Skip to main content

Sarcoma

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Sarcomas most commonly occur in the muscles, bones, fat, and connective tissues. These tumors constitute approximately 1% of cancers in adults and about 20% of pediatric cancer. The American Joint Committee on Cancer (AJCC) criteria is often used clinically for staging soft tissue sarcoma patients. Bone tumor staging follows the schemes utilized for other tumors. Adverse prognostic factors include deep tumor location, largest dimension >5 cm, locally recurrent disease, proximal lower extremity site, and presence of metastasis.

Imaging studies—including plain films, chest x-ray, CT with and without contrast, MRI, and [18F]FDG PET—are used in combination to stage and restage sarcoma patients. Serial imaging studies, especially [18F]FDG PET scans, can identify treatment response to neoadjuvant chemo- and radiation therapy. The bone scan with 99mTc-MDP is still routinely used because of its sensitivity in detection of bone metastases and occasionally identify metastatic lesions in soft tissues. 18F-Fluoride is increasingly being used as a sensitive bone scanning agent for metastatic surveys for sarcomas.

[18F]FDG PET/CT can reliably distinguish low-grade from high-grade soft tissue sarcoma. Additionally, special features and [18F]FDG uptake are related to specific histologic types. Moreover, by identifying areas of increased [18F]FDG uptake within a lesion, [18F]FDG PET can be helpful to localize a site for diagnostic biopsy. [18F]FDG PET has been used for tumor staging identifying bone and soft tissue metastases and nodal metastases. A high-resolution contrast chest CT is preferred to visualize small lung metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14:1679–89.

    PubMed  CAS  Google Scholar 

  2. Gadgeel SM, Harlan LC, Zeruto CA, Osswald M, Schwartz AG. Patterns of care in a population-based sample of soft tissue sarcoma patients in the United States. Cancer. 2009;115:2744–54.

    Article  PubMed  Google Scholar 

  3. Salas S, Stoeckle E, Collin F, et al. Superficial soft ­tissue sarcomas (S-STS): a study of 367 patients from the French Sarcoma Group (FSG) database. Eur J Cancer. 2009;45:2091–102.

    Article  PubMed  Google Scholar 

  4. Engellau J, Bendahl PO, Persson A, et al. Improved prognostication in soft tissue sarcoma: independent information from vascular invasion, necrosis, growth pattern, and immunostaining using whole-tumor sections and tissue microarrays. Hum Pathol. 2005;36:994–1002.

    Article  PubMed  CAS  Google Scholar 

  5. Eary JF. PET-CT and SPECT-CT of malignant bone tumors and PET and PET-CT in soft tissue sarcomas. In: von Schulthess GK, editor. Molecular anatomic imaging: PET-CT and SPECT-CT ­integrated modality imaging. 2nd ed. Schmid DT, CD-ROM editor. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 443–9, 456-67.

    Google Scholar 

  6. Coley HM, Verrill MW, Gregson SE, Odell DE, Fisher C, Judson IR. Incidence of P-glycoprotein overexpression and multidrug resistance (MDR) reversal in adult soft tissue sarcoma. Eur J Cancer. 2000;36:881–8.

    Article  PubMed  CAS  Google Scholar 

  7. Komdeur R, Plaat BE, Hoekstra HJ, et al. Expression of P-glycoprotein, multidrug resistance-associated protein 1, and lung resistance-related protein in human soft tissue sarcomas before and after hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan. Cancer. 2001;91:1940–8.

    Article  PubMed  CAS  Google Scholar 

  8. Komdeur R, Plaat BE, van der Graaf WT, et al. Expression of multidrug resistance proteins, P-gp, MRP1 and LRP, in soft ­tissue sarcomas analysed according to their histological type and grade. Eur J Cancer. 2003;39:909–16.

    Article  PubMed  CAS  Google Scholar 

  9. Komdeur R, Molenaar WM, Zwart N, Hoekstra HJ, van den Berg E, van der Graaf WT. Multidrug resistance proteins in primary and metastatic soft-tissue sarcomas: down-regulation of P-glycoprotein during metastatic progression. Anticancer Res. 2004;24:291–5.

    PubMed  CAS  Google Scholar 

  10. Oda Y, Saito T, Tateishi N, et al. ATP-binding cassette superfamily transporter gene expression in human soft tissue sarcomas. Int J Cancer. 2005;114:854–62.

    Article  PubMed  CAS  Google Scholar 

  11. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  PubMed  CAS  Google Scholar 

  12. Coindre JM, Terrier P, Guillou L, et al. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer. 2001;91:1914–26.

    Article  PubMed  CAS  Google Scholar 

  13. Deyrup AT, Weiss SW. Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology. 2006;48:42–50.

    Article  PubMed  CAS  Google Scholar 

  14. Wunder JS, Healey JH, Davis AM, Brennan MF. A comparison of staging systems for localized extremity soft tissue sarcoma. Cancer. 2000;88:2721–30.

    Article  PubMed  CAS  Google Scholar 

  15. International Union Against Cancer, Spiessl B, Beahrs OH, Hermanek P, Hutter RVP, Scheibe O, Sobin LH, Wagner G, editors. TNM Atlas: Illustrated guide to the TNM/pTNM classification of malignant tumours. 3rd ed., 2nd rev. Berlin: Springer; 1992.

    Google Scholar 

  16. Kim MS, Lee SY, Lee TR, et al. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcoma. Ann Oncol. 2009;20:955–60.

    Article  PubMed  CAS  Google Scholar 

  17. Antunes M, Bernardo J, Salete M, Prieto D, Eugénio L, Tavares P. Excision of pulmonary metastases of osteogenic sarcoma of the limbs. Eur J Cardiothorac Surg. 1999;15:592–6.

    Article  PubMed  CAS  Google Scholar 

  18. Iagaru A, Goris ML. Rhabdomyosarcoma diffusely metastatic to the bone marrow: suspicious findings on 99mTc-MDP bone scintigraphy confirmed by 18F-18 FDG PET/CT and bone marrow biopsy. Eur J Nucl Med Mol Imaging. 2008;35:1746.

    Article  PubMed  Google Scholar 

  19. Goto Y, Ihara K, Kawauchi S, Ohi R, Sasaki K, Kawai S. Clinical significance of thallium-201 scintigraphy in bone and soft tissue tumors. J Orthop Sci. 2002;7:304–12.

    Article  PubMed  Google Scholar 

  20. McCarville MB, Barton EH, Cameron JR, et al. The cause and clinical significance of central tumor photopenia on thallium scintigraphy of pediatric osteosarcoma of the extremity. AJR Am J Roentgenol. 2007;188:572–8.

    Article  PubMed  Google Scholar 

  21. Eary JF, Conrad EU, Bruckner JD, Folpe A, Hunt KJ, Mankoff DA, Howlett AT. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res. 1998;4:1215–20.

    PubMed  CAS  Google Scholar 

  22. Nieweg OE, Pruim J, van Ginkel RJ, et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med. 1996;37:257–61.

    PubMed  CAS  Google Scholar 

  23. Griffeth LK, Dehdashti F, McGuire AH, McGuire DJ, Perry DJ, Moerlein SM, Siegel BA. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d-glucose. Radiology. 1992;182:185–94.

    PubMed  CAS  Google Scholar 

  24. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973–9.

    Article  PubMed  Google Scholar 

  25. Evilevitch V, Weber WA, Tap WD, et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2008;14:715–20.

    Article  PubMed  CAS  Google Scholar 

  26. Benjamin RS, Choi H, Macapinlac HA, et al. We should desist using RECIST, at least in GIST. J Clin Oncol. 2007;25:1760–4.

    Article  PubMed  Google Scholar 

  27. Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist. 2008;13 Suppl 2:32–40.

    Article  PubMed  Google Scholar 

  28. Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  PubMed  CAS  Google Scholar 

  29. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med. 2006;47:1059–66.

    PubMed  CAS  Google Scholar 

  30. Benz MR, Allen-Auerbach MS, Eilber FC, et al. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med. 2008;49:1579–84.

    Article  PubMed  Google Scholar 

  31. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.

    PubMed  CAS  Google Scholar 

  32. Jerusalem G, Belhocine TZ. Metabolic monitoring of chemosensitivity with 18FDG PET. Methods Mol Med. 2005;111:417–40.

    PubMed  CAS  Google Scholar 

  33. Larson SM, Erdi Y, Akhurst T, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2:159–71.

    Article  PubMed  Google Scholar 

  34. Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT and in-line PET/CT in patients with gastrointestinal stromal tumours: long-term outcome of treatment with imatinib mesylate. Eur J Nucl Med Mol Imaging. 2005;32:153–62.

    Article  PubMed  CAS  Google Scholar 

  35. Stroobants S, Goeminne J, Seegers M, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003;39:2012–20.

    Article  PubMed  CAS  Google Scholar 

  36. Van den Abbeele AD, Badawi RD. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestical stromal tumors (GISTs). Eur J Cancer. 2002;38 Suppl 5:S60–5.

    Article  PubMed  Google Scholar 

  37. Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med. 2004;45:357–65.

    PubMed  CAS  Google Scholar 

  38. Gayed I, Vu Y, Iyer R, Johnson M, Macapinlac H, Swanston N, Podoloff D. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med. 2004;45:17–21.

    PubMed  CAS  Google Scholar 

  39. Jager PL, Gietma JA, van der Graaf WT. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun. 2004;25:433–8.

    Article  PubMed  CAS  Google Scholar 

  40. McAuliffe JC, Hunt KK, Lazar AJ, et al. A randomized, phase II study of preoperative plus postoperative imatinib in GIST: evidence of rapid radiographic response and temporal induction of tumor cell apoptosis. Ann Surg Oncol. 2009;16:910–9.

    Article  PubMed  Google Scholar 

  41. Blay JY, Bonvalot S, Casali P, et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol. 2005;16:566–78.

    Article  PubMed  Google Scholar 

  42. Schuetze SM. Imaging and response in soft tissue sarcomas. Hematol Oncol Clin North Am. 2005;19:471–87. v.

    Article  PubMed  Google Scholar 

  43. Schuetze SM. Utility of positron emission tomography in sarcomas. Curr Opin Oncol. 2006;18:369–73.

    Article  PubMed  Google Scholar 

  44. Hicks RJ. Functional imaging techniques for evaluation of sarcomas. Cancer Imaging. 2005;5:58–65.

    Article  PubMed  Google Scholar 

  45. Khamly KK, Hicks RJ, McArthur GA, Thomas DM. The promise of PET in clinical management and as a sensitive test for drug ­cytotoxicity in sarcomas. Expert Rev Mol Diagn. 2008;8:105–19.

    Article  PubMed  CAS  Google Scholar 

  46. Toner GC, Hicks RJ. PET for sarcomas other than gastrointestinal stromal tumors. Oncologist. 2008;13 Suppl 2:22–6.

    Article  PubMed  Google Scholar 

  47. Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU, Eary JF. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer. 2005;103:339–48.

    Article  PubMed  Google Scholar 

  48. Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad 3rd EU, Eary JF. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23:8828–34.

    Article  PubMed  Google Scholar 

  49. Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med. 1999;40:1637–43.

    PubMed  CAS  Google Scholar 

  50. Sato J, Yanagawa T, Dobashi Y, Yamaji T, Takagishi K, Watanabe H. Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis. 2008;25:427–35.

    Article  PubMed  Google Scholar 

  51. Ye Z, Zhu J, Tian M, Zhang H, Zhan H, Zhao C, Yang D, Li W, Lin N. Response of osteogenic sarcoma to neoadjuvant therapy: evaluated by 18F-FDG-PET. Ann Nucl Med. 2008;22:475–80.

    Article  PubMed  Google Scholar 

  52. Hawkins DS, Rajendran JG, Conrad 3rd EU, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer. 2002;94:3277–84.

    Article  PubMed  CAS  Google Scholar 

  53. Franzius C, Schober O. Assessment of therapy response by FDG PET in pediatric patients. Q J Nucl Med. 2003;47:41–5.

    PubMed  CAS  Google Scholar 

  54. McCarville MB, Christie R, Daw NC, Spunt SL, Kaste SC. PET/CT in the evaluation of childhood sarcomas. AJR Am J Roentgenol. 2005;184:1293–304.

    PubMed  Google Scholar 

  55. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med. 2008;49 Suppl 2:129S–48.

    Article  PubMed  CAS  Google Scholar 

  56. Rajendran JG, Wilson DC, Conrad EU, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  PubMed  CAS  Google Scholar 

  57. Tatum JL, Kelloff GJ, Gillies RJ, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol. 2006;82:699–757.

    Article  PubMed  CAS  Google Scholar 

  58. Kelloff GJ, Krohn KA, Larson SM, et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res. 2005;11:7967–85.

    Article  PubMed  CAS  Google Scholar 

Suggested Reading

  • Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14:1679–89.

    PubMed  CAS  Google Scholar 

  • Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  PubMed  CAS  Google Scholar 

  • Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist. 2008;13 Suppl 2:32–40.

    Article  PubMed  Google Scholar 

  • Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11:2785–808.

    Article  PubMed  CAS  Google Scholar 

  • Kelloff GJ, Krohn KA, Larson SM, et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res. 2005;11:7967–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet F. Eary MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eary, J.F., Conrad, E.U. (2013). Sarcoma. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics