Skip to main content

Cellular and Molecular Mechanisms in the Efferent Control of Cochlear Nonlinearities

  • Chapter
Active Processes and Otoacoustic Emissions in Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory-nerve fiber responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol (Lond) 356:507–520.

    CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair-cells. J Physiol (Lond) 356:525–550.

    CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol (Lond) 360:397–421.

    CAS  Google Scholar 

  • Ashmore JF, Russell IJ (1982) Effect of efferent nerve-stimulation on hair-cells of the frog sacculus. J Physiol (Lond) 329:P25–P26.

    Google Scholar 

  • Benson TE, Brown MC (2004) Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. JARO 5:111–125.

    PubMed  Google Scholar 

  • Bian L, Chertoff ME, Miller E (2002) Deriving a cochlear transducer function from low- frequency modulation of distortion product otoacoustic emissions. J Acoust Soc Am 112:198–210.

    PubMed  Google Scholar 

  • Bian L, Linhardt EE, Chertoff ME (2004) Cochlear hysteresis: observation with low-frequency modulated distortion product otoacoustic emissions. J Acoust Soc Am 115:2159–2172.

    PubMed  Google Scholar 

  • Brown AM (1988) Continuous low level sound alters cochlear mechanics: an efferent effect? Hear Res 34:27–38.

    PubMed  CAS  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–43.

    PubMed  CAS  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    PubMed  CAS  Google Scholar 

  • Chang KW, Norton SJ (1997) Efferently mediated changes in the quadratic distortion product (f_2 - f_1). J Acoust Soc Am 102:1719–1733.

    Google Scholar 

  • Cody AR, Johnstone BM (1982) Acoustically evoked activity of single efferent neurons in the guinea-pig cochlea. J Acoust Soc Am 72:280–282.

    PubMed  CAS  Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory-stimuli on active cochlear mechanics in human-subjects. Hear Res 43:251–261.

    PubMed  CAS  Google Scholar 

  • Cooper NP, Guinan JJ (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Physiol (Lond) 548:307–312.

    CAS  Google Scholar 

  • Dallos P, Evans BN (1995) High-frequency motility of outer hair-cells and the cochlear amplifier. Science 267:2006–2009.

    PubMed  CAS  Google Scholar 

  • Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226.

    PubMed  CAS  Google Scholar 

  • Dawkins R, Keller SL, Sewell WF (2005) Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation. J Neurophysiol 93:2541–2551.

    PubMed  CAS  Google Scholar 

  • Deak L, Zheng J, Orem A, Du GG, Aguinaga S, Matsuda K, Dallos P (2005) Effects of cyclic nucleoticles on the function of prestin. J Physiol (Lond) 563:483–496.

    CAS  Google Scholar 

  • Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–96.

    PubMed  CAS  Google Scholar 

  • Drexl M, Kössl M (2003) Sound-evoked efferent effects on cochlear mechanics of the mustached bat. Hear Res 184:61–74.

    PubMed  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1990) Increasing intracellular free calcium induces circumferential contractions in isolated cochlear outer hair-cells. J Neurosci 10:1388–1397.

    PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha-9: An acetylcholine-receptor with novel pharmacological properties expressed in rat cochlear hair-cells. Cell 79:705–715.

    PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98:3501–3506.

    PubMed  CAS  Google Scholar 

  • Evans MG (1996) Acetylcholine activates two currents in guinea-pig outer hair cells. J Physiol (Lond) 491:563–578.

    CAS  Google Scholar 

  • Evans MG, Lagostena L, Darbon P, Mammano F (2000) Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea. Cell Calcium 28:195–203.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–75.

    PubMed  CAS  Google Scholar 

  • Fex J (1959) Augmentation of cochlear microphonics by stimulation of efferent fibres to the cochlea. Acta Otolaryngol 50:540–541.

    PubMed  CAS  Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat—a study of a feedback system. Acta Physiol Scand 55:1–68.

    Google Scholar 

  • Fex J (1967) Efferent inhibition in cochlea related to hair-cell dc activity—study of postsynaptic activity of crossed olivocochlear fibres in cat. J Acoust Soc Am 41:666–675.

    PubMed  CAS  Google Scholar 

  • Fischer FP (1994) General pattern and morphological specializations of the avian cochlea. Scan Microsc 8:351–364.

    CAS  Google Scholar 

  • Flock Å, Flock B (1966) Ultrastructure of the amphibian papilla in the bullfrog. J Acoust Soc Am 40:1262.

    Google Scholar 

  • Flock Å, Russell IJ (1973) Efferent nerve fibers—postsynaptic action on hair cells. Nature—New Biol 243:89–91.

    PubMed  CAS  Google Scholar 

  • Flock Å, Russell IJ (1976) Inhibition by efferent nerve-fibers—action on hair cells and afferent synaptic transmission in lateral line canal organ of burbot Lota lota. J Physiol (Lond) 257:45–62.

    CAS  Google Scholar 

  • Frank G, Kössl M (1996) The acoustic two-tone distortions 2f1 − f2 and f2 − f1 and their possible relation to changes in the gain and the operating point of the cochlear amplifier. Hear Res 98:104–115.

    PubMed  CAS  Google Scholar 

  • Frank G, Kössl M (1997) Acoustical and electrical biasing of the cochlear partition. Effects on the acoustic two tone distortions f 2f 1 and 2f 1f 2. Hear Res 113:57–68.

    PubMed  CAS  Google Scholar 

  • Frolenkov GI, Mammano F, Belyantseva IA, Coling D, Kachar B (2000) Two distinct Ca2+-dependent signaling pathways regulate the motor output of cochlear outer hair cells. J Neurosci 20:5940–5948.

    PubMed  CAS  Google Scholar 

  • Frolenkov GI, Mammano F, Kachar B (2003) Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics. Cell Calcium 33:185–195.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Sang CN (1995) A cochlear model using feed-forward outer-hair-cell forces. Hear Res 86:132–146.

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288:2366–2368.

    PubMed  CAS  Google Scholar 

  • Goldberg RL, Henson OW Jr. (1998) Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect. Hear Res 122:71–81.

    PubMed  CAS  Google Scholar 

  • Goutman, JD, Paul Albert Fuchs PA, Glowatzki E (2005) Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 566:49–59.

    Google Scholar 

  • Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–3200.

    PubMed  Google Scholar 

  • Grose GH (1983) The effect of contralateral stimulation on spontaneous acoustic emissions. J Acoust Soc Am Suppl 1 74:S38.

    Google Scholar 

  • Guinan JJ (1996) Physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 435–502.

    Google Scholar 

  • Guinan JJ, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am 100:1680–1690.

    PubMed  Google Scholar 

  • Guinan JJ, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27.

    PubMed  Google Scholar 

  • He DZZ, Jia S, Dallos P (2003) Prestin and the dynamic stiffness of cochlear outer hair cells. J Neurosci 23:9089–9096.

    PubMed  CAS  Google Scholar 

  • Henson OW, Xie DH, Keating AW, Henson MM (1995) The Effect of contralateral stimulation on cochlear resonance and damping in the moustached bat—the role of the medial efferent system. Hear Res 86:111–124.

    PubMed  Google Scholar 

  • Holt JC, Lioudyno M, Athas G, Garcia MM, Perin P, Guth PS (2001) The effect of proteolytic enzymes on the alpha 9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear Res 152:25–42.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair-cells of the guinea-pig cochlea. Proc R Soc Lond B 244:161–167.

    CAS  Google Scholar 

  • Hudspeth AJ (1997) Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7:480–486.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    PubMed  CAS  Google Scholar 

  • Huffman RF, Henson OW Jr (1993) Labile cochlear tuning in the mustached bat. Concomitant shifts in biosonar emission activity. J Comp Physiol A 171:725–734.

    PubMed  CAS  Google Scholar 

  • Jia S, He DZ (2005) Motility-associated hair-bundle motion in mammalian outer hair cells. Nature Neurosci 8:1028–1034.

    PubMed  CAS  Google Scholar 

  • Katz B, Miledy R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–699.

    CAS  Google Scholar 

  • Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Souter M (1988) A new rapid component in the cochlear response to brief electrical efferent stimulation: CM and otoacoustic observations. Hear Res 34:49–62.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenhome GEW, Knight J (eds) Sensorineural Hearing Loss. CIBA Foundation Symposium. London: Churchill, pp. 241–268.

    Google Scholar 

  • Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. JARO 2:31–40.

    PubMed  CAS  Google Scholar 

  • Kirk DL, Johnstone BM (1993) Modulation of f_2 - f_1: evidence for a GABA-ergic efferent system in apical cochlea of the guinea pig. Hear Res 67:20–34.

    PubMed  CAS  Google Scholar 

  • Kolston PJ (1995) A faster transduction mechanism for the cochlear amplifier? Trends Neurosci 18:427–429.

    PubMed  CAS  Google Scholar 

  • Köppl C, Manley GA, Konishi M (2000) Auditory processing in birds. Curr Opin Neurobiol 10:474–481.

    PubMed  Google Scholar 

  • Kössl M, Russell IJ (1992) The phase and magnitude of hair cell-receptor potentials and frequency tuning in the guinea-pig cochlea. J Neurosci 12:1575–1586.

    PubMed  Google Scholar 

  • Kössl M, Russell IJ (1995) Basilar-membrane resonance in the cochlea of the moustached bat. Proc Natl Acad Sci USA 92:276–279.

    PubMed  Google Scholar 

  • Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Popper AN, Fay RR (eds) Hearing by Bats. New York: Spinger-Verlag, pp. 191–234.

    Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Kros CJ, Ruppersberg JP, Rüsch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281–284.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Liberman MC (2001) Effect of olivocochlear feedback on distortion product otoacoustic emission. JARO 2:268–278.

    PubMed  CAS  Google Scholar 

  • Kujawa SG, Fallon M, Bobbin RP (1995) Time-varying alterations in the f_2 - f_1 DPOAE response to continuous primary stimulation. I: Response characterization and contribution of the olivocochlear efferents. Hear Res 85:142–154.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Puria S, Guinan JJ (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f 1f 2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti—a review. Hear Res 22:117–146.

    PubMed  CAS  Google Scholar 

  • Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164.

    PubMed  CAS  Google Scholar 

  • Lukashkin AN, Russell IJ (1998) A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer. J Acoust Soc Am 103:973–980.

    PubMed  CAS  Google Scholar 

  • Lukashkin AN, Russell IJ (1999) Analysis of the f 2f 1 and 2f 1f 2 distortion components generated by the hair cell mechanoelectrical transducer: dependence on the amplitudes of the primaries and feedback gain. J Acoust Soc Am 106:2661–2668.

    Google Scholar 

  • Lukashkin AN, Russell IJ (2001) Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio. J Acoust Soc Am 110:3097–3106.

    PubMed  CAS  Google Scholar 

  • Lukashkin AN, Russell IJ (2002) Modifications of a single saturating non-linearity account for post-onset changes in 2f1 − f2 distortion product otoacoustic emission. J Acoust Soc Am 112:1561–1568.

    PubMed  Google Scholar 

  • Lukashkin AN, Russell IJ (2005) Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition. Hear Res 203:45–53.

    PubMed  Google Scholar 

  • Lukashkin AN, Lukashkina VA, Russell IJ (2002) One source for distortion product otoacoustic emissions generated by low- and high-level primaries. J Acoust Soc Am 111:2740–2748.

    PubMed  Google Scholar 

  • Maison S, Micheyl C, Andeol G, Gallego S, Collet L (2000) Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear Res 140:111–25.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2003) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol (Lond) 552:743–761.

    CAS  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2004) Effects of intracellular stores and extracellular Ca2+ on Ca2+- activated K^+ currents in mature mouse inner hair cells. J Physiol (Lond) 557:613–633.

    CAS  Google Scholar 

  • Markin VS, Hudspeth AJ (1995) Modelling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation. Biophys J 69:138–147.

    PubMed  CAS  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    PubMed  CAS  Google Scholar 

  • Mulders W, Robertson D (2005) Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig. Exp Brain Res 160:235–244.

    PubMed  CAS  Google Scholar 

  • Murugasu E, Russell IJ (1996a) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332.

    CAS  Google Scholar 

  • Murugasu E, Russell IJ (1996b) The role of calcium on the effects of intracochlear acetylcholine perfusion on basilar membrane displacement in the basal turn of the guinea pig cochlea. Aud Neurosci 2:363–376.

    CAS  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641.

    PubMed  CAS  Google Scholar 

  • Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A 189:245–256.

    CAS  Google Scholar 

  • Nuttall AL, Guo M, Ren T, Dolan DF (1997) Basilar membrane velocity noise. Hear Res 114:35–42.

    PubMed  CAS  Google Scholar 

  • Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K^+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601.

    PubMed  CAS  Google Scholar 

  • Parthasarathi AA, Grosh K, Zheng J, Nuttall AL (2003) Effect of current stimulus on in vivo cochlear mechanics. J Acoust Soc Am 113:442–452.

    PubMed  Google Scholar 

  • Patuzzi R, Rajan R (1990) Does electrical stimulation of the crossed olivo-cochlear bundle produce movement of the organ of Corti? Hear Res 45:15–32.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Sellick PM, Johnstone BM (1984) The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hear Res 13:19–27.

    PubMed  CAS  Google Scholar 

  • Puel JL, Rebillard G (1990) Effect of contralateral sound stimulation on the distortion product 2f 1f 2: Evidence that the medial efferent system is involved. J Acoust Soc Am 87:1630–1635.

    PubMed  CAS  Google Scholar 

  • Puria S, Guinan JJ, Liberman MC (1996) Olivocochlear reflex assays: Effects of contralateral sound on compound action potentials versus ear-canal distortion products. J Acoust Soc Am 99:500–507.

    PubMed  CAS  Google Scholar 

  • Raphael Y, Lenoir M, Wroblewski R, Pujol R (1991) The sensory epithelium and its innervation in the mole rat cochlea. J Comp Neurol 314:367–382.

    PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1990) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.

    Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1976) Amphibian lateral line detectors. In: Llinas R, Precht W (eds) Frog Neurobiology. Berlin: Springer-Verlag, pp. 513–550.

    Google Scholar 

  • Russell IJ, Kössl M (1991) The voltage responses of hair-cells in the basal turn of the guinea-pig cochlea. J Physiol (Lond) 435:493–511.

    CAS  Google Scholar 

  • Russell IJ, Kössl M (1992) Sensory transduction and frequency-selectivity in the basal turn of the guinea-pig cochlea. Philos Trans R Soc Lond, Ser B 336:317–324.

    CAS  Google Scholar 

  • Russell IJ, Kössl M (1999) Micromechanical responses to tones in the auditory fovea of the greater mustached bat’s cochlea. J Neurophysiol 82:676–686.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Murugasu E (1998) Efferent of the basilar membrane vibration depends on tone frequency and level: implications for the active control of basilar membrane mechanics. In: Palmer AR, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr, pp. 19–25.

    Google Scholar 

  • Russell IJ, Nilsen KE (2000) The spatial and temporal representation of a tone on the guinea pig basilar membrane. Proc Natl Acad Sci USA 97:11751–11758.

    PubMed  Google Scholar 

  • Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair-cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro. Hear Res 22:199–216.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Drexl M, Foeller E, Vater M, Kössl M (2003) Synchronization of a nonlinear oscillator: processing the CF component of the echo-response signal in the cochlea of the mustached bat. J Neurosci. 23:9508–9518.

    PubMed  CAS  Google Scholar 

  • Ryan S, Kemp DT, Hinchliffe R (1991) The influence of contralateral acoustic stimulation on click-evoked otoacoustic emissions in humans. Br J Audiol 25:391–397.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (2003) New tunes from Corti’s organ: the outer hair cell boogie rules. Curr Opin Neurobiol 13:459–468.

    PubMed  CAS  Google Scholar 

  • Santos-Sacchi J, Kakehata S, Takahashi S. (1998) Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J Physiol (Lond) 510:225–235.

    CAS  Google Scholar 

  • Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emission. Hear Res 11:285–293.

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1996) Emergence of order in visual system development. Proc Natl Acad Sci USA 93:602–608.

    PubMed  CAS  Google Scholar 

  • Shera CA (2003) Wave interference in the generation of reflection- and distortion-source emissions. In: Gummer AW, Dalhoff E, Nowotny M, Scherer MP (eds) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 439–453.

    Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182.

    PubMed  CAS  Google Scholar 

  • Smith PH, Spirou GA (2002) From the cochlea to the cortex and back. In: Oertel D, Popper AN, Fay RR (eds) Integrative Functions in the Mammalian Auditory Pathway. New York: Springer-Verlag, pp. 6–71.

    Google Scholar 

  • Sobkowicz HM, Slapnick SM (1992) Neuronal sprouting and synapse formation in response to injury in the mouse organ of Corti in culture. Int J Dev Neurosci 10:545–566.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467.

    PubMed  CAS  Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic slow effect of efferent stimulation on cochlear potentials in the guinea-pig. J Neurosci 15:3667–3678.

    PubMed  CAS  Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437.

    PubMed  CAS  Google Scholar 

  • Stankovic KM, Guinan JJ (1999) Medial efferent effects on auditory-nerve responses to tail-frequency tones. I. Rate reduction. J Acoust Soc Am 106:857–869.

    PubMed  CAS  Google Scholar 

  • Stover LJ, Neely ST, Gorga M P (1996) Latency and multiple sources of distortion product otoacoustic emissions. J Acoust Soc Am 99:1016–1024.

    PubMed  CAS  Google Scholar 

  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814.

    PubMed  CAS  Google Scholar 

  • Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18.

    PubMed  CAS  Google Scholar 

  • Vater M, Lenoir M, Pujol R (1992) Ultrastructure of the horseshoe bat’s organ of Corti. II. Transmission electron microscopy. J Comp Neurol 318:380–391.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neurosci 18:3859–3869.

    PubMed  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1991) Slow variation of the amplitude of acoustic distortion at f_2 - f_1 in awake rabbits. Hear Res 51:293–300.

    PubMed  CAS  Google Scholar 

  • Xie DH, Henson OW (1998) Tonic efferent-induced cochlear damping in roosting and echolocating mustached bats. Hear Res 124:60–68.

    PubMed  CAS  Google Scholar 

  • Xiao ZJ, Suga N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63.

    PubMed  CAS  Google Scholar 

  • Xie DH, Henson MM, Bishop AL, Henson OW (1993) Efferent terminals in the cochlea of the moustached bat—quantitative data. Hear Res 66:81–90.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Russell, I.J., Lukashkin, A.N. (2008). Cellular and Molecular Mechanisms in the Efferent Control of Cochlear Nonlinearities. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_10

Download citation

Publish with us

Policies and ethics