Skip to main content
Log in

Floxuridine Amino Acid Ester Prodrugs: Enhancing Caco-2 Permeability and Resistance to Glycosidic Bond Metabolism

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to synthesize amino acid ester prodrugs of 5-fluoro-2′-deoxyuridine (floxuridine) to enhance intestinal absorption and resistance to glycosidic bond metabolism.

Methods

Amino acid ester prodrugs were synthesized and examined for their hydrolytic stability in human plasma, in Caco-2 cell homogenates, and in the presence of thymidine phosphorylase. Glycyl-l-sarcosine uptake inhibition and direct uptake studies with HeLa/PEPT1 cells [HeLa cells overexpressing oligopeptide transporter (PEPT1)] were conducted to determine PEPT1-mediated transport and compared with permeability of the prodrugs across Caco-2 monolayers.

Results

Isoleucyl prodrugs exhibited the highest chemical and enzymatic stability. The prodrugs enhanced the stability of the glycosidic bond of floxuridine. Thymidine phosphorylase rapidly cleaved floxuridine to 5-fluorouracil, whereas with the prodrugs no detectable glycosidic bond cleavage was observed. The 5′-l-isoleucyl and 5′-l-valyl monoester prodrugs exhibited 8- and 19-fold PEPT1-mediated uptake enhancement in HeLa/PEPT1 cells, respectively. Uptake enhancement in HeLa/PEPT1 cells correlated highly with Caco-2 permeability for all prodrugs tested. Caco-2 permeability of 5′-l-isoleucyl and 5′-l-valyl prodrugs was 8- to 11-fold greater compared with floxuridine.

Conclusions

Amino acid ester prodrugs such as isoleucyl floxuridine that exhibit enhanced Caco-2 transport and slower rate of enzymatic activation to parent, and that are highly resistant to metabolism by thymidine phosphorylase may improve oral delivery and therapeutic index of floxuridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HeLa/PEPT1:

HeLa cells overexpressing PEPT1

PEPT1:

oligopeptide transporter

References

  1. T. Kawaguchi M. Saito Y. Suzuki N. Nambu T. Nagai (1985) ArticleTitleSpecificity of esterases and structure of prodrug esters. II. Hydrolytic regeneration behavior of 5-fluoro-2′-deoxyuridine (FUdR) from 3′,5′-diesters of FUdR with rat tissue homogenates and plasma in relation to their antitumor activity Chem. Pharm. Bull. (Tokyo) 33 1652–1659

    Google Scholar 

  2. Y. Nishizawa J. E. Casida (1965) ArticleTitle3′,5′-Diesters of 5-fluoro-2′-deoxyuridine: synthesis and biological activity Biochem. Pharmacol. 14 1605–1619 Occurrence Handle10.1016/0006-2952(65)90015-8 Occurrence Handle4222443

    Article  PubMed  Google Scholar 

  3. S. C. Tobias R. F. Borch (2001) ArticleTitleSynthesis and biological studies of novel nucleoside phosphoramidate prodrugs J. Med. Chem. 44 4475–4480 Occurrence Handle10.1021/jm010337r Occurrence Handle11728193

    Article  PubMed  Google Scholar 

  4. Y. Wei Y. Yan D. Pei B. Gong (1998) ArticleTitleA photoactivated prodrug Bioorg. Med. Chem. Lett. 8 2419–2422 Occurrence Handle10.1016/S0960-894X(98)00437-5 Occurrence Handle9873553

    Article  PubMed  Google Scholar 

  5. B. S. Vig P. J. Lorenzi S. Mittal C. P. Landowski H. C. Shin H. I. Mosberg J. M. Hilfinger G. L. Amidon (2003) ArticleTitleAmino acid ester prodrugs of floxuridine: synthesis and effects of structure, stereochemistry, and site of esterification on the rate of hydrolysis Pharm. Res. 20 1381–1388 Occurrence Handle10.1023/A:1025745824632 Occurrence Handle14567631

    Article  PubMed  Google Scholar 

  6. C. P. Landowski B. S. Vig X. Song G. L. Amidon (2005) ArticleTitleTargeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs Mol. Cancer Ther. 4 659–667 Occurrence Handle15827340

    PubMed  Google Scholar 

  7. J. A. Laar Particlevan Y. M. Rustum S. P. Ackland C. J. Groeningen Particlevan J. Peters (1998) ArticleTitleComparison of 5-fluoro-2′-deoxyuridine with 5-fluorouracil and their role in the treatment of colorectal cancer Eur. J. Cancer 34 296–306 Occurrence Handle10.1016/S0959-8049(97)00366-3 Occurrence Handle9640213

    Article  PubMed  Google Scholar 

  8. G. D. Birnie H. Kroeger C. Heidelberger (1963) ArticleTitleStudies of fluorinated pyrimidines. XVIII. The degradation of 5-fluoro-2′-deoxyuridine and related compounds by nucleoside phosphorylase Biochemistry 13 566–572 Occurrence Handle10.1021/bi00903a031

    Article  Google Scholar 

  9. R. G. Moranand C. Heidelberger (1979) ArticleTitleDeterminants of 5-fluorouracil sensitivity in human tumors Bull. Cancer 66 79–83 Occurrence Handle420950

    PubMed  Google Scholar 

  10. K. L. Mukherjee J. Boohar D. Wentland F. J. Ansfield C. Heidelberger (1963) ArticleTitleStudies of fluorinated pyrimidines. XVI. Metabolism of 5-fluorouracil-2-C14 and 5-fluoro-2′-deoxyuridine-2-C14 in cancer patients Cancer Res. 23 49–66

    Google Scholar 

  11. N. K. Chaudhuri K. L. Mukherjee C. Heidelberger (1959) ArticleTitleStudies on fluorinated pyrimidines. VII. The degradative pathway Biochem. Pharmacol. 1 328–341 Occurrence Handle10.1016/0006-2952(59)90121-2

    Article  Google Scholar 

  12. E. Harbers N. K. Chaudhuri C. Heidelberger (1959) ArticleTitleStudies on fluorinated pyrimidines. VIII. Further biochemical and metabolic investigations J. Biol. Chem. 234 1255–1262 Occurrence Handle13654358

    PubMed  Google Scholar 

  13. F. Kanzawa A. Hoshi K. Kuretani M. Saneyoshi T. Kawaguchi (1981) ArticleTitleAntitumor activity of 3′,5′-diesters of 5-fluoro-2′-deoxyuridine against murine leukemia L1210 cells Cancer Chemother. Pharmacol. 6 19–23 Occurrence Handle10.1007/BF00253005 Occurrence Handle6456083

    Article  PubMed  Google Scholar 

  14. C. Fletcher B. Bean (1985) ArticleTitleEvaluation of oral acyclovir therapy Drug Intel. Clin. Pharm. 19 518–524

    Google Scholar 

  15. L. M. Beauchamp G. F. Orr P. Miranda Particlede T. Burnette T. A. Kernitsy (1992) ArticleTitleAmino acid ester prodrugs of acyclovir Antivir. Chem. Chemother. 3 157–164

    Google Scholar 

  16. H. Han R. L. Vrueh Particlede J. K. Rhie K. M. Covitz P. L. Smith C. P. Lee D. M. Oh W. Sadee G. L. Amidon (1998) ArticleTitle5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter Pharm. Res. 15 1154–1159 Occurrence Handle10.1023/A:1011919319810 Occurrence Handle9706043

    Article  PubMed  Google Scholar 

  17. M. Sugawara W. Huang Y. J. Fei F. H. Leibach V. Ganapathy M. E. Ganapathy (2000) ArticleTitleTransport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2 J. Pharm. Sci. 89 781–789 Occurrence Handle10.1002/(SICI)1520-6017(200006)89:6<781::AID-JPS10>3.0.CO;2-7 Occurrence Handle10824137

    Article  PubMed  Google Scholar 

  18. H. C. Shin C. P. Landowski G. L. Amidon (2003) Transporters in the GI tract L. H. Waterbeemd ParticleVan de H. Lennernäs P. Artursson (Eds) Drug Bioavailability/Estimation of Solubility, Permeability and Absorption (Series: Methods and Principles in Medicinal Chemistry) Vol. 18 Wiley Weinheim, Germany 245–287

    Google Scholar 

  19. C. P. Hsu J. M. Hilfinger E. Walter H. P. Merkle B. J. Roessler G. L. Amidon (1998) ArticleTitleOverexpression of human intestinal oligopeptide transporter in mammalian cells via adenoviral transduction Pharm. Res. 15 1376–1381 Occurrence Handle10.1023/A:1011993303397 Occurrence Handle9755888

    Article  PubMed  Google Scholar 

  20. H. K. Han D. M. Oh G. L. Amidon (1998) ArticleTitleCellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter Pharm. Res. 15 1382–1386 Occurrence Handle10.1023/A:1011945420235 Occurrence Handle9755889

    Article  PubMed  Google Scholar 

  21. J. Gao E. D. Hugger M. S. Beck-Westermeyer R. T. Borchardt (2000) Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers S. J. Enna M. Williams J. W. Ferkany T. Kenakin R. D. Porsolt J. P. Sullivan (Eds) Current Protocols in Pharmacology Wiley New York 721–723

    Google Scholar 

  22. S. Weller M. R. Blum M. Doucette T. Burnette D. M. Cederberg P. Miranda Particlede M. L. Smiley (1993) ArticleTitlePharmacokinetics of the acyclovir pro-drug valaciclovir after escalating single- and multiple-dose administration to normal volunteers Clin. Pharmacol. Ther. 54 595–605 Occurrence Handle8275615

    PubMed  Google Scholar 

  23. M. E. Ganapathy W. Huang H. Wang V. Ganapathy F. H. Leibach (1998) ArticleTitleValacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2 Biochem. Biophys. Res. Commun. 246 470–475 Occurrence Handle10.1006/bbrc.1998.8628 Occurrence Handle9610386

    Article  PubMed  Google Scholar 

  24. T. N. Faria J. K. Timoszyk T. R. Stouch B. S. Vig C. P. Landowski G. L. Amidon C. D. Weaver D. A. Wall R. L. Smith (2004) ArticleTitleA novel high-throughput pept1 transporter assay differentiates between substrates and antagonists Mol. Pharm. 1 67–76 Occurrence Handle10.1021/mp034001k Occurrence Handle15832502

    Article  PubMed  Google Scholar 

  25. K. Sawada T. Terada H. Saito Y. Hashimoto K. I. Inui (1999) ArticleTitleRecognition of l-amino acid ester compounds by rat peptide transporters PEPT1 and PEPT2 J. Pharmacol. Exp. Ther. 291 705–709 Occurrence Handle10525090

    PubMed  Google Scholar 

  26. H. C. Shin C. P. Landowski D. Sun B. S. Vig I. Kim S. Mittal M. Lane G. Rosania J. C. Drach G. L. Amidon (2003) ArticleTitleFunctional expression and characterization of a sodium-dependent nucleoside transporter hCNT2 cloned from human duodenum Biochem. Biophys. Res. Commun. 307 696–703 Occurrence Handle10.1016/S0006-291X(03)01259-2 Occurrence Handle12893280

    Article  PubMed  Google Scholar 

  27. D. Sun H. Lennernas L. S. Welage J. L. Barnett C. P. Landowski D. Foster D. Fleisher K. D. Lee G. L. Amidon (2002) ArticleTitleComparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs Pharm. Res. 19 1400–1416 Occurrence Handle10.1023/A:1020483911355 Occurrence Handle12425456

    Article  PubMed  Google Scholar 

  28. P. W. Woodman A. M. Sarrif C. Heidelberger (1980) ArticleTitleSpecificity of pyrimidine nucleoside phosphorylases and the phosphorolysis of 5-fluoro-2′-deoxyuridine Cancer Res. 40 507–511 Occurrence Handle6451286

    PubMed  Google Scholar 

  29. R. A. Norman S. T. Barry M. Bate J. Breed J. G. Colls R. J. Ernill R. W. Luke C. A. Minshull M. S. McAlister E. J. McCall H. H. McMiken D. S. Paterson D. Timms J. A. Tucker R. A. Pauptit (2004) ArticleTitleCrystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor Structure (Camb.) 12 75–84 Occurrence Handle10.1016/j.str.2003.11.018

    Article  Google Scholar 

  30. E. M. Bennett C. Li P. W. Allan W. B. Parker S. E. Ealick (2003) ArticleTitleStructural basis for substrate specificity of Escherichia coli purine nucleoside phosphorylase J. Biol. Chem. 278 47110–47118 Occurrence Handle10.1074/jbc.M304622200 Occurrence Handle12937174

    Article  PubMed  Google Scholar 

  31. I. Kim X. Song B. S. Vig S. Mittal H. C. Shin P. J. Lorenzi G. L. Amidon (2004) ArticleTitleA novel nucleoside prodrug activating enzyme: substrate specificity of biphenyl hydrolase-like protein Mol. Pharm. 1 117–127 Occurrence Handle10.1021/mp0499757 Occurrence Handle15832508

    Article  PubMed  Google Scholar 

  32. S. Fukushima T. Kawaguchi M. Nishida K. Juni Y. Yamashita M. Takahashi M. Nakano (1987) ArticleTitleSelective anticancer effects of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine, a lipophilic prodrug of 5-fluoro-2′-deoxyuridine, dissolved in an oily lymphographic agent on hepatic cancer of rabbits bearing VX-2 tumor Cancer Res. 47 1930–1934 Occurrence Handle3028618

    PubMed  Google Scholar 

  33. Z. Xia L. I. Wiebe G. G. Miller E. E. Knaus (1999) ArticleTitleSynthesis and biological evaluation of butanoate, retinoate, and bis(2,2,2-trichloroethyl)phosphate derivatives of 5-fluoro-2′-deoxyuridine and 2′,5-difluoro-2′-deoxyuridine as potential dual action anticancer prodrugs Arch. Pharm. (Weinheim) 332 286–294 Occurrence Handle10.1002/(SICI)1521-4184(19998)332:8<286::AID-ARDP286>3.3.CO;2-0

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grant NIGMD-1R01GM 37188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landowski, C.P., Song, X., Lorenzi, P.L. et al. Floxuridine Amino Acid Ester Prodrugs: Enhancing Caco-2 Permeability and Resistance to Glycosidic Bond Metabolism. Pharm Res 22, 1510–1518 (2005). https://doi.org/10.1007/s11095-005-6156-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6156-9

Key Words

Navigation