Skip to main content

Gaining Insight into the Structure and Dynamics of Clay–Polymer Nanocomposite Systems Through Computer Simulation

  • Chapter
Nanocomposites

Clay minerals belong to a wider class of solids known as layered materials, which may be defined as ‘crystalline materials wherein the atoms in the layers are cross-linked by chemical bonds, while the atoms of adjacent layers interact by physical forces’ [1]. Both clay sheets and interlayer space have one dimension in the nanometre range. Cationic clays are the predominant naturally occurring minerals with aluminosilicate sheets carrying a negative charge. Therefore, the interlayer guest species are positively charged to compensate the layer charge [2]. In anionic clays, also known as layered double hydroxides (LDHs), the interlayer guest species carry a negative charge and the inorganic mixed metal hydroxide sheets are positively charged. In recent times, there has been a growing interest in anionic clays, although initial attention was focussed almost exclusively on the cationic clay materials. Reviews have appeared that often emphasise interesting properties and the use of experimental techniques to determine or at least infer the local structure of the clay sheet or intercalated material [3–5]. However, clays are polycrystalline materials and precise experimental location of interlayer species is extremely difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoonheydt, R. A.; Pinnavaia, T. J.; Lagaly, G.; Gangas, N. Pure and Applied Chemistry, 1999, 71, 2367–2371.

    Article  CAS  Google Scholar 

  2. Grim, R. E. “Applied Clay Mineralogy,” Mcgraw-Hill, New York, 1962.

    Google Scholar 

  3. Newman, S. P.; Jones, W. New J. Chem., 1998, 22, 105–115.

    Article  CAS  Google Scholar 

  4. Cavani, F.; Trifirò, F.; Vaccari, A. Catal. Today, 1991, 11, 173–301.

    Article  CAS  Google Scholar 

  5. Carlino, S. Chem. Br., 1997, 33, 59–62.

    CAS  Google Scholar 

  6. Lagaly, G.; Beneke, K. Colloid. Polym. Sci., 1991, 269, 1198–1211.

    Article  CAS  Google Scholar 

  7. Newman, S. P.; Williams, S. J.; Coveney, P. V.; Jones, W. J. Phys. Chem. B, 1998, 102, 6710–6719.

    Article  CAS  Google Scholar 

  8. Swenson, J.; Schwartz, G. A.; Bergman, R.; Howells, W. S., Eur. Phys. J. E., 2003, 12, 179–183.

    Article  CAS  PubMed  Google Scholar 

  9. Kagunya, W. W. J. Phys. Chem., 1996, 100, 327–330.

    Article  CAS  Google Scholar 

  10. Rives, V. (ed.), “Layered Double Hydroxides: Present and Future,” Nova Science, New York, 2001.

    Google Scholar 

  11. Greenwell, H. C.; Jones, W.; Coveney, P. V.; Stackhouse, S., J. Mater. Chem., 2006, 16, 708–723.

    Article  CAS  Google Scholar 

  12. Boulet, P.; Greenwell, H. C.; Stackhouse, S.; Coveney, P. V., J. Mol. Struct. THEOCHEM, 2006, 762, 33–48.

    Article  CAS  Google Scholar 

  13. (a) Leach, A. R., “Molecular Modelling, Principles and Applications”, 2nd Ed., Pearson Education, England, 2001; (b) Allen, M. P.; Tildesley, D. J. “Computer Simulation of Liquids,” Clarendon, Oxford, 1987; (c) Frenkel, D.; Smit, B. “Understanding Molecular Simulation: From Algorithms to Applications,” 2nd Ed., Academic Press, London, England, 2002.

    Google Scholar 

  14. Born, D.; Oppenheimer, J. R. Ann. Phys. Rev., 1927, 84, 457.

    CAS  ADS  Google Scholar 

  15. Sato, T.; Tokunaka, K.; Tanaka, K. J. chem. Phys., 2006, 124, 024314.

    Article  PubMed  ADS  CAS  Google Scholar 

  16. (a) Hartree, D. R. Proc. Cambridge Philos., 1928, 24, 89. (b) Hartree, D. R. Proc. Cambridge Philos., 1928, 24, 11, ibid. 426.

    Google Scholar 

  17. Fock, V. Z. Phys., 1930, 61, 126.

    Article  ADS  Google Scholar 

  18. Slater, J.C. Phys. Rev., 1930, 48, 35.

    Google Scholar 

  19. Pauli, W. Phys. Rev., 1940, 58, 719.

    Article  ADS  Google Scholar 

  20. Møller, C.; Plesset, M. S. Phys. Rev., 1934, 46, 618–622.

    Article  MATH  ADS  Google Scholar 

  21. Parr, R. G.; Yang, W. “Density-Functional Theory of Atoms and Molecules,” Oxford Science Publication, Oxford, 1989.

    Google Scholar 

  22. Kohn, W.; Sham, L. J. Phys. Rev. A, 1965, 140, 1133.

    Article  MathSciNet  ADS  Google Scholar 

  23. Hohenberg, P.; Kohn, W. Phys. Rev. A, 1964, 136, 864.

    Article  MathSciNet  ADS  Google Scholar 

  24. Mooij, W. T. M.; van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Eijck, B. P. J. Phys. Chem. A, 1999, 103, 9872–9882.

    Article  CAS  Google Scholar 

  25. Elsner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys., 2001, 114, 5149–5155.

    Article  ADS  CAS  Google Scholar 

  26. Cortona, P. Phys. Rev. B, 1991, 44, 8455.

    Article  ADS  Google Scholar 

  27. (a) Wesolowski, T. A.; Warshel, A. J. Phys. Chem., 1993, 97, 8050; (b) Wesolowski, T. A.; Weber, J. Chem. Phys. Lett., 1996, 248, 71.

    Google Scholar 

  28. (a) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys., 1983, 79, 926–935; (b) Mahoney, M. W.; Jorgensen, W. L. J. Chem. Phys., 2000, 112, 8910–8922; (c) Matsuoka, O.; Clementi, E.; Yoshimine, M. J. Chem. Phys., 1976, 64, 1351–1361; (d) Teleman, O.; Jonsson, B.; Engstrom, S. Mol. Phys., 1987, 60, 193–203; (e) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem., 1987, 91, 6269–6271.

    Google Scholar 

  29. Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem., 1990, 94, 8897–8909.

    Article  CAS  Google Scholar 

  30. (a) Jackson, R. A.; Catlow, C. R. A. Mol. Simul., 1988, 1, 207–224; (b) Faux, D. A.; Smith, W.; Forester, T. R. J. Phys. Chem. B, 1997, 101, 1762–1768; (c) Catlow, C. R. A.; Freeman, M.; Vessal, B.; Tomlinson, S. M.; Leslie, M. J. Chem. Soc. Faraday Trans., 1991, 87, 1947–1950; (d) de Vos Burchart, E.; Ph.D. Thesis, 1992, “Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth,” Table I, Chap. XII.

    Google Scholar 

  31. (a) Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. J. Phys. Chem., B, 2004, 108, 1255–1266; (b) Teppen, B. J.; Rasmussen, K.; Bertsch, P. M.; Miller, D. M.; Lothar Schäfer, L. J. Phys. Chem. B, 1997, 101, 1579–1587; (c) Teppen, B. J.; Yu, C.-H.; Newton, S. Q.; Miller, D. M.; Schäfer, L. J. Mol. Struct., 1998, 445, 65–88.

    Google Scholar 

  32. Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B, 2001, 105, 9980–9987.

    Article  CAS  Google Scholar 

  33. Goddard III, W. A.; van Duin, A.; Chenoweth, K.; Cheng, M.-J.; Pudar, S.; Oxgaard, J.; Merinov, B.; Jang, Y. H.; Persson, P. Topics Catal., 2006, 38, 93–103.

    Article  CAS  Google Scholar 

  34. Kornherr, A.; French, S. A.; Sokol, A. A.; Catlow, C. R. A.; Hansal, S.; Hansal, W. E. G.; Besenhard, J. O.; Kronberger, H.; Nauer, G. E.; Zifferer, G. Chem. Phys. Lett., 2004, 393, 107–111.

    Article  CAS  ADS  Google Scholar 

  35. (a) Sun, H. J. Phys. Chem. B, 1998, 102, 7338–7364; (b) Sun, H.; Ren, P.; Fried, J. R. Comput. Theor. Polym. Sci., 1998, 229–246.

    Google Scholar 

  36. MacKerell Jr., A. D.; Bashford, D.; Bellott, M.; Dunbrack Jr., R.L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher III, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B, 1998, 102, 3586–3616.

    Google Scholar 

  37. Foloppe, N.; MacKerell Jr., A. D. J. Comp. Chem., 2000, 21, 86–104.

    Article  CAS  Google Scholar 

  38. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B, 2001, 105, 6474–6487.

    Article  CAS  Google Scholar 

  39. (a) Han, S. S.; Kang, J. K.; Lee, H. M.; van Duin, A. C. T.; Goddard, W. A. J. Chem. Phys., 2005, 123, 114703; (b) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q. S.; Xu, X.; Goddard, W. A. J. Phys. Chem. A, 2003, 107, 3803–3811; (c) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A, 2001, 105, 9396–9409.

    Google Scholar 

  40. Yin, K. L.; Xia, Q.; Xu, D. J.; Ye, Y. J.; Chen, C. L. Comput. Chem. Eng. 2006, 30, 1346–1353.

    Article  CAS  Google Scholar 

  41. (a) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 1998, 102, 2569–2577; (b) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 1999, 103, 4508–4517; (c) Wick, C. D.; Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 2000, 104, 8008–8016; (d) Mundy, C. J.; Balasubramanian, S.; Bagchi, K.; Siepmann, J. I.; Klein, M. L. Faraday Discuss., 1996, 104, 17–36.

    Google Scholar 

  42. Ewald, P. P. Ann. Phys., 1921, 64, 253–287.

    Article  Google Scholar 

  43. Hokney, R. W.; Eastwood, J. W. “Computer simulations using particles,” McGraw-Hill, New York, 1981.

    Google Scholar 

  44. Plimpton, S. J. Comput. Phys., 1995, 117, 1–19.

    Article  MATH  CAS  ADS  Google Scholar 

  45. Boulet, P.; Coveney, P. V.; Stackhouse, S. Chem. Phys. Lett., 2004, 389, 261–267.

    Article  CAS  ADS  Google Scholar 

  46. Schlick, T. “Optimization Methods in Computational Chemistry” in Reviews in Computational Chemistry, Lipkowitz, K. B.; Boyd, D. B. (ed.), Wiley, New York, Vol. 3, pp. 1–71.

    Google Scholar 

  47. Csaszar, P.; Pulay, P. J. Mol. Struct., 1984, 114, 31–34.

    Article  CAS  ADS  Google Scholar 

  48. Farkas, O.; Schlegel, H. B. Phys. Chem. Chem. Phys., 2002, 4, 11–15.

    Article  CAS  Google Scholar 

  49. Hansen, J.-P.; McDonald, I. R. “Theory of Simple Liquids,” 2nd Edn., Academic Press, London, 1986.

    Google Scholar 

  50. Skipper, N. T.; Refson, K.; McConnell J. D. C. J. Chem. Phys., 1991, 94, 7434–7445.

    Article  CAS  ADS  Google Scholar 

  51. Panagiotopoulos, A. Z. Mol. Phys., 1987, 61, 813–826.

    Article  CAS  ADS  Google Scholar 

  52. Suter, J. L.; Coveney, P. V.; Greenwell, H. C.; Thyveetil, M.-A., J Phys Chem C, 2007, 111, 8248–8259.

    Article  CAS  Google Scholar 

  53. Thyveetil, M.-A.; Coveney, P. V.; Suter, J. L.; Greenwell, H. C., “Emergence of undulations and determination of materials properties from large-scale molecular dynamics simulation of layered double hydroxides” preprint (2007).

    Google Scholar 

  54. Tambach, T. J.; Boek, E. S.; Smit, B. Phys. Chem. Chem. Phys., 2006, 8, 2700–2702.

    Article  CAS  PubMed  Google Scholar 

  55. Tambach, T. J.; Bolhuis, P. G.; Hensen, E. J. M.; Smit, B. Langmuir, 2006, 22, 1223–1234.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, L. M.; Chen, D. Q. Macromol. Mater. Eng., 2003, 288, 252–258.

    Article  CAS  Google Scholar 

  57. Zhang L. M. J. Appl. Polym. Sci., 2001, 79, 1416–1422.

    Article  CAS  Google Scholar 

  58. Boek, E. S.; Coveney, P. V.; Skipper, N. T. J. Am. Chem. Soc., 1995, 117, 12608–12617.

    Article  CAS  Google Scholar 

  59. Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Giannelis, E. P., Adv. Mater., 1995, 7, 154–156.

    Article  CAS  Google Scholar 

  60. Yang, D. K.; Zax, D. B. J. Chem. Phys., 1999, 110, 5325–5336.

    Article  CAS  ADS  Google Scholar 

  61. Hackett, E.; Manias, E.; Giannelis, E. P. Chem. Mater., 2000, 12, 2161–2167.

    Article  CAS  Google Scholar 

  62. Bujdák, J.; Hackett, E.; Giannelis, E. P. Chem. Mater., 2000, 12, 2168–2174.

    Article  CAS  Google Scholar 

  63. Kuppa, V.; Manias, E. Chem. Mater., 2002, 14, 2171–2175.

    Article  CAS  Google Scholar 

  64. Reinholdt, M. X.; Kirkpatrick, R. J.; Pinnavaia, T. J. J. Phys. Chem. B, 2005, 109, 16296–16303.

    Article  CAS  PubMed  Google Scholar 

  65. Greenwell, H. C.; Bowden, A. A.; Chen, B. Q.; Boulet, P.; Evans, J. R. G.; Coveney, P. V.; Whiting, A. J. Mater. Chem., 2006, 16, 1082–1094.

    Article  CAS  Google Scholar 

  66. Pospísil, M.; Capková, P.; Merínská, D.; Malác, Z.; Simoník, J. J. Colloid Interface Sci., 2001, 236, 127–131.

    Article  PubMed  CAS  Google Scholar 

  67. Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Standish, R. K. Chem. Mater., 2003, 15, 4732–4738.

    Article  CAS  Google Scholar 

  68. Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Standish, R. K. J. Phys. Chem. B, 2004, 108, 10025–10033.

    Article  CAS  Google Scholar 

  69. Heinz, H.; Castelijns, H. J.; Suter, U. W. J. Am. Chem. Soc., 2003, 125, 9500–9510.

    Article  CAS  PubMed  Google Scholar 

  70. Heinz, H.; Suter, U. W. J. Phys. Chem. B, 2004, 108, 18341–18352.

    Article  CAS  Google Scholar 

  71. Born, M. Verh. Dtsch. Phys. Ges., 1919, 21, 13–24.

    CAS  Google Scholar 

  72. Haber, F. Verh. Dtsch. Phys. Ges., 1919, 21, 750–768.

    CAS  Google Scholar 

  73. Pospísil, M.; Kalendová, A.; Capková, P.; Simoník, J.; Valásková, M. J. Colloid Interface Sci., 2004, 277, 154–161.

    Article  PubMed  CAS  Google Scholar 

  74. Paul, D. R.; Zeng, Q. H.; Yu, A. B.; Lu, G. Q. J. Colloid Interface Sci., 2005, 292, 462–468.

    Article  CAS  PubMed  Google Scholar 

  75. Minisini, B.; Tsobnang, F. Composites A, 2005, 36, 531–537.

    Article  CAS  Google Scholar 

  76. Greenwell, H. C.; Jones, W.; Coveney, P. V.; Stackhouse, S. J. Mater. Chem., 2006, 16, 708–723.

    Article  CAS  Google Scholar 

  77. Tanaka, G.; Goettler, L. A. Polymer, 2002, 43, 541–553.

    Article  CAS  Google Scholar 

  78. Fermeglia, M.; Ferrone, M.; Pricl, S. Fluid Phase Equilib., 2003, 212, 315–329.

    Article  CAS  Google Scholar 

  79. Toth, R.; Coslanich, A.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Miertus, S.; Chiellini, E. Polymer, 2004, 45, 8075–8083.

    Article  CAS  Google Scholar 

  80. Minisini, B.; Tsobnang, F. Composites A, 2005, 36, 539–544.

    Article  CAS  Google Scholar 

  81. Sikdar, D.; Katti, D. R.; Katti, K. S. Langmuir, 2006, 22, 7738–7747.

    Article  CAS  PubMed  Google Scholar 

  82. Katti, K. S.; Sikdar, D.; Katti, D. R.; Ghosh, P.; Verma, D. Polymer, 2006, 47, 403–414.

    Article  CAS  Google Scholar 

  83. Sikdar, D.; Katti, D. R.; Katti, K. S.; Bhowmik, R. Polymer, 2006, 47, 5196–5205.

    Article  CAS  Google Scholar 

  84. Gardebien, F.; Gaudel-Siri, A.; Bredas, J. L.; Lazzaroni, R. J. Phys. Chem. B, 2004, 108, 10678–10686.

    Article  CAS  Google Scholar 

  85. Aleperstein, D.; Artzi, N.; Siegmann, A.; Narkis, M. J. Appl. Polym. Sci., 2005, 97, 2060–2066.

    Article  CAS  Google Scholar 

  86. Kuppa, V.; Foley, T. M. D.; Manias, E. Eur. Phys. J. E, 2003, 12, 159–165.

    Article  CAS  PubMed  Google Scholar 

  87. Kuppa, V.; Manias, E. J. Polym. Sci. B, 2005, 43, 3460–3477.

    Article  CAS  Google Scholar 

  88. Boulet, P.; Bowden, A. A.; Coveney, P. V.; Whiting, A. J. Mater. Chem., 2003, 13, 2540–2550.

    Article  CAS  Google Scholar 

  89. Greenwell, H. C.; Harvey, M. J.; Boulet, P.; Bowden, A. A.; Coveney, P. V.; Whiting, A. Macromolecules, 2005, 38, 6189–6200.

    Article  CAS  ADS  Google Scholar 

  90. Coveney, P. V.; Watkinson, M.; Whiting, A.; Boek, E. S. Stabilizing Clayey Formations, US Patent Number 6,787,507.

    Google Scholar 

  91. Chenevert, M. E. J. Petrol. Technol., 1970, 11, 1141.

    Google Scholar 

  92. Mody, F. K, Hale, A. H. J. Petrol. Technol., 1993, 45, 1093.

    CAS  Google Scholar 

  93. Bains, A. D.; Boek, E. S.; Coveney, P. V.; Williams, S. J.; Akbar, M. V. Mol. Simul., 2001, 26, 101–145.

    Article  CAS  Google Scholar 

  94. Zhang, J.; Rivero, M.; Choi, S. K. J. Phys. B, 2007, 40, 545–553.

    Article  CAS  ADS  Google Scholar 

  95. Coveney, P. V.; Griffin, J. L. W., Watkinson, M.; Whiting, A.; Boek, E. Mol. Simul., 2002, 28, 295.

    Article  CAS  Google Scholar 

  96. Gaudel-Siri, A.; Brocorens, P.; Siri, D.; Gardebien, F.; Brédas, J.-L.; Lazzaroni, R. Langmuir, 2003, 19, 8287–8291.

    Article  CAS  Google Scholar 

  97. Fois, E.; Gamba, A.; Tilocca, A. Microporous Mesoporous Mater., 2003, 57, 263–272.

    Article  CAS  Google Scholar 

  98. Toth, R.; Ferrone, M.; Miertus, S.; Chiellini, E.; Fermeglia, M.; Pricl, S. Biomacromolecules, 2006, 7, 1714–1719.

    Article  CAS  PubMed  Google Scholar 

  99. Boulet, P.; Greenwell, H. C.; Stackhouse, S.; Coveney, P. V. J. Mol. Struct. THEOCHEM, 2006, 762, 33–48.

    Article  CAS  Google Scholar 

  100. Bougeard, D.; Smirnov, K. S. Phys. Chem. Chem. Phys., 2007, 9, 226–245.

    Article  CAS  PubMed  Google Scholar 

  101. Stackhouse, S.; Coveney, P. V.; Sandré, E. J. Am. Chem. Soc., 2001, 123, 11764–11774.

    Article  CAS  PubMed  Google Scholar 

  102. Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. J. Comput. Chem., 2003, 24, 1853–1863.

    Article  CAS  PubMed  Google Scholar 

  103. Aquino, A. J. A.; Tunega, D.; Gerzabek, M. H.; Lischka, H. J. Phys. Chem. B, 2004, 108, 10120–10130.

    Article  CAS  Google Scholar 

  104. Greenwell, H. C.; Stackhouse, S.; Coveney, P. V.; Jones, W. J. Phys. Chem. B. 2003, 107, 3476–3485.

    Article  CAS  Google Scholar 

  105. Manevitch, O. L.; Rutledge, G. C. J. Phys. Chem. B, 2004, 108, 1428–1435.

    Article  CAS  Google Scholar 

  106. Katti, D. R.; Ghosh, P.; Schmidt, S.; Katti, K. S. Biomacromolecules, 2005, 6, 3276–3282.

    Article  CAS  PubMed  Google Scholar 

  107. Lindahl, E.; Edholm, O. Biophys J., 79, 426, 2000.

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Sheng, N.; Boyce, M. C.; Parks, D. M.; Rutledge, G. C.; Abes, J. I.; Cohen, R. E. Polymer, 2004, 45, 487–506.

    Article  CAS  Google Scholar 

  109. Zhu, L. J.; Narh, K. A. J. Polym. Sci. B, 2004, 42, 2391–2406.

    Article  CAS  Google Scholar 

  110. Buryachenko, V. A.; Roy, A.; Lafdi, K.; Anderson, K. L.; Chellapilla, S. Compos. Sci. Technol., 2005, 65, 2435–2465.

    Article  CAS  Google Scholar 

  111. Borodin, O.; Bedrov, D.; Smith, G. D.; Nairn, J.; Bardenhagen, S. J. Polym. Sci. B, 2005, 43, 1005–1013.

    Article  CAS  Google Scholar 

  112. Valavala, P. K.; Odegard, G. M. Rev. Adv. Mater. Sci., 2005, 9, 34–44.

    CAS  Google Scholar 

  113. Ginzburg, V. V.; Balazs, A. C. Macromolecules, 1999, 32, 5681–5688.

    Article  CAS  ADS  Google Scholar 

  114. Smith, J. S.; Bedrov, D.; Smith, G. D. Compos. Sci. Technol. 2005, 63, 1599–1605.

    Article  CAS  Google Scholar 

  115. Anderson, K. L.; Sinsawat, A.; Vaia, R. A.; Farmer, B. L. J. Polym. Sci. B, 2005, 43, 1014–1024.

    Article  CAS  Google Scholar 

  116. Sinsawat, A.; Anderson, K. L.; Vaia, R. A.; Farmer, B. L. J. Polym. Sci. B., 2003, 41, 3272–3284.

    Article  CAS  Google Scholar 

  117. Coveney, P. V.; Saksena, R. S.; Zasada, S. J.; McKeown, M.; Pickles, Comp. Phys. Comm., 2007, 176, 406–418.

    Article  CAS  ADS  Google Scholar 

  118. Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E. Phys. Rev. B, 1999, 60, 2391–2402.

    Article  CAS  ADS  Google Scholar 

  119. De Fabritiis, G.; Delgado-Buscalioni, R.; Coveney, P. V., Physical Review Letters, 2006, 97, 134501.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boulet, P., Greenwell, H.C., Jarvis, R.M., Jones, W., Coveney, P.V., Stackhouse, S. (2008). Gaining Insight into the Structure and Dynamics of Clay–Polymer Nanocomposite Systems Through Computer Simulation. In: Knauth, P., Schoonman, J. (eds) Nanocomposites. Electronic Materials: Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68907-4_5

Download citation

Publish with us

Policies and ethics