Skip to main content

Prodrugs: Absorption, Distribution, Metabolism, Excretion (ADME) Issues

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

Over the past 20 years, there has been a growing recognition that the discovery of effective therapeutic agents involves designing compounds that possess appropriate “pharmaceutical” or “drug-like” properties in addition to high affinity for their biological targets. The pharmaceutical or drug-like properties include solubility, permeation across barriers such as the intestinal epithelium or blood-brain barrier, and metabolic and excretory clearance. Appropriate balance of these properties enables drug molecules to attain and maintain sufficient systemic and/or target concentrations to exert therapeutic effects through optimum absorption, distribution, metabolism, and excretion (ADME) processes. The ADME processes, in conjunction with the biological properties, define therapeutic profiles of drug molecules (Thakker, 2006). A drug that is poorly absorbed, rapidly metabolized, or rapidly excreted via the renal or hepatic route will not attain its full therapeutic potential. Such a drug will require higher doses to achieve sufficiently high systemic or target concentrations for efficacy, which may not be practical in some cases or may cause adverse effects in others. Thus, good pharmaceutical or drug-like properties are often defined as physicochemical properties of drug candidates that enable a drug candidate to navigate through the physical, biochemical, and physiological barriers posed by the ADME processes. The pharmaceutical properties of a drug candidate are optimized by de novo designing appropriate physicochemical attributes into the molecule or via formulation of the drug candidate with agents that can improve certain aspects of the physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abigerges D, Armand JP, Chabot GG, Da Costa L, Fadel E, Cote C, Herait P, and Gandia D. Irinotecan (CPT-11) High-Dose Escalation Using Intensive High-Dose Loperamide to Control Diarrhea. J Natl Cancer Inst 1994; 86:446–449

    Article  PubMed  CAS  Google Scholar 

  • Albert A. Chemical Aspects of Selective Toxicity. Nature 1958; 182:421–423

    Article  PubMed  CAS  Google Scholar 

  • Al-Ghananeem AM, Traboulsi AA, Dittert LW, and Hussain AA. Targeted Brain Delivery of 17 beta-Estradiol via Nasally Administered Water Soluble Prodrugs. AAPS Pharm Sci Tech 2002; 3 E5

    Article  Google Scholar 

  • Anantham S. Fluoropyrimidines. In: Foye, W.O. (Ed.) Cancer Chemotherapeutic Agents, American Chemical Scociety, Washington DC:49–58

    Google Scholar 

  • Anderson BD. Prodrug for Improved CNS Delivery. Advv Drug Del Rev 1996; 19:171–202

    Article  CAS  Google Scholar 

  • Anderson BD, Galinsky RE, Baker DC, Chi SC, Hoesterey BL, Morgan ME, Murakami K, and Mitsuya H. Approaches Toward the Optimization of CNS Uptake of Anti-AIDS Agents. J Control Release 1992; 19:219–230.

    Article  CAS  Google Scholar 

  • Armstrong RD, and Diasio RB. Metabolism and Biological Activity of 5′-Deoxy-5-Fluorouridine, a Novel Fluoropyrimidine. Cancer Res 1980; 40:3333–3338

    PubMed  CAS  Google Scholar 

  • Bawarshi-Nassar RN, Hussain AA, and Crooks PA. Nasal Absorption and Metabolism of Progesterone and 17 Beta-Estradiol in the Rat. Drug Metab Dispos 1989; 17:248–254

    PubMed  CAS  Google Scholar 

  • Beauchamp LM, Orr OF, de Miranda P, Bumette T, and Krenitsky TA. Amino Acid Ester Prodrugs of Acyclovir. Antiviral Chem Chemother 1992; 3:157–164

    CAS  Google Scholar 

  • Beaumont K, Webster R, Gardner I, and Dack K. Design of Ester Prodrugs to Enhance Oral Absorption of Poorly Permeable Compounds:Challenges to the Discovery Scientist. Curr Drug Metab 2003; 4:461–485

    Article  PubMed  CAS  Google Scholar 

  • Boddy AV, and Yule SM. Metabolism and Pharmacokinetics of Oxazaphosphorines. Clin Pharmacokinet 2000; 38:291–304

    Article  PubMed  CAS  Google Scholar 

  • Boddy A, Aaron L, and Patrak K. Efficiency of Drug Targeting: Steady-state Considerations using a Three-compartment Model. Pharm Res 1989; 6:367–372

    Article  PubMed  CAS  Google Scholar 

  • Bodor N. Redox Drug Delivery for Targeting Drugs to Brain. Ann N. Y. Acad Sci. 1987; 507:289–306

    Article  PubMed  CAS  Google Scholar 

  • Bohnenstengel F, Hofmann U, Eichelbaum M, and Kroemer HK. Characterization of the Cytochrome P450 Involved in Side-Chain Oxidation of Cyclophosphamide in Humans. Europ J Clin Pharmacol 1996; 51:297–301

    Article  CAS  Google Scholar 

  • Borchardt RT. Optimizing Oral Absorption of Peptides using Prodrug Strategies. J Control Release 1999; 62:231–238

    Article  PubMed  CAS  Google Scholar 

  • Brewster ME, and Bodor N. Redox Approaches to Drug Delivery to the Central Nervous System. NIDA Res Monogr 1992; 120:169–201

    PubMed  CAS  Google Scholar 

  • Burnier M. Novel Angiotensin II Inhibitors in Cardiovascular Medicine. Expert Opin Investig Drugs 2001; 10:1957–1964

    Article  PubMed  CAS  Google Scholar 

  • Chandra P, and Brouwer KL. The Complexities of Hepatic Drug Transport: Current Knowledge and Emerging Concepts. Pharm Res 2004; 21:719–735

    Article  PubMed  CAS  Google Scholar 

  • Chang TKH, Weber GF, and Crespi CL. Differential Activation of Cyclophosphoamide and Ifosfamide by Cytochromes P-450 2B and 3A in Human Liver Microsomes. Cancer Res 1993; 53:5629–5637

    PubMed  CAS  Google Scholar 

  • Charasson V, Bellott R, Meynard D, Longy M, Gorry P, and Robert J. Pharmacogenetics of Human Carboxyesteras 2, and Enzyme Involved in the Activation of Irinotecan into SN-38. Clin Pharmacol Ther 2004; 76:528–535

    Article  PubMed  CAS  Google Scholar 

  • Danks MK, Morton CL, Krull EJ, Cheshire PJ, Richmond LB, Naeve, CW, Pawlik CA, Houghton PJ, and Potter PM. Comparison of Activation of CPT-11 by Rabbit and Human Carboxylesterases for Use in Enzyme/Prodrug Therapy. Clin Cancer Res 1999; 5:917–924

    PubMed  CAS  Google Scholar 

  • de Miranda P, and Burnette TC. Metabolic Fate and Pharmacokinetics of the Acyclovir Prodrug Valaciclovir in Cynomolgus Monkeys. Drug Metab Dispos 1994; 22:55–59

    PubMed  Google Scholar 

  • Denny WA. Tumor-Activated Prodrugs-A New Approach to Cancer Therapy. Cancer Invest 2004; 22:604–619

    Article  PubMed  CAS  Google Scholar 

  • Denny WA, and Wilson WR. Tirapazamine: The Design of Selectively Activated Anti-Cancer Prodrugs for Use in Antibody-directed and Gene-directed Enzyme Prodrug Therapies. J Pharm Pharmacol 1998; 50:387–394.

    PubMed  CAS  Google Scholar 

  • Ettmayer P, Amidon GL, Clement B, and Testa B. Lessons Learned from Marketed and Investigational Prodrugs. J Med Chem 2004; 47:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Fischer JJ. Mitomycin C as an Adjunct to Postoperative Radiation Therapy in Squamous Cell Carcinoma of the Head and Neck: Results from Two Randomized Clinical Trials. Int J Radiat Oncol Biol Phys 1993; 27:481–482

    Google Scholar 

  • Fischer TL, Pieper JA, Graff DW, Rodgers JE, Fischer JD, Parnell KJ, Goldstein JA, Greenwood R, and Patterson JH. Evaluation of Potential Losaran-phenytoin Drug Interactions in Healthy Volunteers. Clin Pharmacol Ther 2002; 72:238–246

    Article  PubMed  CAS  Google Scholar 

  • Fleisher D, Bong R, and Stewart B. Improved Oral Drug Delivery: Solubility Limitations Overcome by the Use of Prodrugs. Adv Drug Deliv Rev: Low Molecular Weight Prodrugs 1996; 19:115–130

    Article  CAS  Google Scholar 

  • Forker PG, Lord JA, and Parkinson A. Alterations in Expression of CYP1A1 and NADPH-cytochrome P450 Reductase During Lung Tumor Development in SWR/J Mice. Carcinogenesis 1996; 17:127–132

    Article  Google Scholar 

  • Ganapathy ME, Huang W, Wang H, Ganapathy V, and Leibach FH. Valacyclovir: A Substrate for the Intestinal and Renal Peptide Transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 1998; 246:470–475

    Article  PubMed  CAS  Google Scholar 

  • Hadfield AF, and Sartorelli AC. The Pharmacology of Prodrugs of 5-Fluorouracil and 1-beta-D-Arabinofuranosylcytosine. Adv Pharmacol Chemother 1984; 20:21–67

    PubMed  CAS  Google Scholar 

  • Haffty BG, Son YH, Sasaki CT, Papac R, Fischer D, Rockwell S, Sartorelli A, and Fisher JJ. Mitomycin C as an Adjuncto to Postoperative Radiation Therapy in Squamous Cell Carcinoma of the Head and Neck: Results from Two Randomized Clinical Trials. Int J Radiat Oncol Biol Phys 1993; 27:241–250

    PubMed  CAS  Google Scholar 

  • Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadee W, and Amidon GL. 5′-Amino Acid Esters of Antiviral Nucleosides, Acyclovir, and AZT are Absorbed by the Intestinal Pept1 Peptide Transporter. Pharm Res 1998; 15:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves RH, Hartley JA, and Butler J. Mechanisms of Action of Quinone-Containing Alkylating Agents: DNA Alkylation by Aziridinylquinones. Front Biosci 2000; 5:E172–180

    Article  PubMed  CAS  Google Scholar 

  • Harper NJ. Drug Latentiation. J Med Pharm Chem 1959; 1:467–500

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa M, Maki T, and Satoh T. Multiplicity and Regulation of Hepatic Microsomal Carboxylesterases in Rats. Mol Pharmacol 1987; 31:579–584

    PubMed  CAS  Google Scholar 

  • Houin G, and Woodley J. Gastrointestinal Absorption of Drugs through the Digestive Barrier. Ann Pharm Fr 2002; 60:365–371

    PubMed  CAS  Google Scholar 

  • Humerickhouse R, Lohrbach K, Li L, Bosron WF, and Dolan ME. Characterization of CPT-11 Hydrolysis by Human Liver Carboxylesterase Isoforms hCE-1 and hCE-2. Cancer Res 2000; 60:1189–1192

    PubMed  CAS  Google Scholar 

  • Hussain A. Intranasal Drug Administration Delivery. Adv Drug Deliv Rev 1998; 29:39–49

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Morton CL, Danks MK, and Potter PM. Proficient Metabolism of Irinotecan by a Human Intestinal Carboxylesterase. Cancer Res 2000; 60:4725–4728

    PubMed  CAS  Google Scholar 

  • Kwon CH. Metabolism-Based Anticancer Drug Design. Arch Pharm Res 1999; 22:533–541

    Article  PubMed  CAS  Google Scholar 

  • Landowski CP, Song X, Lorenzi PL, Hilfinger JM, and Amidon GL. Floxuridine Amino Acid Prodrugs: Enhancing Caco-2 Permeability and Resistance to Glycosidic Bond Metabolism. Pharm Res 2005; 22:1510–1518

    Article  PubMed  CAS  Google Scholar 

  • Liederer BM, Phan KT, Ouyang H, and Borchardt RT. Significant Differences in the Disposition of Cyclic Prodrugs of Opioid Peptides in Rats and Guinea Pigs following IV Administration J Pharm Sci 2005; 94:2676–2687

    Article  PubMed  CAS  Google Scholar 

  • Lo M-W, Goldberg MR, McCrea JB, Lu H, Frntek CI, and Bjornsson TD. Pharmacokinetics of Losartan, an Angiotensin II Receptor Antagonist, and Its Active Metabolite EXP3174 in Humans. Clin Pharacol Ther 1995; 58:641–649

    Article  CAS  Google Scholar 

  • Lohr M, Hummel F, Faulmann G, Ringel J, Saller R, Hain J, Gunzburg WH, and Salmons B. Microencapsulated CYP2B1-transfected Cells Activating Ifosfamide at the Site of the Tumor: the Magic Bullets of the 21st Century. Cancer Chemother Pharmacol 2002; 49:S21–S24

    Article  PubMed  CAS  Google Scholar 

  • Lokiec F, Canal P, Gay C, Chatelut E, Armand JP, Roche H, Hugat R, Goncalves E, and Matieu-Boue A. Pharmacokinetics of irinotecan and its metabolites in himan blood, bile, and urine. Cancer Chemother Pharmacol 1995; 36:79–82

    Article  PubMed  CAS  Google Scholar 

  • Mamidi RNVS, Mullangi r, Kota J, Bhamidipati R, Khan AA, Katneni K, Datla S, Singh SK, Rao KY, Rao CS, Srinivas NR, and Rajagopalan R. Pharmacological and Pharmacokineti evaluation of Celecoxib Prodrugs in Rats. Biopharm Drug Disp 2002; 23:273–282

    Article  CAS  Google Scholar 

  • Mathijssen RHJ, van Alphen BJ, Verweij J, Loos WJ, Nooter K, Stoter G, and Sparreboom A. Clinical Pharmacokinetics and Metabolism of Irinotecan (CPT-11). Clinical Cancer Res 2001; 7:2182–2194

    CAS  Google Scholar 

  • Miners JO, and Birkett DJ. Cytochrome P450 2C9: An Enzyme of Major Importance in Human Drug Metabolism. Br J Clin Pharmacol. 1998; 45:525–538

    Article  PubMed  CAS  Google Scholar 

  • Morrison RA, Singhvi SM, Peterson AE, Pocetti DA, Migdalof BH. Relative Contribution of the Gut, Liver, and Lung to the First-pass Hydrolysis (Bioactivation) of Orally Administered 14C-Fosinopril Sodium in Dogs. In Vivo and In Vitro Studies. Drug Metab Dispos 1990; 18:253–257

    PubMed  CAS  Google Scholar 

  • Moscow JA, Moscow CS, and Cowan KH. Drug Resistance and its Clinical Circumvention. In Kufe D, Pollock R, Weischselbaum R, Bast R, Gansler T, Holland J and Frei E. Cancer Medicine (6th ed). BC Decker, Hamilton, ON, Canada. 2003; 711–725

    Google Scholar 

  • Napier MP, Sharma SK, Springer CJ, Bagshawe KD, Green AJ, Martin J, Stribbling SM, Cushen N, O’Malley D, and Begent RH. Antibody-directed Enzyme Prodrug Therapy: Efficacy and Mechanism of Action in Colorectal Carcinoma. Clin Cancer Res 2000; 6:765–772

    PubMed  CAS  Google Scholar 

  • Patterson AV, Barham HM, Chinje EC, Adams GE, Harris AL, and Stratford IJ Importance of P450 Reductase Activity in Determining Sensitivity of Breast Tumour Cells to the Bioreductive Drug, Tirapazamine (SR 4233). Br J Cancer 1995a; 72:1144–1150

    PubMed  CAS  Google Scholar 

  • Polli JW, and Serabjit-Singh CJ. In Vitro Cell-based Assays for Estimating the Effects of Efflux Transporters on Cell Permeation. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection. AAPS Press, Arlington, VA 2004; 235–256

    Google Scholar 

  • Polli JW, Wring SA, Hymphreys JE, Huang, L, Morgan, JB, Webster, LO, and Serabjit-Singh CS. Ratinal Use of In Vitro P-glycoprotein Asays in Drug Discovery. J Pharmacol Exp Ther 2001; 299:620–628

    PubMed  CAS  Google Scholar 

  • Redinbo MR, and Potter PM. Mammalian Carboxylesterases: from Drug Targets to Protein Therapeutics. Drug Discov Today 2005; 10:313–325.

    Article  PubMed  CAS  Google Scholar 

  • Ren S, Yang JS, Kalhorn TF, and Slattery JT. Oxidation of Cyclophosphamide to 4-Hydroxycyclophosphamide and Deschloroethylcyclophosphamide in Human Liver Microsomes. Cancer Res 1997; 57:4229–4235

    PubMed  CAS  Google Scholar 

  • Riddick DS, Lee C, Ramji S, Chinje EC, Cowen RL, Williams KJ, Patterson AV, Stratford IJ, Morrow CS, Townsend AJ, Jounaidi Y, Chen CS, Su T, Lu H, Schwartz PS, and Waxman DJ. Cancer Chemotherapy and Drug Metabolism. Drug Metab Dispos 2005; 33:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Riley RJ, and Workman P. Enzymology of the Reduction of the Potent Benzotriazine-Di-N-Oxide Hypoxic Cell Cytotoxin SR 4233 (WIN 59075) by NAD(P)H: (Quinone Acceptor) Oxidoreductase (EC 1.6.99.2) Purified from Walker 256 Rat Tumour Cells. Biochem Pharmacol 1992; 43:167–174

    Article  PubMed  CAS  Google Scholar 

  • Rooseboom M, Commandeur JN, and Vermeulen NP. Enzyme-catalyzed Activation of Anticancer Prodrugs. Pharmacol Rev 2004; 56:53–102

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Yu L J, Crespi C L, and Waxman, D J. Development of a Substrate Activity Based Approach to Identify the Major Human Liver P-450 Catalysts of Cyclophosphamide and Ifosfamide Activation Based on cDNA-Expressed Activities and Liver Microsomal P-450 Profiles. Drug Metab Dispos 1999; 27:655–666

    PubMed  CAS  Google Scholar 

  • Satoh T, and Hosokawa M. Molecular Aspects of Carbolesterase Isoforms in Comprison with Other Esterases. Toxicol Letters 1995; 82/83:439–445

    Article  Google Scholar 

  • Satoh T, and Hosokawa M. The Mammalian Carboxylesterases: From Molecules to Functions. Ann Rev Pharmacol Toxicol 1998; 38:257–288

    Article  CAS  Google Scholar 

  • Schlager JJ, and Powis G. Cytosolic NAD(P)H:(Quinone-Acceptor) Oxidoreductase in Human Normal and Tumor Tissue: Effects of Cigarette Smoking and Alcohol. Int J Cancer 1990; 45:403–409

    Article  PubMed  CAS  Google Scholar 

  • Sinhababu AK, and Thakker DR. Prodrugs of Anticancer Agents. Advanced Drug Delivivery Reviews: Low Molecular Weight Prodrugs 1996; 19:241–273

    Article  CAS  Google Scholar 

  • Song X, Vig BS, Lorenzi PL, Drach JC, Townsend LB, and Amidon GL. Amino Acid Ester Prodrugs of Antiviral Agent 2-Bromo-5,5-dichloro-1-(beta-Dribofuranosyl) benimidazole as Potential Substrates of hPEPT1 Transporter. J Med Chem 2005; 48:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Stella VJ. Adv Drug Deliv Rev: Low Molecular Weight Prodrugs 1996a; 19

    Google Scholar 

  • Stella VJ. A Case for Prodrugs: Fosphenytoin. Adv Drug Deliv Rev: Low Molecular Weight Prodrugs 1996b; 19:311–330

    Article  CAS  Google Scholar 

  • Stella VJ, A Case for Prodrugs, this book, 2006a

    Google Scholar 

  • Stella VJ, Prodrug Approaches to Enhancing the Oral Delivery of Poorly Permeable Drugs, this book, 2006b

    Google Scholar 

  • Stella VJ, and Himmelstein KJ. Prodrugs: A Chemical Approach to Targeted Drug Delivery. In Borchardt RT, Repta AJ, and Stella VJ Directed Drug Delivery: A Multidisciplinary Approach. Humana Press, Clifton, NJ 1985; 247–267

    Google Scholar 

  • Sterns RA, Chakravarti PK, Chen R, and Chiu SL. Biotransformation of Losartan to its Active Carboxylic Acid Metabolite in Human Liver Microsomes. Drug Metab Disp. 1995; 23:207–215.

    Google Scholar 

  • Stratford IJ, Williams KJ, Cowen RL, and Jaffar M. Combining Bioreductive Drugs and Radiation for the Treatment of Solid Tumors. Semin Radiat Oncol 2003; 13:42–52

    Article  PubMed  Google Scholar 

  • Struck RF. Nitrogen Mustards and Related Structures. In Foye WO, Cancer Chemotherapeutic Agents. American Chemical Society, Washington, D. C 1995; 112–121

    Google Scholar 

  • Testa B. Prodrug Research: Futile or Fertile? Biochem Pharmacol 2004; 68:2097–2106

    Article  PubMed  CAS  Google Scholar 

  • Thakker DR. Strategic Use of Preclinical Pharmacokinetics Studies and in vitro ADME Models in Optimizing ADME Properties of Lead Compounds. In Borchardt RT, Kerns EH, Hageman MJ, Thakker D, and Stevens JL Optimizing the Drug-Like Properties of Leads in Drug Discovery. AAPS (Springer) Press, Arlington, VA, 2006; in press

    Google Scholar 

  • Tirkkonen T and Laine K. Drug Interactions with the Potential to Prevent Prodrug Activation as a Common Source of Irrational Prescribing in Hospital Inpatients. Clin Pharmacol Ther 2004; 76:639–647

    Article  PubMed  CAS  Google Scholar 

  • Tomasz M. Mitomycin C: Small, Fast and Deadly (But Very Selective). Chem Biol 1995; 2:575–279

    Article  PubMed  CAS  Google Scholar 

  • Troutman MD, and Thakker DR. Novel Experimental Parameters to Quantify the Modulation of Absorptive and Secretory Transport of Compounds by Pglycoprotein in Cell Culture Models of Intestinal Epithelium. Pharm Res 2003; 20:1210–1224

    Article  PubMed  CAS  Google Scholar 

  • Vere Hodge RA, Sutton D, Boyd MR, Harnden MR, and Jarvest RL. Selection of an Oral Prodrug (BRL 42810; Famciclovir) for the Antiherpesvirus Agent BRL 39123 [9-(4-Hydroxy-3-Hydroxymethylbut-l-yl)Guanine; Penciclovir]. Antimicrob Agents Chemother 1989; 33:1765–73

    PubMed  CAS  Google Scholar 

  • Vig BS, Lorenzi PJ, Mittal S, Landowski CP, Shin HC, Mosberg HI, Hilfinger JM, and Amidon GL. Amino Acid Ester Prodrugs of Floxuridine: Synthesis and Effect of Structure, Stereochemistry, and Site of Esterification on the Rate of Hydrolysis. Pharm Res 2003; 20:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Wade LA, and Katzman R. Synthetic Amino Acids and the Nature of L-dopa Transport at the Blood-brain Barrier. J Neurochem. 1975; 25:837–844

    Article  PubMed  CAS  Google Scholar 

  • Wadkins RM, Hyatt JL, Yoon KJ, Morton CL, Lee RE, Damodaran K, Beroza P, Danks MK, and Potter PM. Discovery of Novel Selective Inhibitors of Human Intestinal Carboxylesterase for the Amelioration of Irinotecan-Induced Diarrhea: Synthesis, Quantitative Structure-Activity Relationship Analysis, and Biological Activity. Mol Pharmacol 2004; 65:1336–1343

    Article  PubMed  CAS  Google Scholar 

  • Wipf P, and Li W. Prodrug of Ara-C. Drugs Future 1994; 19:49–54

    Google Scholar 

  • Workman P. New Drugs and Novel Agents. Curr Opin Oncol 1989; 1:213–221

    PubMed  CAS  Google Scholar 

  • Xie M, Yang D, Liu, L, Xue B, and Yan, B. Human and Rodent Carboxylesterases: Immunorelatedness, Overlapping Substrate Specificity, Differential Sensitivity to Serine Enzyme Inhibitors, and Tumor-related Expression. Drug Metab Disp 2002; 30:541–547

    Article  CAS  Google Scholar 

  • Xu H, Gouras GK, Greenfield JP, Vincent B, Naslund J, Mazzarelli L, Fried G, Jovanovic JN, Seeger M, Relkin NR, Liao F, Checler F, Buxbaum JD, Chait BT, Thinakaran G, Sisodia SS, Wang R, Greengard P, and Gandy S. Estrogen Reduces Neuronal Generation of Alzheimer Beta-Amyloid Peptides. Nat Med 1998; 4:447–451

    Article  PubMed  CAS  Google Scholar 

  • Yalkowsky SH. Techniques of Solubilization of Drugs. Marcel Dekker, NY, 1981

    Google Scholar 

  • Yasar U, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl ML, and Eliasson E. Role of 2C9 Polymorphism in Losaran Oxidation. Drug Metab Disp 2001; 29:1051–1056

    CAS  Google Scholar 

  • Zamek-Gliszczynski MJ, and Brouwer KLR. In Vitro Models for Estimating Hepatobiliary Clearance. In: Borchardt RT, Kerns EH, Lipinski, CA, Thakker, DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection: AAPS Press; Arlington, VA 2004; 259–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Yanni, S., Thakker, D.R. (2007). Prodrugs: Absorption, Distribution, Metabolism, Excretion (ADME) Issues. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_29

Download citation

Publish with us

Policies and ethics