Scholar 

  3. Van der Kolk S. In: Blood Supply of Tumors, vol 2; Montagna W and Ellis R, eds. 1826; pp123–149.

    Google Scholar 

  4. Jones T. Guy’s Hospital Reports, 2nd Ser. 1850; 7: 1–94.

    Google Scholar 

  5. Paget S. Lancet 1889; March 23: 571–573.

    Article  Google Scholar 

  6. Algire G, Chalkey H. J Natl Cancer Inst 1945; 6: 73–95.

    Google Scholar 

  7. Folkman MJ, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–88.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman MJ. Tumor Angiogenesis. Adv Cancer Res 1974; 19: 331–58.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman MJ, Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 1976; 16: 207–48.

    PubMed  CAS  Google Scholar 

  10. Folkman MJ. Tumor angiogenesis: therapeutic implications. New Engl J Med 1971; 285: 1182–6.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J. Angiogenesis. Annu Rev Med 2006; 57: 1–18.

    Article  PubMed  CAS  Google Scholar 

  12. Folkman J. Antiangiogenesis in cancer therapy–endostatin and its mechanisms of action. Exp Cell Res 2006; 312: 594–607.

    Article  PubMed  CAS  Google Scholar 

  13. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003; 13: 159–167.

    Article  PubMed  CAS  Google Scholar 

  14. Weinberg CAFsBergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nature Rev Cancer 2003; 3: 401–10.

    Article  CAS  Google Scholar 

  15. St. Croix B, Rago C, Velculescu V, et al: Genes expressed in human tumor and endothelium. Science 2000; 289: 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  16. Bagley R, Walter-Yohrling J, Cao X, et al: Endothelial precursor cells as a model of tumor endothelium: characterization and comparison to mature endothelial cells. Cancer Res 2003; 63: 5866–73.

    PubMed  CAS  Google Scholar 

  17. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307–12.

    Article  PubMed  CAS  Google Scholar 

  18. Groopman JE, Scadden DT. Interferon therapy for Kaposi sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann Int Med 1989; 110: 335–7.

    PubMed  CAS  Google Scholar 

  19. Strieter RM, Kunkel SL, Arenberg DA, Burdick MD, Polverini PJ. Interferon-g-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 1995; 210: 51–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kolber DL, Kniselt TL, Maione TE. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst 1995; 87: 304–9.

    Article  PubMed  CAS  Google Scholar 

  21. Stetler-StevensonWG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 1989; 264: 17374–8.

    PubMed  CAS  Google Scholar 

  22. Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 1995; 87: 581–6.

    Article  PubMed  CAS  Google Scholar 

  23. Teicher BA, Ara G, Menon K, Schaub RG. In vivo studies with interleukin-12 alone and in combination with monocyte colony-stimulating factor and/or fractionated radiation treatment. Int J Cancer 1995; 65: 80–84.

    Article  Google Scholar 

  24. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Mosses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.

    Article  PubMed  Google Scholar 

  25. Mauceri HJ, Hanna NN, Beckett MA, et al: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998; 394: 287–291.

    Article  PubMed  CAS  Google Scholar 

  26. Capillo M, Mancuso P, Gobbi A, et al: Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 2003; 9: 377–82.

    PubMed  CAS  Google Scholar 

  27. Sudhakar A, Sugimoto H, Yang C, et al: Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc Natl Acad Sci USA 2003; 100: 4766–71.

    Article  PubMed  CAS  Google Scholar 

  28. Morbidelli L, Donnini S, Chillemi F, et al: Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin Cancer Res 2003; 9: 5358–69.

    PubMed  CAS  Google Scholar 

  29. Yokoyama Y, Dhanabal M, Griffioen AW, et al: Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 2000; 60: 2190–6.

    PubMed  CAS  Google Scholar 

  30. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990; 248: 1408–10.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor CM, Weiss JB. Partial purification of a 5.7K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem Biophys Res Commun 1985; 133: 911–6.

    Article  PubMed  CAS  Google Scholar 

  32. DeClerck YA. Purifcation and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Arch Biochem Biophys 1988; 265: 28–37.

    Article  PubMed  CAS  Google Scholar 

  33. Sakamoto N, Iwahana M, Tanaka NG, Osada Y. Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide CDPGYIGSR-NH2. Cancer Res 1991; 51: 903–6.

    PubMed  CAS  Google Scholar 

  34. Bogden AE, Taylor JE, Moreau JP, Coy DH, LePage DJ. Response of human lung tumor xenografts to treatment with a somatostatin analog (somatuline). Cancer Res 1990; 50: 4360–5.

    PubMed  CAS  Google Scholar 

  35. Folkman J, Weisz PB, Joullie MM, Li WW, Ewing WR. Control of angiogenesis with synthetic heparin substitutes. Science 1989; 243: 1490–3.

    Article  PubMed  CAS  Google Scholar 

  36. Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230: 1375–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lee K-E, Iwamura M, Cockett ATK. Cortisone inhibition of tumor angiogenesis measured by a quantitative colorimetric assay in mice. Cancer Chemother Pharmacol 1990; 26: 461–3.

    Article  PubMed  CAS  Google Scholar 

  38. Ingber D, Folkman J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 1988; 59: 44–51.

    PubMed  CAS  Google Scholar 

  39. Oikawa T, Hirotani K, Nakamura O, Shudo K, Hiragun A, Iwaguchi T. A highly potent antiangiogenic activity of retionoids. Cancer Lett 1989; 48: 157–62.

    Article  PubMed  CAS  Google Scholar 

  40. Schwartz JL, Flynn E, Shklar G. The effects of carotenoids on the antitumot immune response in vivo and in vitro with hamster and mouse immune effectors. In: Bendich A, Chandra RK (ed) Symposium on micronutrients and immune functions. NY Acad Sci, NY 1990; pp 92–6.

    Google Scholar 

  41. Schwartz JL, Singh R, Teicher BA, Wright JE, Trites DH, Shklar G. Induction of a 70-kDa protein associated with the selective cytotoxicity of beta carotene in human epidermal carcinoma. Biocem Biophys Res Commun 1990; 169: 941–6.

    Article  CAS  Google Scholar 

  42. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, Delgadillo-Madrueno F, Paredes-Casillas P, Hong WK. Masimini G, Holdener EE, Krakoff IH. 13-cis-retinoic acid plus interferon-a2a in locally advanced squsamous cell carcinoma of the cervix. J Natl Cancer Inst 1993; 85: 499–500.

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz JL, Tanaka J, Khandekar V, Herman Teicher BA. B-carotene and/or vitamin EW as modulators of alkylating agents in SCC-25 human squsamous carcinoma cells. Cancer Chemother Pharmacol 1992; 29: 207–13.

    Article  PubMed  CAS  Google Scholar 

  44. Denekamp J. Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 1993; 66: 181–96.

    Article  PubMed  CAS  Google Scholar 

  45. Teicher BA, Schwartz JL, Holden SA, Ara G, Northey D. In vivo modulation of several anticancer agents by b-carotene. Cancer Chemother. Pharmacol. 1994; 34: 235–41.

    Article  PubMed  CAS  Google Scholar 

  46. Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W. Inhibition of tumor cell-induced angiogenesis by retinoinds, 1, 25-dihydroxyvitamin D3 and their combination. Cancer Lett 1993; 75: 35–9.

    Article  PubMed  CAS  Google Scholar 

  47. Barnes S, Grubbs C, Setchell KDR, Carlson J. Soybeans inhibit mammary tumor in models of breast cancer. In: Pariza M, Liss AR (ed) Mutagens and carcinogens in the diet. Wiley-Liss, NY 1990; pp239–53.

    Google Scholar 

  48. Zwiller J, Sassone-Corsi P, Kakazu K, Boyton AL. Inhibition of PDGF-induced c-jun and c-fos expression by a tyrosine protein kinase inhibitor. Oncogene 1991; 6: 219–21.

    PubMed  CAS  Google Scholar 

  49. McCabe Jr MJ, Orrenius S. Genistein induces apoptosis in immature human thymocytes by inhibiting topoisomerase II. Biocehm Bipohys Res bCommun 1993; 194: 944–50.

    Article  CAS  Google Scholar 

  50. KanataniY, Kasukabe T, Hozumi M, Motoyoshi K. Genistein exhibits preferential cytotoxicity to a leukemogenic variant but induces differentiation of a non-leukemogenic variant of the mouse monocytic leukaemia Mm cell line. Leuk Res 1993; 17: 847–53.

    Article  PubMed  Google Scholar 

  51. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 1993; 90: 2690–4.

    Article  PubMed  CAS  Google Scholar 

  52. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE. Biotherapy of B-cell precursor leukaemia by targeting genistein to CD19-associated tyrosine kinases. Science 1995; 267: 886–9.

    Article  PubMed  CAS  Google Scholar 

  53. Yanase T, Tamura M, Fujita K, Kodama S, Tanaka K. Inhibitory effect of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oiul solution. J Pharmacol Exp Ther 1993; 264: 469–74.

    Google Scholar 

  54. Yamaoka M, Yamamoto T, Masaki T, Ikeyama S, Sudo K, Fujita T. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetyl-carbamoyl) fumagillin (TNP-470); AGM-1470). Cancer Res 1993; 53: 4262–7.

    PubMed  CAS  Google Scholar 

  55. Toi M, Tamamoto Y, Imazawa T, Takayanagi T, Akutsu K, Tominga T. Antitumor effect of the angiogenesis inhibitor AGM-1470 and its combination effect with tamoxifen in DMBA induced mammary tumors in rats. Int J Oncol 1993; 3: 525–8.

    CAS  Google Scholar 

  56. Yamaoka ZM, Yamamoto T, Ikeyama S, Sudo K, Fujita T. Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res 1993; 53: 5233–6.

    PubMed  CAS  Google Scholar 

  57. Teicher BA, Holden SA, Ara G, Alvarez Sotomayor E, Huang ZD, Chen Y-N, Brem H. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer 1994; 57 (6):920–5.

    Article  PubMed  CAS  Google Scholar 

  58. Teicher BA, Dupuis N, Kusumoto T, Robinson MF, Liu F, Menon K, Coleman CN. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Invest 1995; 2: 269–76.

    Article  Google Scholar 

  59. Teicher BA, Holden SA, Dupuis NP, Kakeji Y, Ikebe M, Emi Y, Goff D. Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res Treatment 1995; 36(2): 227–36.

    Article  CAS  Google Scholar 

  60. Teicher BA, Dupuis NP, Robinson MF, Emi Y, Goff DA. (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncology Research 1995; 7(5): 237–43.

    PubMed  CAS  Google Scholar 

  61. Teicher BA, Holden SA, Ara G, Dupuis N, Liu F, Yuan J, Ikebe M, Kakeji Y. Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer 1995; 61(5): 732–7.

    Article  PubMed  CAS  Google Scholar 

  62. Tanaka T, Konno H, Matsuda I, Nakamura S, Baba S. Prevention of hepatic metastasis of human colon cancer angiogenesis inhibitor TNP-470. Cancer Res 1995; 55: 836–9.

    PubMed  CAS  Google Scholar 

  63. Murata J, Saiki I, Makabe T, Tsuta Y, Tokura S, Azuma I. Inhibition of tumor-induced angiogenesis by sulphated chitin derivatives. Cancer Res 1991; 51: 22–6.

    PubMed  CAS  Google Scholar 

  64. Teicher BA, Alvarez Sotomayor E, Huang ZD, Ara G, Holden S, Khandekar V, Chen Y-N. ß-Cyclodextrin tetradecasulfate/tetrahydrocortisol ± minocycline as modulators of cancer therapies in vitro and in vivo against primary and metastatic Lewis lung carcinoma. Cancer Chemother. Pharmacol. 1993; 33:229–38.

    Article  PubMed  CAS  Google Scholar 

  65. Teicher BA, Holden SA, Ara G, Northey D. Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res. 1993; 13:2101–6.

    PubMed  CAS  Google Scholar 

  66. Vukanovic J, Isaacs JT. Linomide inhibits angiogenesis, growth, metastasis and macrophage infiltration within rat prostatic cancers. Cancer Res 1995; 55: 1499–1504.

    PubMed  CAS  Google Scholar 

  67. Prionas SD, Kowalski J, Fajardo LF, Kaplan I, Kwan HH, Allison AC. Effects of x-irradation on angiogenesis. Radiat Res 1990; 124: 43–9.

    Article  PubMed  CAS  Google Scholar 

  68. Brooks PC, Clark RA Cheresh DA. Requirement of vascular integrin avb3 for angiogenesis. Science 1994; 264: 569–73.

    Article  PubMed  CAS  Google Scholar 

  69. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–64.

    Article  PubMed  CAS  Google Scholar 

  70. Eliceiri BP, Cheresh DA: The role of α-v integrin during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103: 1227–30.

    Article  PubMed  CAS  Google Scholar 

  71. Hynes RO: A reevaluation of integrins as regulators of angiogenesis. Nature Med 2002; 8: 918–21.

    Article  PubMed  CAS  Google Scholar 

  72. Anderson IC, Shipp MA, Docherty AJP, Teicher BA. Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res 1996; 56(4): 715–718.

    CAS  Google Scholar 

  73. Bonomi P: Matrix metalloproteinases and matrix inhibitors in lung cancer. Sem Oncol 2002; 29: 78–86.

    Article  CAS  Google Scholar 

  74. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinse inhibitors and cancer trials and tribulations. Science 2002; 295: 2387–92.

    Article  PubMed  CAS  Google Scholar 

  75. Hidalgo M, Eckhardt SG: Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 7: 178–93.

    Article  Google Scholar 

  76. Ferrara N: Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002; 29: 10–14.

    PubMed  CAS  Google Scholar 

  77. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and it receptors. Nat Med 2003; 9: 669–76.

    Article  PubMed  CAS  Google Scholar 

  78. Kim KJ, Li B, Winer J, et al. Inhibtion of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993; 362: 841–4.

    Article  PubMed  CAS  Google Scholar 

  79. Kabbinavar FF, Wong JT, Ayala RE, Wintroub AB, Kim KJ, Ferrara N. The effect of antibody to vascular endothelial growth factor and cisplatin on the growth of lung tumors in nude mice. Proc Am Assoc Cancer Res 1995; 36: 488.

    Google Scholar 

  80. Borgstrom P, Gold DP, Hillan KJ, Ferrara N. Importance of VEGF for breast cancer angiogenesis in vivo: implications from intravital microscopy of combination treatments with an anti-VEGF neutralizing antibody and doxorubicin. Anticancer res 1999; 19: 4203–14.

    PubMed  CAS  Google Scholar 

  81. Liang W-C, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber H-P, Ferrara N, Fuh G. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human xenografts and measure the contribution of stromal VEGF. J Biol Chem 2006; 281: 951–61.

    Article  PubMed  CAS  Google Scholar 

  82. Gerber H-P, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005; 65: 671–80.

    PubMed  CAS  Google Scholar 

  83. Dong J, Grunstein J, Tejada M, peale F, Frantz G, Liang W-C, Bai W, Yu L, Kowalski HJ, Liang X, Fuh G, Gerber H-P, Ferrara N. VEGF-null cells require PDGFRa signaling-mediated stromal fibroblast recruitment for tumorigenesis. The EMBO J 2004; 23: 2800–10.

    Article  CAS  Google Scholar 

  84. Ferrara N, Hillan KJ, Gerber H-P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Disc 2004; 3: 391–400.

    Article  CAS  Google Scholar 

  85. Gerber H-P, Kowalski J, Sherman DA, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer 2000; 60: 6253–8.

    CAS  Google Scholar 

  86. Kakeji Y, Teicher BA: Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997; 15: 39–48.

    Article  PubMed  CAS  Google Scholar 

  87. Teicher BA, Alvarez E, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 1992; 52: 6702–4.

    PubMed  CAS  Google Scholar 

  88. Alvarez Sotomayor E, Teicher BA Schwartz GN, Holden SA, Menon K, Herman TS, Frei E. Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother Pharmacol 1992; 30: 377–84.

    Article  CAS  Google Scholar 

  89. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J. Synthetic analogs of fumigillin that inhibit angiogenesis and suppress tumor growth. Nature 1990; 348: 555–7.

    Article  PubMed  CAS  Google Scholar 

  90. Teicher BA, Holden SA, Al-Achi A, Herman TS. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in FSaIIC murine fibrosarcoma. Cancer Res 1990; 50: 3339–44.

    PubMed  CAS  Google Scholar 

  91. Inoue K, Chikazawa M, Fukata S, et al: Docetaxel enhances the therapeutic effect of the angiogenesis inhibitor TNP-470 (AGM-1470) in metastatic human transitional cell carcinoma. Clin Cancer Res 2003; 9: 886–99.

    PubMed  CAS  Google Scholar 

  92. Satoh H, Ishikawa H, Fujimoto M, et al: Combined effects of TNP-470 and taxol in human non-small cell lung cancer cell lines. Anticancer Res 1998; 18: 1027–30.

    PubMed  CAS  Google Scholar 

  93. Shishido T, Yasoshima T, Denno R, et al: Inhibition of liver metastasis of human pancreatic carcinoma by angiogenesis inhibitor TNP-470 in combination with cisplatin. Jpn J Cancer Res 1998; 89: 963–9.

    PubMed  CAS  Google Scholar 

  94. Ogawa H, Sato Y, Kondo M, et al: Combined treatment with TNP-470 and 5-fluorouracil effectively inhibits growth of murine colon cancer cells in vitro and liver metastasis in vivo. Oncol Rep 2000; 7: 467–72.

    PubMed  CAS  Google Scholar 

  95. Herbst RS, Takeuchi H, Teicher BA: Paclitaxel/carboplatin administration along with antiangiogenic therapy in non-small cell lung and breast carcinoma models. Cancer Chemo Pharmacol 1998; 41: 497–504.

    Article  CAS  Google Scholar 

  96. Teicher BA, Holden SA, Ara G, Korbut T, Menon K. Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 1996; 38: 169–77.

    Article  PubMed  CAS  Google Scholar 

  97. Teicher BA, Emi Y, Kakeji Y, Northey D. TNP-470/minocycline/cytotoxic therapy: A systems approach to cancer therapy. Europ J Cancer 1996; 32A: 2461–66.

    Article  CAS  Google Scholar 

  98. Teicher BA. The role of angiogenesis in the response to anticancer therapies. Drug Resistance Updates 1998; 1: 59–62.

    Article  PubMed  CAS  Google Scholar 

  99. Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Buiol Phys 1997; 37: 1107–13.

    Article  CAS  Google Scholar 

  100. Laird AD, Cherrington JM: Small molecule tyrosine kinase inhibitors: clinical development of anticancer agents. Exp Opin Invest Drugs 2003; 12: 51–64.

    Article  CAS  Google Scholar 

  101. Geng L, Donnelly E, McMahon G, et al: Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 2001; 61: 2413–9.

    PubMed  CAS  Google Scholar 

  102. Ning S, Laird D, Cherrington JM, et al: The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat Res 2002; 157: 45–51.

    Article  PubMed  CAS  Google Scholar 

  103. Fong TA, Shawver LK, Sun L, et al: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor (Flk-1/KDR) that inhibitors tyrosine kinase catalysis, tumor vascularization and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    PubMed  CAS  Google Scholar 

  104. Schuuring J, Bussink J, Bernsen H et al. Irradiation combined with SU5416: microvascular changes and growth delay in a human xenograft glioblastoma tumor line. Int J Radiat Oncol Biol Phys 2005; 61: 529–34.

    PubMed  CAS  Google Scholar 

  105. Ning S, Laird D, Cherrington JM, Knox SJ. The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat Res 2002; 157: 45–51.

    Article  PubMed  CAS  Google Scholar 

  106. Lund EL, Olsen MW, Lipson KE et al. Imporived effect of an antiangiogenic tyrosine kinase inhibitor (SU5416) by combinations with fractionated radiotherapy or low molecular weight heparin. Neoplasia 2003; 5: 11–6.

    Google Scholar 

  107. Lu B, Geng L, Musiek A, et al. Broad Sectrum receptor tyrosine kinase inhibitor, SU6668, sensitizes radiation via targeting survival pathway of vascular endothelium. Int J Radiat Oncol Biol Phys 2004; 58: 844–50.

    PubMed  CAS  Google Scholar 

  108. Mendel DB, Laird AD, Xin X, et al: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003; 9: 327–37.

    PubMed  CAS  Google Scholar 

  109. O’Farrell AM, Abrams TJ, Yuen HA, et al: SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–605.

    Article  PubMed  CAS  Google Scholar 

  110. Schueneman AJ, Himmelfarb E, Geng L et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003; 63: 4009–16.

    PubMed  CAS  Google Scholar 

  111. Hess C, Vuong V, Hegyi I et al.n Effect of VEGF receptor inhibitor PTK787/ZK222584 correction of ZK222548 combined with ionizing radiation on endothelial cells and tumor growth. Br J cancer 2001; 85: 2010–6.

    Article  PubMed  CAS  Google Scholar 

  112. Wood JM, Bold G, Buchdunger E, et al: PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000; 60: 2178–89.

    PubMed  CAS  Google Scholar 

  113. Drevs J, Hofmann I, Hugenschmidt H, et al: Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density and blood flow in a murine renal cell carcinoma model. Cancer Res 2000; 60: 4819–24.

    PubMed  CAS  Google Scholar 

  114. Morgan B, Thomas AL, Drevs J, et al: Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK222584, an inhibitor of the Vascular Endothelial growth Factor Receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies J Clin Oncol 2003; 21: 3955–64.

    Article  PubMed  CAS  Google Scholar 

  115. Goekjian PG, Jirousek MR: Protein kinase C inhibitors as novel anticancer drugs. Exp Opin Invest Drugs 2001; 10: 2117–40.

    Article  CAS  Google Scholar 

  116. Swannie HC, Kaye SB: Protein kinase C inhibitors. Curr Oncol Rep 2002; 4: 37–46.

    Article  PubMed  Google Scholar 

  117. Michie AM, Nakagawa R. The link between PKCalpha regulation and cellular transformation. Immunol Lett 2005; 96: 155–62.

    Article  PubMed  CAS  Google Scholar 

  118. Tamamura H, Signano DM, Lewin NE, Peach ML, Nicklaus MC, Blumberg PM, Marquez VE. Conformationally constrained analogs of diacylglycerol (DAG). 23. hydrophobic ligand-protein interactions versus ligand-lipid interactions of DAG-lactones with protein kinase C (PKC). J Med Chem 2004; 47: 4858–64.

    Article  PubMed  CAS  Google Scholar 

  119. Lampe JW, Biggers CK, Defauw JM, Fogleson RJ, Hall SE, Heerding JM, Hollinshead SP, Hong H, Hughes PF, Jagdmann GE, Johnson MG et al J Med Chem 2002; 45: 2624–43.

    Article  PubMed  CAS  Google Scholar 

  120. Dieter P, Fitzke E. RO 31–8220 and RO 31–7549 show improved selectivity for protein kinase C over staurosporine in macrophages. Biochem Biophys Res Commun 1991; 181: 396–401.

    Article  PubMed  CAS  Google Scholar 

  121. Newton RC, Decicco CP. Therapeutic potential and strategies for inhibiting tumor necrosis factor-alpha. J Med Chem 1999; 42: 2295–314.

    Article  PubMed  CAS  Google Scholar 

  122. Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, Jing X, Roberge M, Fuse E, Kuwabara T, Senderowicz AM. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001; 19: 2319–33.

    PubMed  CAS  Google Scholar 

  123. Mack PC, Lara PN, Longmate J, Gumerlack PH, Synold TW, Doroshow JH, Gandara DR. Phase I and correlative science trial of UCN-01 plus cisplatin (CDDP) in advanced solid tumors: a California cancer consortium study. Proc Amer Soc Clin Oncol 2004: Abstr 9591.

    Google Scholar 

  124. Hirte HW. A phase II study of UCN-01 in combination with topotecan in patients with advanced recurrent ovarian cancer: a Princess Margaret phase II consortium trial. Proc Amer Soc Clin Oncol 2005: Abstr 3127.

    Google Scholar 

  125. Si MS, Reitz BA, Borie DC. Effects of the kinase inhibitor CGP41251 (PKC 412) on lymphocyte activation and TNF-alpha production. Int Immunopharmacol 2005; 5: 1141–9.

    Article  PubMed  CAS  Google Scholar 

  126. Tenzer A, Zingg D, Rocha S, Hemmings B, Fabbro D, Glanzmann C, Schubiger PA, Bodis S, Pruschy M. The phosphatidylinositide 3’-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent PKC412, an inhibitor of protein kinase C. Cancer Res 2001; 61: 8203–10.

    PubMed  CAS  Google Scholar 

  127. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. Effect of PKC412, an inhibitor of protein kinase C, on spontaneous metastatic model mice. Anticancer Res 2003; 23: 1395–9.

    PubMed  CAS  Google Scholar 

  128. Ganeshaguru K, Wickremasinghe RG, Jones DT, Gordon M, Hart SM, Virchis AE, Prentice HG, Hoffbrand AV, Man A, Champain K, Csermak K, Mehta AB. Actions of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologica 2002; 87: 167–76.

    PubMed  CAS  Google Scholar 

  129. Hemstrom TH, Joseph B, Schulte G, Lewensohn R, Zhivotovsky B. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage. Exp Cell Res 2005; 305: 200–13.

    Article  PubMed  CAS  Google Scholar 

  130. Bahlis NJ, Miao Y, Koc ON, Gerson S. N-benzoylstaurosporine (PKC412) inhibits AKT kinase inducing apoptosis in multiple myeloma cells. Proc Amer Soc Clin Oncol 2005: Abstr 6503.

    Google Scholar 

  131. Growney JD, Clark JJ, Adelsperger J, Stone R, Fabbro D, Griffin JD, Gilliland DG. Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. Blood 2005; 106: 721–4.

    Article  PubMed  CAS  Google Scholar 

  132. Gotlib J, Berube C, Growney JD, Chen CC, George TI, Williams C, Kajiguchi T, Ruan J, Lilleberg SL, Durocher JA, Lichy JH, Wang Y, Cohen PS, Arber DA, Heinrich MC, Neckers L, Galli SJ, Gilliland DG, Coutre SE. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 2005; 106: 2865–70.

    Article  PubMed  CAS  Google Scholar 

  133. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD, Marynen P, Gilliland DG. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res 2004; 64: 6385–9.

    Article  PubMed  CAS  Google Scholar 

  134. George P, Bali P, Cohen P, Tao J, Guo F, Sigua C, Vishvanath A, Fiskus W, Scuto A, Annavarapu S, Moscinski L, Bhalla K. Cotreatment with 17-allylamino-demethoxygeldaamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res 2004; 64: 3645–52.

    Article  PubMed  CAS  Google Scholar 

  135. Bali P, George P, Cohen P, Tao J, Guo F, Sigua C, Vishvanath A, Scuto A, Annavarapu S, Fiskus W, Moscinski L, Atadja P, Bhalla K. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 2004; 10: 4991–7.

    Article  PubMed  CAS  Google Scholar 

  136. Eder JP, Garcia-Carbonero R, Clark JW, Supko JG, Puchalski TA, Ryan DP, Deluca P, Wozniak A, Campbell A, Rothermel J, LoRusso P. A phase I trial of daily oral 4’-N-benzoyl-staurosporine in combination with protracted continuous infusion 5-fluorouracil in patients with advanced solid malignancies. Invest New Drugs 2004; 22: 139–50.

    Article  PubMed  CAS  Google Scholar 

  137. Monnerat C, Henriksson R, Le Chevalier T, Novello S, Berthaud P, Faivre S, Raymond E. Phase I study of PKC412 (N-benzoyl-staurosporine), a novel oral protein kinase C inhibitor, combined with gemcitabine and cisplatin in patients with non-small cell lung cancer. Ann Oncol 2004; 15: 316–23.

    Article  PubMed  CAS  Google Scholar 

  138. Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, Brandts C, Serve H, Roesel J, Giles F, Feldman E, Ehninger G, Schiller GJ, Nimer S, Stone RM, Wang Y, Kindler T, Cohen PS, Huber C, Fischer T. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 2006; 107: 293–300.

    Article  PubMed  CAS  Google Scholar 

  139. Teicher BA, Alvarez E, Menon K, Esterman MA, Considine E, Shih C, Faul MM. Antiangiogenic effects of a protein kinase C beta-selective small molecule. Cancer Chemo Pharmacol 2002; 49: 69–77.

    Article  CAS  Google Scholar 

  140. Liu Y, Su W, Thompson EA, Leitges M, Murray NR, Fields AP. Protein kinase CbetaII regulates its own expression in rat intestinal epithelial cells and the colonic epithelium in vivo. J Biol Chem 2004; 279: 45556–63.

    Article  PubMed  CAS  Google Scholar 

  141. Rizvi MA, Ghias K, Davies KM, Ma C, Krett NL, Rosen ST. Enzastaurin (LY317615), an oral protein kinase C b inhibitor, induces apoptosis in multiple myeloma cell lines. Proc Amer Soc Hematol 2005: Abstr 1577.

    Google Scholar 

  142. Podar K, Raab MS, Abtahi D, Tai Y-T, Lin B, Munshi NC, Hideshima T, Chauhan D, Anderson KC. The PKC-inhibitor enzastaurin inhibits MM cell growth, survival and migration in the bone marrow microenvironment. Proc Am Soc Hematol 2005: Abstr 1584.

    Google Scholar 

  143. Rossi RM, Henn AD, Conkling R, Guzmann ML, Bushnell T, Harvey J, Fisher RI, Jordan CT. The PKCβ selective inhibitor, enzastaurin (LY317615), inhibits growth of human lymphoma cells. Proc Am Soc Hematol 2005: Abstr 1483.

    Google Scholar 

  144. Rieken M, Weigert O, Pastore A, Hutter G, Zimmermann Y, Weinkauf M, Hiddemann W, Dreyling M. Inhibition of protein kinase C beta by enzastaurin (LY317615) induces alterations of key regulators of cell cycle and apoptosis in mantle cell lymphoma and synergizes with chemotherapeutic agents in a sequence dependent manner. Proc Amer Soc Hematol 2005: Abstr 2416.

    Google Scholar 

  145. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human HT-29 colon carcinoma and human Caki-1 renal cell carcinoma xenografts. Anticancer Res 2001; 21: 3175–84.

    PubMed  CAS  Google Scholar 

  146. Teicher BA, Menon K, Alvarrez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in murine Lewis lung carcinoma and human Calu-6 non-small cell lung carcinoma xenografts. Cancer Chemother Pharmacol 2004; 48: 473–80.

    Article  CAS  Google Scholar 

  147. Teicher BA, Menon K, Alvarez E, Liu P, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo 2001; 15: 185–93.

    PubMed  CAS  Google Scholar 

  148. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM. Antiangiogenic and antitumor effects of a protein kinase C Beta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res 2001; 7: 634–40.

    PubMed  CAS  Google Scholar 

  149. Keyes K, Cox K, Treadway P, Mann L, Shih C, Faul MM, Teicher BA. An In vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 2002; 62: 5597–602.

    PubMed  CAS  Google Scholar 

  150. Keyes K, Mann L, Cox K, Treadway P, Iversen P, Chen Y-F, Teicher BA. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemo Pharmacol 2003; 51: 321–7.

    CAS  Google Scholar 

  151. Keyes KA, Mann L, Sherman M, Galbreath E, Schirtzinger L, Ballard D, Chen YF, Iversen P, Teicher BA. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 2004; 53: 133–40.

    Article  PubMed  CAS  Google Scholar 

  152. Herbst RS, Thornton DE, Kies MS, Sinha V, Flanagan S, Cassidy CA, Carducci MA. Phase 1 study of LY317615, a protein kinase Cβ inhibitor. Am Soc Clin Oncol 2002, abstr 326.

    Google Scholar 

  153. Robertson M, Kahl B, Vose J, de Vos S, Laughlin M, Flynn P, Rowland K, Cruz J, Goldberg S, Darnstein C, Enas N, Neuberg D, Savage K, Thornton D, Slapak C, Shipp M. A phase II study of enzastaurin, a protein kinase C-b (PKCb) inhibitor, in the treatment of relapsed diffuse large B-cell lymphoma (DLBCL). Proc Am Soc Hematol 2005: Abstr 934.

    Google Scholar 

  154. Fine HA, Kim L, Royce C, Mitchell S, Duic JP, Albert P, Musib L, Thornton D. A phase II trial of LY317615 in patients with recurrent high grade gliomas. Proc Am Soc Clin Oncol 2004: Abstr 1511.

    Google Scholar 

  155. Fine HA, Kim L, Royce C, Draper D, Haggarty I, Ellinzano H, Albert P, Kinney P, Musib L, Thornton D. Results from phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas. Proc Am Soc Clin Oncol 2004: Abstr 1504.

    Google Scholar 

  156. Inoue K, Slaton JW, Perrotte P, et al: Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin Cancer Res 2000; 6: 4874–84.

    PubMed  CAS  Google Scholar 

  157. Inoue K, Slaton JW, Davis DW, et al: Treatment of human metatstatic transitional cell carcinoma of the bladder in a murine model with tha anti-vascular endothelial growth factor receptor monoclonal antibody DC 101 and paclitaxel. Clin Cancer Res 2000; 6: 2635–43.

    PubMed  CAS  Google Scholar 

  158. Kim SJ, Uehara H, Karashima T, et al: Blockage of epidermal growth factor receptor signalling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res 2003; 9: 1200–10.

    PubMed  CAS  Google Scholar 

  159. Bergers G, Javaherian K, Lo KM, et al: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–12.

    Article  PubMed  CAS  Google Scholar 

  160. Browder T, Butterfield CE, Kraling BM, et al: Antiangiogenic cheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878–86.

    PubMed  CAS  Google Scholar 

  161. Klement G, Baruchel S, Rak J, et al: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105: R15–R24.

    Article  PubMed  CAS  Google Scholar 

  162. Hanahan D, Bergers G, Bergsland E: Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105: 1045–7.

    Article  PubMed  CAS  Google Scholar 

  163. Gately S, Kerbel RS: Antiangiogenic scheduling of lower dose cancer chemotherapy. Cancer J 2001; 7: 427–36.

    PubMed  CAS  Google Scholar 

  164. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelail progenitor cells. Cancer Res 2003; 63: 4342–6.

    PubMed  CAS  Google Scholar 

  165. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 2005; 23: 939–52.

    Article  PubMed  CAS  Google Scholar 

  166. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, Kerbel RS. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313: 1785–7.

    Article  PubMed  CAS  Google Scholar 

  167. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438: 967–74.

    Article  PubMed  CAS  Google Scholar 

  168. Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006; 6: 835–45.

    Article  PubMed  CAS  Google Scholar 

  169. Kerbel RS, Kamen BA. The anti-angiogenic basis of metromoic chemostherapy. Nat Rev Cancer 2004; 4: 423–36.

    Article  PubMed  CAS  Google Scholar 

  170. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, Kerbel RS. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 2005; 7: 101–11.

    PubMed  CAS  Google Scholar 

  171. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004; 10: 145–7.

    Article  PubMed  CAS  Google Scholar 

  172. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JC, Dowlati A, Lilenbaum R, Johnson DH. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Eng J Med 2006; 355: 2542–50.

    Article  PubMed  CAS  Google Scholar 

  173. Hida T, Kozaki K, Muramatsu H, et al: Cyclo-oxygenase-2 inhibitor induces apoptosis and enhances cytotoxity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000; 6: 2006–11.

    PubMed  CAS  Google Scholar 

  174. Gasparini G, Longo R, Sarmiento R, et al: COX-2 inhibitors (Coxibs): A new class of anticancer agents? Lancet Oncol 2003; 4: 605–15.

    Article  PubMed  CAS  Google Scholar 

  175. Altorki NK, Keresztes RS, Port JL, et al: Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 2003; 21: 2645–50.

    Article  PubMed  CAS  Google Scholar 

  176. Gasparini G, Morabito A, Magnani E, et al: Thalidomide: an old sedative-hypnotic with anticancer activity? Current Opin Invest Drugs 2001; 2: 1302–8.

    CAS  Google Scholar 

  177. Neben K, Moehler T, Benner A, et al: Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002; 8: 3377–82.

    PubMed  CAS  Google Scholar 

  178. Barlogie B, Desikan R, Eddlemon P, et al: Extended survival in advenced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001; 98: 492–94.

    Article  PubMed  CAS  Google Scholar 

  179. Weber D, Rankin K, Gavino M, et al: Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003; 21: 16–19.

    Article  PubMed  CAS  Google Scholar 

  180. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nature Rev Cancer 2002; 2: 727–39.

    Article  CAS  Google Scholar 

  181. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 2005; 23: 3243–3256.

    Article  PubMed  CAS  Google Scholar 

  182. Riesterer O, Honer M, Jochum W, Oehler C, Ametamey S, Pruschy M. Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin Cancer Res 2006; 12: 3518–24.

    Article  PubMed  CAS  Google Scholar 

  183. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64: 8249–8255.

    Article  PubMed  CAS  Google Scholar 

  184. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges and open questions. J Clin Oncol 2005; 23: 1295–1311.

    Article  PubMed  CAS  Google Scholar 

  185. Teicher BA. Hypoxia, tumor endothelium and targets for therapy. In: Advances in Experimental Medicine & Biology; eds. P Okunieff, J Williams, Y Chen. Springer: New York NY; 2005; 566: 31–8.

    Google Scholar 

  186. Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW, Widschwendter M. Breast cancer DNA methylation profiles in cancer ccells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 2006; 66: 29–33.

    Article  PubMed  CAS  Google Scholar 

  187. Weeraratna AT. Discovering causes and cures for cancer from gene expression analysis. Ageing Res Rev 2005; 4: 548–563.

    Article  PubMed  CAS  Google Scholar 

  188. Brentani RR, Carrari DM, Verjovski-Almeida S, Reis EM, Neves EJ, de Souza SJ, Carvalho AF, Brentani H, Reis LFL. Gene expression arrays in cancer research: methods and applications. Crit Rev Oncol/Hematol 2005; 54: 95–105.

    Article  Google Scholar 

  189. Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer microarrays. Nature Gen 2005; 37: S38–45.

    Article  CAS  Google Scholar 

  190. Sieben NL, Oosting J, Flanagan AM, Prat J, Roemen G MJM, Kolkman-Uljee SM, van Eijk R, Cornelisse CJ, Fleuren GJ, van Engeland M. Differential Gene Expression in Ovarian Tumors Reveals Dusp 4 and Serpina 5 As Key Regulators for Benign Behavior of Serous Borderline Tumors. J Clin Oncol 2005; 23: 7257–64.

    Article  PubMed  CAS  Google Scholar 

  191. Espinosa E, Vara JAF, Redondo A, Sanchez JJ, Hardisson D, Zamora P, Pastrana F, Gomez CP, Martinez B, Suarez A, Calero F, Baron MG. Breast Cancer Prognosis Determined by Gene Expression Profiling: A Quantitative Reverse Transcriptase Polymerase Chain Reaction Study. J Clin Oncol 2005; 23: 7278–85.

    Article  PubMed  CAS  Google Scholar 

  192. Chen C-N, Lin J-J, Chen J JW, Lee P-H, Yang C-Y, Kuo M-L, Chang K-J, Hsieh F-J. Gene Expression Profile Predicts Patient Survival of Gastric Cancer After Surgical Resection. J Clin Oncol 2005; 23: 7286–95.

    Article  PubMed  CAS  Google Scholar 

  193. Agnelli L, Bicciato S, Mattioli M, Fabri S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A. Molecular Classification of Multiple Myeloma: A Distinct Transcriptional Profile Characterizes Patients Expressing CCND1 and Negative for 14q32 Translocations. J Clin Oncol 2005; 23: 7296–7306.

    Article  PubMed  CAS  Google Scholar 

  194. Spinola M, Leoni V, Pignatiello C, Conti B, Ravagnani F, Pastorino U, Dragani TA. Functional FGFR4 Gly388Arg Polymorphism Predicts Prognosis in Lung Adenocarcinoma Patients. J Clin Oncol 2005; 23: 7307–11.

    Article  PubMed  CAS  Google Scholar 

  195. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, Shamberger RC, Haase GM, D’Angio GJ, Donaldson M, Coppes MJ, Malogolowkin M, Shearer P, Thomas PRM, Macklis R, Tomlinson G, Huff V, Green DM.Loss of Heterozygosity for Chromosomes 1p and 16q Is an Adverse Prognostic Factor in Favorable-Histology Wilms Tumor: A Report From the National Wilms Tumor Study Group. J Clin Oncol 2005; 23: 7312–21.

    Article  PubMed  CAS  Google Scholar 

  196. Bilke S, Chen Q-R, Westerman F, Schwab M, Catchpoole D, Khan J. Inferring a Tumor Progression Model for Neuroblastoma From Genomic Data. J Clin Oncol 2005; 23: 7322–31.

    Article  PubMed  CAS  Google Scholar 

  197. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science 1995; 270: 484–487.

    Article  PubMed  CAS  Google Scholar 

  198. Porter D, Yao J, Polyak K. SAGE and related approaches for cancer target identification. Drug Discov Today 2006; 11: 110–18.

    Article  PubMed  CAS  Google Scholar 

  199. Beauchamp NJ, van Achterberg TAE, Engelse MA, Pannekoek H, de Vries CJM. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. Genomics 2003; 82: 288–299.

    Article  PubMed  CAS  Google Scholar 

  200. Polyak K, Riggins GJ. Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 2001; 19: 2948–2958.

    PubMed  CAS  Google Scholar 

  201. Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, Jiang Y, Dufault MR, Zhang X, Zhang W, Walter-Yohrling J, Rouleau C, Akmaev VR, Wang CJ, Cao X, St. Martin TB, Roberts BL, Teicher BA, Klinger KW, Stan R-V, Lucey B, Carson-Walter EB, Laterra J, Walter KA. Vascular gene expression in non-neoplastic and malignant brain. Am J Pathol 2004; 165: 601–608

    PubMed  CAS  Google Scholar 

  202. Parker BS, Argani P, Cook BP, Liangfen H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St. Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL. Alerations in vascular gene expression in invasive breast carcinoma. Cancer Res 2004; 64: 7857–7866.

    Article  PubMed  CAS  Google Scholar 

  203. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 2005; 23: 7332–41.

    Article  PubMed  CAS  Google Scholar 

  204. Bono H, Okazaki Y. The study of metabolic pathways in tumors based on the transcriptome. Semin Cancer Biol 2005; 15: 290–99.

    Article  PubMed  CAS  Google Scholar 

  205. Adler AS, Lin M, Horlings H, Nuyten DSA, van de Vijver MJ, Chang HY. Genetic regulators of large-scale transcritptional signatures in cancer. Nature Gen 2006; 38: 421–30.

    Article  CAS  Google Scholar 

  206. Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nature Genetics 2005; 37: S31–37.

    Article  PubMed  CAS  Google Scholar 

  207. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nature Rev Drug Discovery 2006; 5: 37–50.

    Article  CAS  Google Scholar 

  208. B. A. Teicher, G. Ara, S. R. Keyes, R. S. Herbst, and E. Frei III, Acute in vivo resistance in high-dose therapy. Clin Cancer Res 1998; 4: 483–91.

    PubMed  CAS  Google Scholar 

  209. St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  210. Bagley RG, Rouleau C, Morgenbesser SD, Weber W, Cook BP, Shankara S, Madden SL, Teicher BA. Pericytes from human non-small cell lung carcinomas: an attractive target for anti-angiogenic therapy. Vascular Res 2006; 71: 163–74.

    CAS  Google Scholar 

  211. Nanda A, St. Croix B. Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol 2004; 16: 44–49.

    Article  PubMed  CAS  Google Scholar 

  212. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler K, St. Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 2001; 61: 6649–6655.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teicher, B.A. (2008). Combination of Antiangiogenic Therapy with Other Anticancer Therapies. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics