Skip to main content

Additive Processes for Polymeric Materials

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

Abstract

Polymers are an increasingly important MEMS material. They are available in diverse forms and possess material properties not found in more traditional microfabrication materials originating from the integrated circuit industry. These include, for example, improved fracture strength, low Young’s modulus, and high elongation. Many polymers also exhibit biocompatibility and chemical inertness which are desirable in challenging biological or chemical applications. Furthermore, low material and processing costs present interesting possibilities in MEMS both in terms of fabrication of novel research devices and mass production of inexpensive products. A variety of traditional and nontraditional processing approaches exists to manipulate polymeric materials as substrates, coatings, and sacrificial or structural layers in MEMS devices. A wide variety of polymer types and classifications exists (e.g., elastomers, epoxies, conductive polymers, hydrogels, thermosets, thermoplastics, etc.); it is the combination of material properties, processing conditions, and intended use (e.g., substrate, coating, sacrificial layer, or structural layer) that govern the selection of appropriate polymer type for a particular application. Several common MEMS polymer materials and their fabrication processes are reviewed here. The reader is also referred to Chapters 7, 8, and 9 for more in-depth discussions on wet/dry etching and lithography processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Gelorme, R.J. Cox, S.A.R. Gutierrez: Photoresist composition and printed circuit boards and packages made therewith, Patent No. 4882245 (Nov. 21, 1989)

    Google Scholar 

  2. K.Y. Lee, N. LaBianca, S.A. Rishton et al.: Micromachining applications of a high resolution ultrathick photoresist, J. Vac. Sci. Technol. B 13, 3012–3016 (1995)

    Google Scholar 

  3. M. Despont, H. Lorenz, N. Fahrni et al.: High-aspect-ratio, ultrathick, negative-tone near-uv photoresist for MEMS applications. Proceedings of the IEEE Microelectromechanical Systems Conference, Nagoya, Japan, pp. 518–522 (1997)

    Google Scholar 

  4. J.M. Shaw, J.D. Gelorme, N.C. Labianca et al.: Negative photoresists for optical lithography, IBM J. Res. Dev. 41, 81–94 (1997)

    Google Scholar 

  5. N.C. LaBianca, J.D. Gelorme: High-aspect-ratio resist for thick-film applications. Proceedings of SPIE – The International Society for Optical Engineering, Santa Clara, CA, USA, pp. 846–852 (1995)

    Google Scholar 

  6. H. Lorenz, M. Despont, N. Fahrni et al.: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)

    Google Scholar 

  7. P. Abgrall, V. Conedera, H. Camon et al.: SU-8 as a structural material for labs-on-chips and microelectromechanical systems, Electrophoresis 28, 4539–4551 (2007)

    Google Scholar 

  8. L.J. Guerin, M. Bossel, M. Demierre et al.: Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic. Technical Digest, International Conference on Solid State Sensors and Actuators, Chicago, IL, pp. 1419–1422 (1997)

    Google Scholar 

  9. B. Bohl, R. Steger, R. Zengerle et al.: Multi-layer SU-8 lift-off technology for microfluidic devices, J. Micromech. Microeng. 15, 1125–1130 (2005)

    Google Scholar 

  10. R.J. Jackman, T.M. Floyd, R. Ghodssi et al.: Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy, J. Micromech. Microeng. 11, 263–269 (2001)

    Google Scholar 

  11. A. Mata, A.J. Fleischman, S. Roy: Fabrication of multi-layer SU-8 microstructures, J. Micromech. Microeng. 16, 276–284 (2006)

    Google Scholar 

  12. C.H. Lin, G.B. Lee, B.W. Chang et al.: A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist, J. Micromech. Microeng. 12, 590–597 (2002)

    Google Scholar 

  13. S. Tuomikoski, S. Franssila: Free-standing SU-8 microfluidic chips by adhesive bonding and release etching, Sens. Act. A Phys. 120, 408–415 (2005)

    Google Scholar 

  14. H.K. Chang, Y.K. Kim: UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole, Sens. Act. A Phys. 84, 342–350 (2000)

    Google Scholar 

  15. M. Han, W. Lee, S.K. Lee et al.: 3D microfabrication with inclined/rotated UV lithography, Sens. Act. A Phys. 111, 14–20 (2004)

    Google Scholar 

  16. Y.K. Yoon, J.H. Park, M.G. Allen: Multidirectional UV lithography for complex 3-D MEMS structures, J. Microelectromech. Syst. 15, 1121–1130 (2006)

    Google Scholar 

  17. C. Cremers, F. Bouamrane, L. Singleton et al.: SU-8 as resist material for deep X-ray lithography, Microsyst. Technol. 7, 11–16 (2001)

    Google Scholar 

  18. A.L. Bogdanov, S.S. Peredkov: Use of SU-8 photoresist-for very high aspect ratio x-ray lithography, Microelectron. Eng. 53, 493–496 (2000)

    Google Scholar 

  19. C.G.K. Malek: SU8 resist for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS, Microelectron. J. 33, 101–105 (2002)

    Google Scholar 

  20. Y.J. Song, C.S.S.R. Kumar, J. Hormes: Fabrication of an SU-8 based microfluidic reactor on a PEEK substrate sealed by a ‘flexible semi-solid transfer’ (FST) process, J. Micromech. Microeng. 14, 932–940 (2004)

    Google Scholar 

  21. C. Kourouklis, T. Kohlmeier, H.H. Gatzen: The application of chemical-mechanical polishing for planarizing a SU-8/permalloy combination used in MEMS devices, Sens. Act. A Phys. 106, 263–266 (2003)

    Google Scholar 

  22. R. Feng, R.J. Farris: The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating, J. Mater. Sci. 37, 4795–4801 (2002)

    Google Scholar 

  23. R. Feng, R.J. Farris: Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings, J. Micromech. Microeng. 13, 80–88 (2003)

    Google Scholar 

  24. S. Jiguet, A. Bertsch, H. Hofmann et al.: SU8-silver photosensitive nanocomposite, Adv. Eng. Mater. 6, 719–724 (2004)

    Google Scholar 

  25. S. Jiguet, A. Bertsch, H. Hofmann et al.: Conductive SU8 photoresist for microfabrication, Adv. Funct. Mater. 15, 1511–1516 (2005)

    Google Scholar 

  26. N. Damean, B.A. Parviz, J.N. Lee et al.: Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems, J. Micromech. Microeng. 15, 29–34 (2005)

    Google Scholar 

  27. I.G. Foulds, M. Parameswaran: A planar self-sacrificial multilayer SU-8-based MEMS process utilizing a UV-blocking layer for the creation of freely moving parts, J. Micromech. Microeng. 16, 2109–2115 (2006)

    Google Scholar 

  28. J.M. Ruano-Lopez, M. Aguirregabiria, M. Tijero et al.: A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip, Sens. Act. B Chem. 114, 542–551 (2006)

    Google Scholar 

  29. S. Jiguet, A. Bertsch, M. Judelewicz et al.: SU-8 nanocomposite photoresist with low stress properties for microfabrication applications, Microelectron. Eng. 83, 1966–1970 (2006)

    Google Scholar 

  30. S. Jiguet, M. Judelewicz, S. Mischler et al.: Effect of filler behavior on nanocomposite SU8 photoresist for moving micro-parts, Microelectron. Eng. 83, 1273–1276 (2006)

    Google Scholar 

  31. S. Jiguet, M. Judelewicz, S. Mischler et al.: SU-8 nanocomposite coatings with improved tribological performance for MEMS, Surf. Coatings Technol. 201, 2289–2295 (2006)

    Google Scholar 

  32. J. Zhang, W.X. Zhou, M.B. Chan-Park et al.: Argon plasma modification of SU-8 for very high aspect ratio and dense copper electroforming, J. Electrochem. Soc. 152, C716–C721 (2005)

    Google Scholar 

  33. M. Nordstrom, R. Marie, M. Calleja et al.: Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication, J. Micromech. Microeng. 14, 1614–1617 (2004)

    Google Scholar 

  34. Y.L. Wang, J.H. Pai, H.H. Lai et al.: Surface graft polymerization of SU-8 for bio-MEMS applications, J. Micromech. Microeng. 17, 1371–1380 (2007)

    Google Scholar 

  35. Z. Gao, D.B. Henthorn, C.S. Kim: Enhanced wettability of a SU-8 photoresist through a photografting procedure for bioanalytical device applications, J. Micromech. Microeng. 18 (2008) (article number 045013)

    Google Scholar 

  36. S.L. Tao, K.C. Popat, J.J. Norman et al.: Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties, Langmuir 24, 2631–2636 (2008)

    Google Scholar 

  37. M. Joshi, N. Kale, R. Lal et al.: A novel dry method for surface modification of SU-8 for immobilization of biomolecules in bio-MEMS, Biosens. Bioelectron. 22, 2429–2435 (2007)

    Google Scholar 

  38. F.G. Tseng, K.H. Lin, H.T. Hsu et al.: A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection, Sens. Act. A Phys. 111, 107–117 (2004)

    Google Scholar 

  39. F. Walther, P. Davydovskaya, S. Zucher et al.: Stability of the hydrophilic behavior of oxygen plasma activated SU-8, J. Micromech. Microeng. 17, 524–531 (2007)

    Google Scholar 

  40. R.M. Wagterveld, C.W.J. Berendsen, S. Bouaidat et al.: Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8, Langmuir 22, 10904–10908 (2006)

    Google Scholar 

  41. N.J. Shirtcliffe, S. Aqil, C. Evans et al.: The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping, J. Micromech. Microeng. 14, 1384–1389 (2004)

    Google Scholar 

  42. B.A. Weisenberg, D.L. Mooradian: Hemocompatibility of materials used in microelectromechanical systems: Platelet adhesion and morphology in vitro, J. Biomed. Mater. Res. 60, 283–291 (2002)

    Google Scholar 

  43. G. Voskerician, M.S. Shive, R.S. Shawgo et al.: Biocompatibility and biofouling of MEMS drug delivery devices, Biomaterials 24, 1959–1967 (2003)

    Google Scholar 

  44. F. Ceyssens, Puers R: Creating multi-layered structures with freestanding parts in SU-8, J. Micromech. Microeng. 16, S19–S23 (2006)

    Google Scholar 

  45. Y.J. Chuang, F.G. Tseng, J.H. Cheng et al.: A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists, Sens. Actuators A Phys. 103, 64–69 (2003)

    Google Scholar 

  46. B.E.J. Alderman, C.M. Mann, D.P. Steenson et al.: Microfabrication of channels using an embedded mask in negative resist, J. Micromech. Microeng. 11, 703–705 (2001)

    Google Scholar 

  47. W.H. Wong, Pun EYB: Exposure characteristics and three-dimensional profiling of SU8C resist using electron beam lithography, J. Vac. Sci. Technol. B 19, 732–735 (2001)

    Google Scholar 

  48. H. Yu, U. Balogun, B. Li et al.: Building embedded microchannels using a single layered SU-8, and determining Young’s modulus using a laser acoustic technique, J. Micromech. Microeng. 14, 1576–1584 (2004)

    Google Scholar 

  49. J.A. van Kan, A.A. Bettiol, B.S. Wee et al.: Proton beam micromachining: A new tool for precision three-dimensional microstructures, Sens. Act. A Phys. 92, 370–374 (2001)

    Google Scholar 

  50. F.E.H. Tay, J.A. van Kan, F. Watt et al.: A novel micro-machining method for the fabrication of thick-film SU-8 embedded micro-channels, J. Micromech. Microeng. 11, 27–32 (2001)

    Google Scholar 

  51. A. Bertsch, H. Lorenz, P. Renaud: Combining Microstereolithography and Thick Resist UV Lithography for 3D Microfabrication, pp. 18–23 (Heidelberg, Germany, 1998)

    Google Scholar 

  52. A. Bertsch, H. Lorenz, P. Renaud: 3D microfabrication by combining microstereolithography and thick resist UV lithography, Sens. Act. A Phys. 73, 14–23 (1999)

    Google Scholar 

  53. H. Lorenz, M. Despont, N. Fahrni et al.: High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, Sens. Act. A Phys. 64, 33–39 (1998)

    Google Scholar 

  54. J. Zhang, K.L. Tan, G.D. Hong et al.: Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS, J. Micromech. Microeng. 11, 20–26 (2001)

    Google Scholar 

  55. S.J. Kim, H. Yang, K. Kim et al.: Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal, Electrophoresis 27, 3284–3296 (2006)

    Google Scholar 

  56. P.M. Dentinger, W.M. Clift, S.H. Goods: Removal of SU-8 photoresist for thick film applications, Microelectron. Eng. 61–2, 993–1000 (2002)

    Google Scholar 

  57. R. Turner, Y. Desta, K. Kelly et al.: Tapered LIGA HARMs, J. Micromech. Microeng. 13, 367–372 (2003)

    Google Scholar 

  58. L.A. Liew, W.G. Zhang, V.M. Bright et al.: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Act. A Phys. 89, 64–70 (2001)

    Google Scholar 

  59. R.K. Vestergaard, S. Bouwstra: Removable SU-8 mould with small feature size for electroplating compliant metal micro actuators. Technical Digest, International Conference on Solid State Sensors and Actuators, Sendai, Japan, pp. 480–483 (1999)

    Google Scholar 

  60. R.K. Vestergaard, S. Bouwstra: Electroplated compliant metal microactuators with small feature sizes using a removable SU-8 mould, Microsyst. Technol. 6, 214–217 (2000)

    Google Scholar 

  61. G. Hong, A.S. Holmes, M.E. Heaton: SU8 resist plasma etching and its optimisation, Microsyst. Technol. Micro- and Nanosyst. Inf. Storage Process. Syst. 10, 357–359 (2004)

    Google Scholar 

  62. M.K. Ghantasala, J.P. Hayes, E.C. Harvey et al.: Patterning, electroplating and removal of SU-8 moulds by excimer laser micromachining, J. Micromech. Microeng. 11, 133–139 (2001)

    Google Scholar 

  63. H. Lorenz, M. Despont, P. Vettiger et al.: Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist, Microsyst. Technol. 4, 143–146 (1998)

    Google Scholar 

  64. C.-H. Ho, K.-P. Chin, C.-R. Yang et al.: Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots, Sens. Act. A Phys. A102, 130–138 (2002)

    Google Scholar 

  65. S. Metz, S. Jiguet, A. Bertsch et al.: Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique, Lab Chip 4, 114–120 (2004)

    Google Scholar 

  66. L. Dellmann, S. Roth, C. Beuret et al.: Fabrication process of high aspect ratio elastic and SU-8 structures for piezoelectric motor applications, Sens. Act. A Phys. 70, 42–47 (1998)

    Google Scholar 

  67. V. Seidemann, J. Rabe, M. Feldmann et al.: SU8-micromechanical structures with in situ fabricated movable parts, Microsyst. Technol. 8, 348–350 (2002)

    Google Scholar 

  68. J. Zou, X.F. Wang, D. Bullen et al.: A mould-and-transfer technology for fabricating scanning probe microscopy probes, J. Micromech. Microeng. 14, 204–211 (2004)

    Google Scholar 

  69. T.Q. Truong, N.T. Nguyen: A polymeric piezoelectric micropump based on lamination technology, J. Micromech. Microeng. 14, 632–638 (2004)

    Google Scholar 

  70. J.H. Daniel, B. Krusor, R.B. Apte et al.: Micro-electro-mechanical system fabrication technology applied to large area x-ray image sensor arrays, J. Vac. Sci. Technol. A 19, 1219–1223 (2001)

    Google Scholar 

  71. N.T. Nguyen, T.Q. Truong, K.K. Wong et al.: Micro check valves for integration into polymeric microfluidic devices, J. Micromech. Microeng. 14, 69–75 (2004)

    Google Scholar 

  72. A. Johansson, M. Calleja, P.A. Rasmussen et al.: SU-8 cantilever sensor system with integrated readout, Sens. Act. A Phys. 123–124, 111–115 (2005)

    Google Scholar 

  73. V. Seidemann, S. Butefisch, S. Buttgenbach: Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers, Sens. Act. A Phys. 97–98, 457–461 (2002)

    Google Scholar 

  74. C. Luo, A. Govindaraju, J. Garra et al.: Releasing SU-8 structures using polystyrene as a sacrificial material, Sens. Act. A Phys. 114, 123–128 (2004)

    Google Scholar 

  75. J. Liu, B. Cai, J. Zhu et al.: A novel device of passive and fixed alignment of optical fiber, Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 10, 269–271 (2004)

    Google Scholar 

  76. P. Basset, A. Kaiser, D. Collard et al.: Process and realization of a three-dimensional gold electroplated antenna on a flexible epoxy film for wireless micromotion system, J. Vac. Sci. Technol. B 20, 1465–1470 (2002)

    Google Scholar 

  77. G. Kim, B. Kim, J. Brugger: All-photoplastic microstencil with self-alignment for multiple layer shadow-mask patterning, Sens. Act. A Phys. 107, 132–136 (2003)

    Google Scholar 

  78. V. Conedera, L. Salvagnac, N. Fabre et al.: Surface micromachining technology with two SU-8 structural layers and sol-gel, SU-8 or SiO2/sol-gel sacrificial layers, J. Micromech. Microeng. 17, N52–N57 (2007)

    Google Scholar 

  79. A. Liotard, F. Zamkotsian, V. Conedera et al.: Polymer-based micro deformable mirror for adaptive optics. Proceedings of SPIE. The International Society for Optical Engineering, San Jose, CA, p. 61130 (2006)

    Google Scholar 

  80. S. Mouaziz, G. Boero, R.S. Popovic et al.: Polymer-based cantilevers with integrated electrodes, J. Microelectromech. Syst. 15, 890–895 (2006)

    Google Scholar 

  81. N.T. Nguyen, S.S. Ho, C.L.N. Low: A polymeric microgripper with integrated thermal actuators, J. Micromech. Microeng. 14, 969–974 (2004)

    Google Scholar 

  82. M.C. Cheng, A.P. Gadre, J.A. Garra et al.: Dry release of polymer structures with anti-sticking layer, J. Vac. Sci. Technol. A 22, 837–841 (2004)

    Google Scholar 

  83. D. Haefliger, A. Boisen: Three-dimensional microfabrication in negative resist using printed masks, J. Micromech. Microeng. 16, 951–957 (2006)

    Google Scholar 

  84. M. Agirregabiria, F.J. Blanco, J. Berganzo et al.: Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps, Lab Chip 5, 545–552 (2005)

    Google Scholar 

  85. Z.C. Peng, Z.G. Ling, M. Tondra et al.: CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films, J. Microelectromech. Syst. 15, 708–716 (2006)

    Google Scholar 

  86. P. Abgrall, C. Lattes, V. Conederal et al.: A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films, J. Micromech. Microeng. 16, 113–121 (2006)

    Google Scholar 

  87. B.J. Kim, M. Liebau, J. Huskens et al.: A self-assembled monolayer-assisted surface microfabrication and release technique, Microelectron. Eng. 57–58, 755–760 (2001)

    Google Scholar 

  88. G.M. Kim, B. Kim, M. Liebau et al.: Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS, J. Microelectromech. Syst. 11, 175–181 (2002)

    Google Scholar 

  89. D.J. Strike, G.C. Fiaccabrino, M. Koudelka-Hep et al.: Enzymatic microreactor using Si, glass and EPON SU-8, Biomed. Microdev. 2, 175 (2000)

    Google Scholar 

  90. J. West, B. Karamata, B. Lillis et al.: Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab Chip 2, 224–230 (2002)

    Google Scholar 

  91. Gersborg-M. Hansen, A. Kristensen: Optofluidic third order distributed feedback dye laser, Appl. Phys. Lett. 89 (2006) (article number 103518)

    Google Scholar 

  92. B. Bilenberg, T. Nielsen, B. Clausen et al.: PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics, J. Micromech. Microeng. 14, 814–818 (2004)

    Google Scholar 

  93. E.W. Simoes, R. Furlan, R.E.B. Leminski et al.: Microfluidic oscillator for gas flow control and measurement, Flow Meas. Instrum. 16, 7–12 (2005)

    Google Scholar 

  94. K.B. Mogensen, J. El-Ali, A. Wolff et al.: Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems, Appl. Opt. 42, 4072–4079 (2003)

    Google Scholar 

  95. Y.M. Huang, M. Uppalapati, W.O. Hancock et al.: Microfabricated capped channels for biomolecular motor-based transport, IEEE Trans. Adv. Packaging 28, 564–570 (2005)

    Google Scholar 

  96. S. Arscott, P. Mounaix, D. Lippens: Substrate transfer process for InP-based heterostructure barrier varactor devices, J. Vac. Sci. Technol. B 18, 150–155 (2000)

    Google Scholar 

  97. C.T. Pan, H. Yang, S.C. Shen et al.: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)

    Google Scholar 

  98. F.J. Blanco, M. Agirregabiria, J. Garcia et al.: Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding, J. Micromech. Microeng. 14, 1047–1056 (2004)

    Google Scholar 

  99. P. Svasek, E. Svasek, B. Lendl et al.: Fabrication of miniaturized fluidic devices using SU-8 based lithography and low temperature wafer bonding, Sens. Act. A Phys. 115, 591–599 (2004)

    Google Scholar 

  100. S. Li, C.B. Freidhoff, R.M. Young et al.: Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8, J. Micromech. Microeng. 13, 732–738 (2003)

    Google Scholar 

  101. S. Tuomikoski, S. Franssila: Wafer-level bonding of MEMS structures with SU-8 epoxy photoresist, Phys. Scr. T114, 223–226 (2004)

    Google Scholar 

  102. A. Heeren, C.P. Luo, G. Roth et al.: Diffusion along microfluidic channels, Microelectron. Eng. 83, 1669–1672 (2006)

    Google Scholar 

  103. L. Cui, T. Zhang, H. Morgan: Optical particle detection integrated in a dielectrophoretic lab-on-a-chip, J. Micromech. Microeng. 12, 7–12 (2002)

    Google Scholar 

  104. B. Helbo, A. Kristensen, A. Menon: A micro-cavity fluidic dye laser, J. Micromech. Microeng. 13, 307–311 (2003)

    Google Scholar 

  105. J. Carlier, S. Arscott, V. Thomy et al.: Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis, J. Micromech. Microeng. 14, 619–624 (2004)

    Google Scholar 

  106. Y.T. Chen, D. Lee: A bonding technique using hydrophilic SU-8, J. Micromech. Microeng. 17, 1978–1984 (2007)

    Google Scholar 

  107. S. Charlot, A.M. Gue, J. Tasselli et al.: A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems, J. Micromech. Microeng. 18 (2008) (article number 017003)

    Google Scholar 

  108. J.D.L. Shapley, D.A. Barrow: Novel patterning method for the electrochemical production of etched silicon, Thin Solid Films 388, 134–137 (2001)

    Google Scholar 

  109. M. Aktary, M.O. Jensen, K.L. Westra et al.: High-resolution pattern generation using the epoxy novolak SU-8 2000 resist by electron beam lithography, J. Vac. Sci. Technol. B 21, L5–L7 (2003)

    Google Scholar 

  110. J. Zhang, M.B. Chan-Park, S.R. Conner: Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8, Lab Chip 4, 646–653 (2004)

    Google Scholar 

  111. M. Gaudet, J.C. Camart, L. Buchaillot et al.: Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm, Appl. Phys. Lett. 88 (2006) (article number 024107)

    Google Scholar 

  112. B. Eyre, J. Blosiu, D. Wiberg: Taguchi optimization for the processing of epon SU-8 resist. Proceedings of the IEEE Microelectromechanical Systems Conference, Heidelberg, Germany, pp. 218–222 (1998)

    Google Scholar 

  113. Ling Z-G, K. Lian, L. Jian: Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters. Proceedings of SPIE – The International Society for Optical Engineering, Santa Clara, CA, pp. 1019–1027 (2000)

    Google Scholar 

  114. J.D. Williams, W. Wang: Using megasonic development of SU-8 to yield ultra-high aspect ratio microstructures with UV lithography, Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 10, 694–698 (2004)

    Google Scholar 

  115. D. Bachmann, B. Schoberle, S. Kuhne et al.: Fabrication and characterization of folded SU-8 suspensions for MEMS applications, Sens. Act. A Phys. 130, 379–386 (2006)

    Google Scholar 

  116. H. Lorenz, M. Laudon, P. Renaud: Mechanical characterization of a new high-aspect-ratio near UV-photoresist, Microelectron. Eng. 41–42, 371–374 (1998)

    Google Scholar 

  117. D. Sameoto, S.H. Tsang, I.G. Foulds et al.: Control of the out-of-plane curvature in SU-8 compliant microstructures by exposure dose and baking times, J. Micromech. Microeng. 17, 1093–1098 (2007)

    Google Scholar 

  118. R. Ruhmann, G. Ahrens, A. Schuetz et al.: Reduction of internal stress in a SU-8-like negative tone photoresist for MEMS applications by chemical modification. Proceedings of SPIE – The International Society for Optical Engineering, Santa Clara, CA, pp. 502–510 (2001)

    Google Scholar 

  119. R. Lo, E. Meng: Integrated and reusable in-plane microfluidic interconnects, Sens. Act. B: Chem. 132, 531–539 (2008)

    Google Scholar 

  120. P. Abgrall, A.M. Gue: Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review, J. Micromech. Microeng. 17, R15–R49 (2007)

    Google Scholar 

  121. P. Mali, A. Sarkar, R. Lal: Facile fabrication of microfluidic systems using electron beam lithography, Lab Chip 6, 310–315 (2006)

    Google Scholar 

  122. J. Xie, Q. He, Y.-C. Tai et al.: Integrated electrospray chip for mass spectrometry. MicroTAS, Nara, Japan, pp. 709–711 (2002)

    Google Scholar 

  123. P.Y. Li, J. Shih, R. Lo et al.: An electrochemical intraocular drug delivery device, Sens. Act. A Phys. 143, 41–48 (2008)

    Google Scholar 

  124. E. L’Hostis, P.E. Michel, G.C. Fiaccabrino et al.: Microreactor and electrochemical detectors fabricated using Si and EPON SU-8, Sens. Act. B Chem. 64, 156–162 (2000)

    Google Scholar 

  125. S. Matsumoto, Y.C. Tai: A nL/min-scale valveless flow regulator for integrated micro chemical devices, JSME Int. J. Ser. B – Fluids Therm. Eng. 47, 528–533 (2004)

    Google Scholar 

  126. L.-Y. Chang, P.-Y. Li, L. Zhao et al.: Integrated flow sensing for focal biochemical stimulation. Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, Sanya, China, pp. 921–926 (2008)

    Google Scholar 

  127. J.H. Park, Y.K. Yoon, S.O. Choi et al.: Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery, IEEE Trans. Biomed. Eng. 54, 903–913 (2007)

    Google Scholar 

  128. S. Rajaraman, S.O. Choi, R.H. Shafer et al.: Microfabrication technologies for a coupled three-dimensional microelectrode, microfluidic array, J. Micromech. Microeng. 17, 163–171 (2007)

    Google Scholar 

  129. R.R. LeVier, M.C. Harrison, R.R. Cook et al.: What is silicone? J. Clin. Epidemiol. 48, 513–517 (1995)

    Google Scholar 

  130. M.M.G. Antonisse, J.F.J. Engbersen, D.N. Reinhoudt: Nitrate and Bicarbonate Selective CHEMFETs. Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Transducers, Stockholm, Sweden, pp. 867–869 (1995)

    Google Scholar 

  131. J.C. Lotters, W. Olthuis, P.H. Veltink et al.: Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer, J. Micromech. Microeng. 6, 52–54 (1996)

    Google Scholar 

  132. Z. Chu: Flexible package for a tactile sensor array. Proceedings of the 1996 National Sensor Conference, Delft, The Netherlands (1996)

    Google Scholar 

  133. R.E.G.V. Hal: Advanced Packaging of ISFETs, Design, Encapsulation and Bonding, University of Twente (1994)

    Google Scholar 

  134. D.J. Campbell, K.J. Beckman, C.E. Calderon et al.: Replication and compression of bulk surface structures with polydimethylsiloxane elastomer, J. Chem. Educ. 75, 537–541 (1999)

    Google Scholar 

  135. S.J. Clarson, J.A. Semlyen: Siloxane Polymers (Prentice Hall, Englewood Cliffs, NJ, 1993)

    Google Scholar 

  136. J.C. Lotters, W. Olthuis, P.H. Veltink et al.: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications, J. Micromech. Microeng. 7, 145–147 (1997)

    Google Scholar 

  137. ABCR: Research Chemicals and Metals Catalogue (ABCR, Karlsruhe, Germany, 1994)

    Google Scholar 

  138. J.C. Salamone: Polymeric Materials Encyclopedia (CRC Press, Rochester, NY, 1996)

    Google Scholar 

  139. D.W. van Krevelen, P.J. Hoftyzer: Properties of Polymers, Their Estimation and Correlation with Chemical Structure (Elsevier Scientific, Amsterdam, 1976)

    Google Scholar 

  140. J.E. Mark: Polymer Data Handbook (Oxford University Press, New York, NY, 1999)

    Google Scholar 

  141. J. Garra, T. Long, J. Currie et al.: Dry etching of polydimethylsiloxane for microfluidic systems, J. Vac. Sci. Technol. A Vac. Surf. Films 20, 975–982 (2002)

    Google Scholar 

  142. D. Armani, C. Liu, N. Aluru: Re-configurable fluid circuits by PDMS elastomer micromachining. Proceedings of IEEE, Micro Electro Mechanical Systems, Orlando, FL (1999)

    Google Scholar 

  143. M.C. Belanger, Y. Marois: Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review, J. Biomed. Mater. Res. 58, 467–477 (2001)

    Google Scholar 

  144. Y. Zhao, X. Zhang: Adaptation of flexible polymer fabrication to cellular mechanics study, Appl. Phys. Lett. 87 (2005) (article number 14410)

    Google Scholar 

  145. L.J. Lee: Polymer nanoengineering for biomedical applications, Ann. Biomed. Eng. 34, 75–88 (2006)

    Google Scholar 

  146. A. Mata, A.J. Fleischman, S. Roy: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7, 281–293 (2005)

    Google Scholar 

  147. M.R. VanLandingham, N.K. Chang, P.L. Drzal et al.: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing, J. Polym. Sci. B Polym. Phys. 43, 1794–1811 (2005)

    Google Scholar 

  148. C.C. White, M.R. Vanlandingham, P.L. Drzal et al.: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing, J. Polym. Sci. B Polym. Phys. 43, 1812–1824 (2005)

    Google Scholar 

  149. K.P. Menard: Dynamic Mechanical Analysis (CRC Press, Boca Raton, FL, 1999)

    Google Scholar 

  150. A. Chakravartula, K. Komvopoulos: Viscoelastic properties of polymer surfaces investigated by nanoscale dynamic mechanical analysis, Appl. Phys. Lett. 88 (2006) (article number 131901)

    Google Scholar 

  151. L. Cheng, X. Xia, W. Yu et al.: Flat-punch indentation of viscoelastic material, J. Polym. Sci. B Polym. Phys. 38, 10–22 (2000)

    Google Scholar 

  152. W.G. Knauss, W. Zhu: Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear, Mech. Time-Depend. Mater. 6, 231–269 (2002)

    Google Scholar 

  153. I.K. Lin, Y.M. Liao, Y. Liu et al.: Viscoelastic mechanical behavior of soft microcantilever-based force sensors, Appl. Phys. Lett. 93 (2008) (article number 251907)

    Google Scholar 

  154. M. Akay, S.N. Rollins, E. Riordan: Mechanical-behavior of sequential polyurethane poly(methyl methacrylate) interpenetrating polymer networks, Polymer 29, 37–42 (1988)

    Google Scholar 

  155. M. Wollerdorfer, H. Bader: Influence of natural fibres on the mechanical properties of biodegradable polymers, Ind. Crops Prod. 8, 105–112 (1998)

    Google Scholar 

  156. L.A. Majewski, M. Grell, S.D. Ogier et al.: A novel gate insulator for flexible electronics, Org. Electron. 4, 27–32 (2003)

    Google Scholar 

  157. Y.N. Xia, J.J. McClelland, R. Gupta et al.: Replica molding using polymeric materials: A practical step toward nanomanufacturing, Adv. Mater. 9, 147–149 (1997)

    Google Scholar 

  158. Patternable Silicones for Electronics, Product Data Sheet, Dow Corning, http://www.dowcorning.com/content/etronics/etronicspattern/

  159. Product information for Cyclotene, Dow Chemical, http://www.dow.com/cyclotene/index.htm

  160. W.S. Kim, R. Houbertz, T.H. Lee et al.: Effect of photoinitiator on photopolymerization of inorganic-organic hybrid polymers (ORMOCER (R)), J. Polym. Sci. B Polym. Phys. 42, 1979–1986 (2004)

    Google Scholar 

  161. J.H. Ward, R. Bashir, N.A. Peppas: Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques, J. Biomed. Mater. Res. 56, 351–360 (2001)

    Google Scholar 

  162. A.A.S. Bhagat, P. Jothimuthu, I. Papautsky: Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping, Lab Chip 7, 1192–1197 (2007)

    Google Scholar 

  163. H.L. Cong, T.R. Pan: Photopatternable conductive PDMS materials for microfabrication, Adv. Funct. Mater. 18, 1912–1921 (2008)

    Google Scholar 

  164. K. Tsougeni, A. Tserepi, E. Gogolides: Photosensitive poly(dimethylsiloxane) materials for microfluidic applications, Microelectron. Eng. 84, 1104–1108 (2007)

    Google Scholar 

  165. A. Kumar, G.M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)

    Google Scholar 

  166. R.E. Kirk, D.F. Othmer, J.I. Kroschwitz et al.: Encyclopedia of Chemical Technology (Wiley, New York, NY, 2007)

    Google Scholar 

  167. T.E. Creighton: Proteins: Structures and Molecular Properties (W.H. Freeman, New York, NY, 1993)

    Google Scholar 

  168. Y.N. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 551–575 (1998)

    Google Scholar 

  169. W. Sanger: Principles of Nucleic Acid Structure (Springer, New York, NY, 1986)

    Google Scholar 

  170. H. Ringsdorf, B. Schlarb, J. Venzmer: Molecular architecture and function of polymeric oriented systems – models for the study of organization, surface recognition, and dynamics of biomembranes, Angew. Chem. Int. Ed. Engl. 27, 113–158 (1988)

    Google Scholar 

  171. B.C. Wheeler, J.M. Corey, G.J. Brewer et al.: Microcontact printing for precise control of nerve cell growth in culture, J. Biomech. Eng. Trans. ASME 121, 73–78 (1999)

    Google Scholar 

  172. A. Bernard, J.P. Renault, B. Michel et al.: Microcontact printing of proteins, Adv. Mater. 12, 1067–1070 (2000)

    Google Scholar 

  173. D.J. Beebe, G.A. Mensing, Walker GM: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Google Scholar 

  174. S.C. Jakeway, A.J. de Mello, E.L. Russell: Miniaturized total analysis systems for biological analysis, Fresenius J. Anal. Chem. 366, 525–539 (2000)

    Google Scholar 

  175. Y.H. Kim, K.S. Shin, J.Y. Kang et al.: Poly(dimethylsiloxane)-based packaging technique for microchip fluorescence detection system applications, J. Microelectromech. Syst. 15, 1152–1158 (2006)

    Google Scholar 

  176. K. Hosokawa, K. Sato, N. Ichikawa et al.: Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis, Lab Chip 4, 181–185 (2004)

    Google Scholar 

  177. D.A. Bartholomeusz, R.W. Boutte, J.D. Andrade: Xurography: Rapid prototyping of microstructures using a cutting plotter, J. Microelectromech. Syst. 14, 1364–1374 (2005)

    Google Scholar 

  178. M.A. Eddings, B.K. Gale: A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices, J. Micromech. Microeng. 16, 2396–2402 (2006)

    Google Scholar 

  179. K. Morishima, Y. Tanaka, K. Sato et al.: Bioactuated microsystem using cultured cardiomyocytes. Proceedings of the MicroTotal Analysis Systems, Squaw Valley, CA, pp. 1125–1128 (2003)

    Google Scholar 

  180. Y. Tanaka, K. Morishima, T. Shimizu et al.: Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars, Lab Chip 6, 230–235 (2006)

    Google Scholar 

  181. Y. Zhao, C.C. Lim, D.B. Sawyer et al.: Cellular force measurements using single-spaced polymeric microstructures: Isolating cells from base substrate, J. Micromech. Microeng. 15, 1649–1656 (2005)

    Google Scholar 

  182. Y. Zhao, C.C. Lim, D.B. Sawyer et al.: Microchip for subcellular mechanics study in living cells, Sens. Act. B Chem. 114, 1108–1115 (2006)

    Google Scholar 

  183. M.T. Yang, N.J. Sniadecki, C.S. Chen: Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces, Adv. Mater. 19, 3119–3123 (2007)

    Google Scholar 

  184. J.L. Tan, J. Tien, D.M. Pirone et al.: Cells lying on a bed of microneedles: An approach to isolate mechanical force, Proc. Natl Acad. Sci. USA. 100, 1484–1489 (2003)

    Google Scholar 

  185. I.K. Lin, Y.M. Liao, K.S. Chen et al.: Viscoelastic characterization of soft micropillars for cellular mechanics study. 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, CA (2008)

    Google Scholar 

  186. M.S. Kolodney, R,B, Wysolmerski: Isometric contraction by fibroblasts and endothelial-cells in tissue-culture – a quantitative study, J. Cell Biol. 117, 73–82 (1992)

    Google Scholar 

  187. O. Cazorla, Y.M. Wu, T.C. Irving et al.: Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes, Circ. Res. 88, 1028–1035 (2001)

    Google Scholar 

  188. K. Visscher, M.J. Schnitzer, S.M. Block: Single kinesin molecules studied with a molecular force clamp, Nature 400, 184–189 (1999)

    Google Scholar 

  189. L.H. Opie: The Heart Physiology: From Cell to Circulation (Lippincott-Raven, Philadelphia, PA, 1998)

    Google Scholar 

  190. K. Sato, S. Harada, A. Saiki et al.: Novel planar multilevel interconnection technology utilizing polyimide. IEEE Transactions on Parts Hybrids and Packaging PHP9, pp. 176–180 (1973)

    Google Scholar 

  191. K. Mukai, A. Saiki, K. Yamanaka et al.: Planar multilevel interconnection technology employing a polyimide, IEEE J. Solid-State Circuits 13, 462–467 (1978)

    Google Scholar 

  192. A.M. Wilson: Polyimide insulators for multilevel interconnections, Thin Solid Films 83, 145–163 (1981)

    Google Scholar 

  193. S. Sasaki, T. Kon, T. Ohsaki et al.: A new multichip module using a copper polyimide multilayer substrate, IEEE Trans. Compon. Hybrids Manuf. Technol. 12, 658–662 (1989)

    Google Scholar 

  194. M. Gad-el-Hak: MEMS: Design and Fabrication (CRC/Taylor & Francis, Boca Raton, FL, 2006)

    Google Scholar 

  195. P.W. Barth, S.L. Bernard, J.B. Angell: Flexible circuit and sensor arrays fabricated by monolithic silicon technology, IEEE Trans. Electron Dev. 32, 1202–1205 (1985)

    Google Scholar 

  196. S.A. Shamma-Donoghue, G.A. May, N.E. Cotter et al.: Thin-film multielectrode arrays for a cochlear prosthesis, IEEE Trans. Electron Dev. 29, 136–144 (1982)

    Google Scholar 

  197. R.L. White, L.A. Roberts, O. Kwon et al.: Thin-film electrodes for an artificial ear, J. Vac. Sci. Technol. A Vac. Surf. Films 1, 287–295 (1983)

    Google Scholar 

  198. A.B. Frazier: Recent applications of polyimide to micromachining technology, IEEE Trans. Ind. Electron. 42, 442–448 (1995)

    Google Scholar 

  199. A.B. Frazier, C.H. Ahn, M.G. Allen: Development of micromachined devices using polyimide-based processes, Sens. Act. A Phys. 45, 47–55 (1994)

    Google Scholar 

  200. M. Pedersen, W. Olthuis, P. Bergveld: High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter, J. Microelectromech. Syst. 7, 387–394 (1998)

    Google Scholar 

  201. T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Act. A Phys. 90, 203–211 (2001)

    Google Scholar 

  202. P.J. Rousche, D.S. Pellinen, D.P. Pivin et al.: Flexible polyimide-based intracortical electrode arrays with bioactive capability, IEEE Trans. Biomed. Eng. 48, 361–371 (2001)

    Google Scholar 

  203. N. Lago, K. Yoshida, K.P. Koch et al.: Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes, IEEE Trans. Biomed. Eng. 54, 281–290 (2007)

    Google Scholar 

  204. D.C. Rodger, A.J. Fong, L. Wen et al.: Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording, Sens. Act. B Chem. 132, 449–460 (2008)

    Google Scholar 

  205. D.C. Rodger, J.D. Weiland, M.S. Humayun et al.: Scalable high lead-count parylene package for retinal prostheses, Sens. Act. B Chem. 117, 107–114 (2006)

    Google Scholar 

  206. D. Bhusari, H.A. Reed, M. Wedlake et al.: Fabrication of air-channel structures for microfluidic, microelectromechanical, and microelectronic applications, J. Microelectromech. Syst. 10, 400–408 (2001)

    Google Scholar 

  207. A.B. Frazier, M.G. Allen: Metallic microstructures fabricated using photosensitive polyimide electroplating molds, J. Microelectromech. Syst. 2, 87–94 (1993)

    Google Scholar 

  208. A. Bagolini, L. Pakula, T.L.M. Scholtes et al.: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)

    Google Scholar 

  209. Y.J. Kim, M.G. Allen: In situ measurement of mechanical properties of polyimide films using micromachined resonant string structures, IEEE Trans. Compon. Packaging Technol. 22, 282–290 (1999)

    Google Scholar 

  210. A.B. Frazier, M.G. Allen: Piezoresistive graphite polyimide thin-films for micromachining applications, J. Appl. Phys. 73, 4428–4433 (1993)

    Google Scholar 

  211. D. Memmi, V. Foglietti, E. Cianci et al.: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Act. A Phys. 99, 85–91 (2002)

    Google Scholar 

  212. M. Eray, N.S. Dogan, L.J. Liu et al.: Highly stable bilayer-lipid membranes (blms) formed on microfabricated polyimide apertures, Biosens. Bioelectron. 9, 343–351 (1994)

    Google Scholar 

  213. K. Minami, H. Morishita, M. Esashi: A bellows-shape electrostatic microactuator, Sens. Act. A Phys. 72, 269–276 (1999)

    Google Scholar 

  214. L.S. Pakula, H. Yang, H.T.M. Pham et al.: Fabrication of a CMOS compatible pressure sensor for harsh environments, J. Micromech. Microeng. 14, 1478–1483 (2004)

    Google Scholar 

  215. M.A. Schmidt, R.T. Howe, S.D. Senturia et al.: Design and calibration of a microfabricated floating-element shear-stress sensor, IEEE Trans. Electron Dev. 35, 750–757 (1988)

    Google Scholar 

  216. P.J. Schubert, J.H. Nevin: A polyimide-based capacitive humidity sensor, IEEE Trans. Electron Dev. 32, 1220–1223 (1985)

    Google Scholar 

  217. R. Selvaraj, H.T. Lin, J.F. McDonald: Integrated optical wave-guides in polyimide for wafer scale integration, J. Lightw. Technol. 6, 1034–1044 (1988)

    Google Scholar 

  218. Y.W. Kim, M.G. Allen: Single-layer and multilayer surface-micromachined platforms using electroplated sacrificial layers, Sens. Act. A Phys. 35, 61–68 (1992)

    Google Scholar 

  219. T. Stieglitz, H. Beutel, J.U. Meyer: A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves, Sens. Act. A Phys. 60, 240–243 (1997)

    Google Scholar 

  220. G. Turban, M. Rapeaux: Dry etching of polyimide in O2-Cf4 and O2-Sf6 plasmas, J. Electrochem. Soc. 130, 2231–2236 (1983)

    Google Scholar 

  221. U. Buder, J.P. von Klitzing, E. Obermeier: Reactive ion etching for bulk structuring of polyimide, Sens. Act. A Phys. 132, 393–399 (2006)

    Google Scholar 

  222. C.H. Ahn, Y.J. Kim, M.G. Allen: A Fully Integrated planar toroidal inductor with a micromachined nickel iron magnetic bar, IEEE Trans. Compon. Packaging Manuf. Technol. A 17, 463–469 (1994)

    Google Scholar 

  223. T. Stieglitz, H.H. Ruf, M. Gross et al.: A biohybrid system to interface peripheral nerves after traumatic lesions: Design of a high channel sieve electrode, Biosens. Bioelectron. 17, 685–696 (2002)

    Google Scholar 

  224. J.W. Suh, S.F. Glander, R.B. Darling et al.: Organic thermal and electrostatic ciliary microactuator array for object manipulation, Sens. Act. A Phys. 58, 51–60 (1997)

    Google Scholar 

  225. C.W. Jurgensen, E.S.G. Shaqfeh: Factors controlling the etching rate and etching profile in the O-2 reactive ion etching pattern transfer step in multilevel lithography, Polym. Eng. Sci. 29, 878–881 (1989)

    Google Scholar 

  226. J.K. Singh, A. Roybardhan, H.S. Kothari et al.: Dependence of process parameters on planarization isolation and etching of sloped vias in polyimides for GaAs ICs, Proc. IEEE 75, 850–852 (1987)

    Google Scholar 

  227. F.D. Egitto, F. Emmi, R.S. Horwath et al.: Plasma-etching of organic materials.1. Polyimide in O2-Cf4, J. Vac. Sci. Technol. B 3, 893–904 (1985)

    Google Scholar 

  228. W.H. Juan, S.W. Pang: High-aspect-ratio polyimide etching using an oxygen plasma generated by electron-cyclotron-resonance source, J. Vac. Sci. Technol. B 12, 422–426 (1994)

    Google Scholar 

  229. R. Pethig, J.P.H. Burt, A. Parton et al.: Development of biofactory-on-a-chip technology using excimer laser micromachining, J. Micromech. Microeng. 8, 57–63 (1998)

    Google Scholar 

  230. P.M. Martin, D.W. Matson, W.D. Bennett et al.: Laminated plastic microfluidic components for biological and chemical systems, J. Vac. Sci. Technol. A Vac. Surf. Films 17, 2264–2269 (1999)

    Google Scholar 

  231. C.T. Pan: Perpendicular magnetic anisotropic field for polyimide-based microactuator with excimer laser ablation, Sens. Act. A Phys. 113, 240–247 (2004)

    Google Scholar 

  232. A. Schwarz, J.S. Rossier, E. Roulet et al.: Micropatterning of biomolecules on polymer substrates, Langmuir 14, 5526–5531 (1998)

    Google Scholar 

  233. M. Gross, D. Altpeter, T. Stieglitz et al.: Micromachining of flexible neural implants with low-ohmic wire traces using electroplating, Sens. Act. A Phys. 96, 105–110 (2002)

    Google Scholar 

  234. T. Schanze, L. Hesse, C. Lau et al.: An optically powered single-channel stimulation implant as test-system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses, IEEE Trans. Biomed. Eng. 54, 983–992 (2007)

    Google Scholar 

  235. J. Engel, J. Chen, C. Liu: Development of polyimide flexible tactile sensor skin, J. Micromech. Microeng. 13, 359–366 (2003)

    Google Scholar 

  236. M. Pedersen, M.G.H. Meijerink, W. Olthuis et al.: An IC-compatible polyimide pressure sensor with capacitive readout, Sens. Act. A Phys. 63, 163–168 (1997)

    Google Scholar 

  237. M. Pedersen, W. Olthuis, P. Bergveld: A silicon condenser microphone with polyimide diaphragm and backplate, Sens. Act. A Phys. 63, 97–104 (1997)

    Google Scholar 

  238. S. Metz, A. Bertsch, D. Bertrand et al.: Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity, Biosens. Bioelectron. 19, 1309–1318 (2004)

    Google Scholar 

  239. M.H. Li, J.J. Wu, Y.B. Gianchandani: Surface micromachined polyimide scanning thermocouple probes, J. Microelectromech. Syst. 10, 3–9 (2001)

    Google Scholar 

  240. S. McNamara, A.S. Basu, J. Lee et al.: Ultracompliant thermal probe array for scanning non-planar surfaces without force feedback, J. Micromech. Microeng. 15, 237–243 (2005)

    Google Scholar 

  241. A. Bayrashev, B. Ziaie: Silicon wafer bonding through RF dielectric heating, Sens. Act. A Phys. 103, 16–22 (2003)

    Google Scholar 

  242. R. Nayve, M. Fujii, A. Fukugawa et al.: High-resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE, J. Microelectromech. Syst. 13, 814–821 (2004)

    Google Scholar 

  243. M. Pedersen, W. Olthuis, P. Bergveld: Development and fabrication of capacitive sensors in polyimide, Sens. Mater. 10, 1–20 (1998)

    MATH  Google Scholar 

  244. Y. Nakamura, Y. Suzuki, Y. Watanabe: Effect of oxygen plasma etching on adhesion between polyimide films and metal, Thin Solid Films 291, 367–369 (1996)

    Google Scholar 

  245. K. Suzuki, H. Yamada, H. Miura et al.: Self-assembly of three dimensional micro mechanisms using thermal shrinkage of polyimide, Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 13, 1047–1053 (2007)

    Google Scholar 

  246. T. Ebefors, E. Kalvesten, G. Stemme: New small radius joints based on thermal shrinkage of polyimide in V-grooves for robust self-assembly 3D microstructures, J. Micromech. Microeng. 8, 188–194 (1998)

    Google Scholar 

  247. T. Ebefors, J.U. Mattsson, E. Kalvesten et al.: A robust micro conveyer realized by arrayed polyimide joint actuators, J. Micromech. Microeng. 10, 337–349 (2000)

    Google Scholar 

  248. M. Gel, I. Shimoyama: Parallel-plate electrostatic actuation with vertical hinges, J. Micromech. Microeng. 11, 555–560 (2001)

    Google Scholar 

  249. M. Gel, S. Takeuchi, I. Shimoyama: Fabrication method for out-of-plane, micro-coil by surface micromachining, Sens. Act. A Phys. 97–98, 702–708 (2002)

    Google Scholar 

  250. H. Miyajima, N. Asaoka, M. Arima et al.: A durable, shock-resistant electromagnetic optical scanner with polyimide-based hinges, J. Microelectromech. Syst. 10, 418–424 (2001)

    Google Scholar 

  251. J. Chen, C. Liu: Development and characterization of surface micromachined, out-of-plane hot-wire anemometer, J. Microelectromech. Syst. 12, 979–988 (2003)

    Google Scholar 

  252. T.E. Creighton: Proteins: Structures and Molecular Properties (W.H. Freeman, New York, NY, 1993)

    Google Scholar 

  253. A. Veis: The Macromolecular Chemistry of Gelatin (Academic, New York, NY, 1964)

    Google Scholar 

  254. M. Djabourov, J. Leblond, P. Papon: Gelation of aqueous gelatin solutions. 1. Structural investigation, J. Phys. 49, 319–332 (1988)

    Google Scholar 

  255. C. Michon, G. Cuvelier, P. Relkin et al.: Influence of thermal history on the stability of gelatin gels, Int. J. Biol. Macromol. 20, 259–264 (1997)

    Google Scholar 

  256. J.Y. Chatellier, D. Durand, J.R. Emery: Critical helix content in gelatin gels, Int. J. Biol. Macromol. 7, 311–314 (1985)

    Google Scholar 

  257. I. Pezron, M. Djabourov, J. Leblond: Conformation of gelatin chains in aqueous-solutions. 1. A light and small-angle neutron-scattering study, Polymer 32, 3201–3210 (1991)

    Google Scholar 

  258. A. Bigi, G. Cojazzi, S. Panzavolta et al.: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking, Biomaterials 22, 763–768 (2001)

    Google Scholar 

  259. P.V. Kozlov, G.I. Burdygina: The structure and properties of solid gelatin and the principles of their modification, Polymer 24, 651–666 (1983)

    Google Scholar 

  260. L.J. Yang, W.Z. Lin, T.J. Yao et al.: Photo-patternable gelatin as protection layers in low-temperature surface micromachinings, Sens. Act. A Phys. 103, 284–290 (2003)

    Google Scholar 

  261. J.C. Angus, U. Landau, S.H. Liao et al.: Controlled electroplating through gelatin films, J. Electrochem. Soc. 133, 1152–1160 (1986)

    Google Scholar 

  262. R. Fernandes, H.M. Yi, L.Q. Wu et al.: Thermo-biolithography: A technique for patterning nucleic acids and proteins, Langmuir 20, 906–913 (2004)

    Google Scholar 

  263. L.J. Yang, Y.C. Ou: The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture, Lab Chip 5, 979–984 (2005)

    Google Scholar 

  264. P.M. Neumann, B. Zur, Y. Ehrenreich: Gelatin-based sprayable foam as a skin substitute, J. Biomed. Mater. Res. 15, 9–18 (1981)

    Google Scholar 

  265. L.H.H. Olde Damink, P.J. Dijkstra, M.J.A. Vanluyn et al.: Glutaraldehyde as a cross-linking agent for collagen-based biomaterials, J. Mater. Sci. Mater. Med. 6, 460–472 (1995)

    Google Scholar 

  266. D.P. Speer, M. Chvapil, C.D. Eskelson et al.: Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials, J. Biomed. Mater. Res. 14, 753–764 (1980)

    Google Scholar 

  267. Y.S. Choi, S.R. Hong, Y.M. Lee et al.: Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge, J. Biomed. Mater. Res. 48, 631–639 (1999)

    Google Scholar 

  268. J.P. Draye, B. Delaey, A. Van de Voorde et al.: In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films, Biomaterials 19, 1677–1687 (1998)

    Google Scholar 

  269. W.H. Chang, Y. Chang, P.H. Lai et al.: A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies, J. Biomater. Sci. Polym. Ed. 14, 481–495 (2003)

    Google Scholar 

  270. L.T. Lim, Y. Mine, M.A. Tung: Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content, J. Food Sci. 64, 616–622 (1999)

    Google Scholar 

  271. A. Mizuno, M. Mitsuiki, M. Motoki: Effect of transglutaminase treatment on the glass transition of soy protein, J. Agric. Food Chem. 48, 3286–3291 (2000)

    Google Scholar 

  272. A. Paguirigan, D.J. Beebe: Gelatin based microfluidic devices for cell culture, Lab Chip 6, 407–413 (2006)

    Google Scholar 

  273. A.L. Paguirigan, D.J. Beebe: Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture, Nat. Protocols 2, 1782–1788 (2007)

    Google Scholar 

  274. WA Little: Microminiature refrigeration, Rev. Sci. Instrum. 55, 661–680 (1984)

    Google Scholar 

  275. E. Ermantraut, K. Wohlfart, W. Tichelaar: Perforated support foils with pre-defined hole size, shape and arrangement, Ultramicroscopy 74, 75–81 (1998)

    Google Scholar 

  276. R. Delille, M.G. Urdaneta, S.J. Moseley et al.: Benchtop polymer MEMS, J. Microelectromech. Syst. 15, 1108–1120 (2006)

    Google Scholar 

  277. J.L. Tan, W. Liu, C.M. Nelson et al.: Simple approach to micropattern cells on common culture substrates by tuning substrate wettability, Tissue Eng. 10, 865–872 (2004)

    Google Scholar 

  278. M.D. Tang, A.P. Golden, J. Tien: Molding of three-dimensional microstructures of gels, J. Am. Chem. Soc. 125, 12988–12989 (2003)

    Google Scholar 

  279. M. Kumar: A review of chitin and chitosan applications, React. Funct. Polym. 46, 1–27 (2000)

    Google Scholar 

  280. L.Q. Wu, A.P. Gadre, H.M. Yi et al.: Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface, Langmuir 18, 8620–8625 (2002)

    Google Scholar 

  281. L.Q. Wu, H.M. Yi, S. Li et al.: Spatially selective deposition of a reactive polysaccharide layer onto a patterned template, Langmuir 19, 519–524 (2003)

    Google Scholar 

  282. T.H. Ang, F.S.A. Sultana, D.W. Hutmacher et al.: Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system, Mater. Sci. Eng. C Biomim. Supramol. Syst. 20, 35–42 (2002)

    Google Scholar 

  283. S.T. Koev, M.A. Powers, H. Yi et al.: Mechano-transduction of DNA hybridization and dopamine oxidation through electrodeposited chitosan network, Lab Chip 7, 103–111 (2007)

    Google Scholar 

  284. L.Q. Wu, M.K. McDermott, C. Zhu et al.: Mimicking biological phenol reaction cascades to confer mechanical function, Adv. Funct. Mater. 16, 1967–1974 (2006)

    Google Scholar 

  285. H.M. Yi, L.Q. Wu, W.E. Bentley et al.: Biofabrication with chitosan, Biomacromolecules 6, 2881–2894 (2005)

    Google Scholar 

  286. K. Ono, Y. Saito, H. Yura et al.: Photocrosslinkable chitosan as a biological adhesive, J. Biomed. Mater. Res. 49, 289–295 (2000)

    Google Scholar 

  287. J.M. Karp, Y. Yeo, W.L. Geng et al.: A photolithographic method to create cellular micropatterns, Biomaterials 27, 4755–4764 (2006)

    Google Scholar 

  288. J.C. Cheng, A.P. Pisano: Photolithographic process for integration of the biopolymer chitosan into micro/nano structures, J. Microelectromech. Syst. 17, 402–409 (2008)

    Google Scholar 

  289. L. Tan, Y.P. Kong, S.W. Pang et al.: Imprinting of polymer at low temperature and pressure, J. Vac. Sci. Technol. B 22, 2486–2492 (2004)

    Google Scholar 

  290. I. Park, J. Cheng, A.P. Pisano et al.: Low temperature, low pressure nanoimprinting of chitosan as a biomaterial for bionanotechnology applications, Appl. Phys. Lett. 90 (2007) (article number 093902)

    Google Scholar 

  291. K.C. Popat, T.A. Desai: Poly(ethylene glycol) interfaces: An approach for enhanced performance of microfluidic systems, Biosens. Bioelectron. 19, 1037–1044 (2004)

    Google Scholar 

  292. K.C. Popat, R.W. Johnson, T.A. Desai: Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems, J. Vac. Sci. Technol. B 21, 645–654 (2003)

    Google Scholar 

  293. M.Q. Zhang, T. Desai, M. Ferrari: Proteins and cells on PEG immobilized silicon surfaces, Biomaterials 19, 953–960 (1998)

    Google Scholar 

  294. S. Sharma, R.W. Johnson, T.A. Desai: Ultrathin poly(ethylene glycol) films for silicon-based microdevices, Appl. Surf. Sci. 206, 218–229 (2003)

    Google Scholar 

  295. J.H. Lee, H.B. Lee, J.D. Andrade: Blood compatibility of polyethylene oxide surfaces, Prog. Polym. Sci. 20, 1043–1079 (1995)

    Google Scholar 

  296. J.M. Harris: Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications (Plenum Press, New York, NY, 1992)

    Google Scholar 

  297. M. Zhang, M. Ferrari: Hemocompatible polyethylene glycol films on silicon, Biomed. Microdev. 1, 81–89 (1998)

    Google Scholar 

  298. M. Amiji, K. Park: Prevention of protein adsorption and platelet-adhesion on surfaces by peo ppo peo triblock copolymers, Biomaterials 13, 682–692 (1992)

    Google Scholar 

  299. D. Gingell, N. Owens, P. Hodge et al.: Adsorption of a novel fluorescent derivative of a poly(ethylene oxide)/poly(butylene oxide) block-copolymer on octadecyl glass studied by total internal-reflection fluorescence and interferometry, J. Biomed. Mater. Res. 28, 505–513 (1994)

    Google Scholar 

  300. C. Maechlingstrasser, P. Dejardin, J.C. Galin et al.: Preadsorption of polymers on glass and silica to reduce fibrinogen adsorption, J. Biomed. Mater. Res. 23, 1385–1393 (1989)

    Google Scholar 

  301. D. Gingell, N. Owens: Inhibition of platelet spreading from plasma onto glass by an adsorbed layer of a novel fluorescent-labeled poly(ethylene oxide)/poly(butylene oxide) block-copolymer – characteristics of the exclusion zone probed by means of polystyrene beads and macromolecules, J Biomed. Mater. Res. 28, 491–503 (1994)

    Google Scholar 

  302. D.W. Grainger, C. Nojiri, T. Okano et al.: Invitro and exvivo platelet interactions with hydrophilic hydrophobic poly(ethylene oxide)-polystyrene multiblock copolymers, J. Biomed. Mater. Res. 23, 979–1005 (1989)

    Google Scholar 

  303. N.F. Owens, D. Gingell, P.R. Rutter: Inhibition of cell-adhesion by a synthetic-polymer adsorbed to glass shown under defined hydrodynamic stress, J. Cell Sci. 87, 667–675 (1987)

    Google Scholar 

  304. M.B. Stark, K. Holmberg: Covalent immobilization of lipase in organic-solvents, Biotechnol. Bioeng. 34, 942–950 (1989)

    Google Scholar 

  305. Y.C. Tseng, K. Park: Synthesis of photoreactive poly(ethylene glycol) and its application to the prevention of surface-induced platelet activation, J. Biomed. Mater. Res. 26, 373–391 (1992)

    Google Scholar 

  306. M. Amiji, K. Park: Surface modification by radiation-induced grafting of Peo/Ppo/Peo triblock copolymers, J. Colloid Interface Sci. 155, 251–255 (1993)

    Google Scholar 

  307. K. Emoto, J.M. Harris, J.M. VanAlstine: Grafting poly(ethylene glycol) epoxide to amino-derivatized quartz: Effect of temperature and pH on grafting density, Anal. Chem. 68, 3751–3757 (1996)

    Google Scholar 

  308. K.R. Kamath, M.J. Danilich, R.E. Marchant et al.: Platelet interactions with plasma-polymerized ethylene oxide and N-vinyl-2-pyrrolidone films and linear poly(ethylene oxide) layer, J. Biomater. Sci. Polym. Ed. 7, 977–988 (1996)

    Google Scholar 

  309. Y.C. Tseng, T. McPherson, C.S. Yuan et al.: Grafting of ethylene glycol-butadiene block-copolymers onto dimethyl-dichlorosilane-coated glass by gamma-irradiation, Biomaterials 16, 963–972 (1995)

    Google Scholar 

  310. D. Irimia, J.O.M. Karlsson: Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct, Biophys. J. 82, 1858–1868 (2002)

    Google Scholar 

  311. Y.C. Wang, M. Ferrari: Surface modification of micromachined silicon filters, J. Mater. Sci. 35, 4923–4930 (2000)

    Google Scholar 

  312. K.C. Popat, R.W. Robert, T.A. Desai: Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices, Surf. Coat. Technol. 154, 253–261 (2002)

    Google Scholar 

  313. A. Revzin, R.G. Tompkins, M. Toner: Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass, Langmuir 19, 9855–9862 (2003)

    Google Scholar 

  314. A. Khademhosseini, J. Yeh, S. Jon et al.: Molded polyethylene glycol microstructures for capturing cells within microfluidic channels, Lab Chip 4, 425–430 (2004)

    Google Scholar 

  315. A. Revzin, R.J. Russell, V.K. Yadavalli et al.: Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography, Langmuir 17, 5440–5447 (2001)

    Google Scholar 

  316. K. Arcaute, B.K. Mann, R.B. Wicker: Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells, Ann. Biomed. Eng. 34, 1429–1441 (2006)

    Google Scholar 

  317. P. Kim, H.E. Jeong, A. Khademhosseini et al.: Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing, Lab Chip 6, 1432–1437 (2006)

    Google Scholar 

  318. K.Y. Suh, J. Seong, A. Khademhosseini et al.: A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning, Biomaterials 25, 557–563 (2004)

    Google Scholar 

  319. A. Khademhosseini, S. Jon, K.Y. Suh et al.: Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures, Adv. Mater. 15, 1995–2000 (2003)

    Google Scholar 

  320. R.G. Sanedrin, L. Huang, J.W. Jang et al.: Polyethylene glycol as a novel resist and sacrificial material for generating positive and negative nanostructures, Small 4, 920–924 (2008)

    Google Scholar 

  321. A. Tourovskaia, T. Barber, B.T. Wickes et al.: Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks, Langmuir 19, 4754–4764 (2003)

    Google Scholar 

  322. P. Sethu, C.H. Mastrangelo: Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems, Sens. Act. A Phys. 104, 283–289 (2003)

    Google Scholar 

  323. K.Y. Suh, Y.S. Kim, H.H. Lee: Capillary force lithography, Adv. Mater. 13, 1386–1389 (2001)

    Google Scholar 

  324. Y.S. Kim, K.Y. Suh, H.H. Lee: Fabrication of three-dimensional microstructures by soft molding, Appl. Phys. Lett. 79, 2285–2287 (2001)

    Google Scholar 

  325. P. Kim, D.H. Kim, B. Kim et al.: Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion, Nanotechnology 16, 2420–2426 (2005)

    Google Scholar 

  326. Y.S. Kim, H.H. Lee, P.T. Hammond: High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers, Nanotechnology 14, 1140–1144 (2003)

    Google Scholar 

  327. S.J. Choi, P.J. Yoo, S.J. Baek et al.: An ultraviolet-curable mold for sub-100-nm lithography, J. Am. Chem. Soc. 126, 7744–7745 (2004)

    Google Scholar 

  328. P.J. Yoo, S.J. Choi, J.H. Kim et al.: Unconventional patterning with a modulus-tunable mold: From imprinting to microcontact printing, Chem. Mater. 16, 5000–5005 (2004)

    Google Scholar 

  329. S. Takeuchi, D. Ziegler, Y. Yoshida et al.: Parylene flexible neural probes integrated with microfluidic channels, Lab Chip 5, 519–523 (2005)

    Google Scholar 

  330. L. Wolgemuth: Crystal-clear coating covers components, Med. Des. 6, 48–51 (2006)

    Google Scholar 

  331. S.G. Eskin, C.D. Armeniades, J.T. Lie et al.: Growth of cultured calf aortic smooth-muscle cells on cardiovascular prosthetic materials, J. Biomed. Mater. Res. 10, 113–122 (1976)

    Google Scholar 

  332. A.W. Hahn, D.H. York, M.F. Nichols et al.: Biocompatibility of glow-discharge-polymerized films and vacuum-deposited parylene, Appl. Polym. Symp. 55–64 (1984)

    Google Scholar 

  333. G.E. Loeb, A.E. Walker, S. Uematsu et al.: Histological reaction to various conductive and dielectric films chronically implanted in subdural space, J. Biomed. Mater. Res. 11, 195–210 (1977)

    Google Scholar 

  334. Y. Kanda, R. Aoshima, A. Takada: Blood compatibility of components and materials in silicon integrated-circuits, Electron. Lett. 17, 558–559 (1981)

    Google Scholar 

  335. B.P. Levy, S.L. Campbell, T.L. Rose: Definition of the geometric area of a microelectrode tip by plasma-etching of parylene, IEEE Trans. Biomed. Eng. 33, 1046–1049 (1986)

    Google Scholar 

  336. J. Lahann, D. Klee, H. Thelen et al.: Improvement of haemocompatibility of metallic stents by polymer coating, J. Mater. Sci. Mater. Med. 10, 443–448 (1999)

    Google Scholar 

  337. T.Y. Chang, V.G. Yadav, S. De Leo et al.: Cell and protein compatibility of parylene-C surfaces, Langmuir 23, 11718–11725 (2007)

    Google Scholar 

  338. N. Stark: Literature review: biological safety of parylene C. http://www.devicelink.com/mpb/archive/96/03/004.html (1996) (accessed on 4-25-2003)

  339. J.I. Kroschwitz: Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, NY, 1998)

    Google Scholar 

  340. J. Lahann: Vapor-based polymer coatings for potential biomedical applications, Polym. Int. 55, 1361–1370 (2006)

    Google Scholar 

  341. M. Gazicki-Lipman: Vapor deposition polymerization of para-xylylene derivatives – mechanism and applications, J. Vac. Soc. Jpn. 50, 601–608 (2007)

    Google Scholar 

  342. Y.C. Tai: Parylene for MEMS applications, Abstracts of Papers of the American Chemical Society, New York, p. U360 (2003)

    Google Scholar 

  343. W.F. Gorham: A new general synthetic method for preparation of linear poly-p-xylylenes, J. Polym. Sci., Polym. Chem. Ed. 4, 3027–3039 (1966)

    Google Scholar 

  344. Specialty Coating Systems: Parylene Knowledge > Discovery/History. http://www.scscoatings.com/parylene_knowledge/history.aspx (accessed on 9-9-2008)

  345. M. Szwarc: Some remarks on the CH2=benzene=CH2 molecule, Discuss. Faraday Soc. 2, 46–49 (1947)

    Google Scholar 

  346. E. Meng, P.Y. Li, Y.C. Tai: Plasma removal of parylene c, J. Micromech. Microeng. 18, 045004 (2008)

    Google Scholar 

  347. M.C. Demirel: Emergent properties of spatially organized poly(p-xylylene) films fabricated by vapor deposition, Colloids Surf. A Physicochem. Eng. Asp. 321, 121–124 (2008)

    Google Scholar 

  348. M.C. Demirel, E. So, T.M. Ritty et al.: Fibroblast cell attachment and growth on nanoengineered sculptured thin films, J. Biomed. Mater. Res. B Appl. Biomater. 81B, 219–223 (2007)

    Google Scholar 

  349. S. Pursel, M.W. Horn, M.C. Demirel et al.: Growth of sculptured polymer submicronwire assemblies by vapor deposition, Polymer 46, 9544–9548 (2005)

    Google Scholar 

  350. Specialty Coating Systems, PDS 2010 Labcoter Manual

    Google Scholar 

  351. G.E. Loeb, M.J. Bak, M. Salcman et al.: Parylene as a chronically stable, reproducible microelectrode insulator, IEEE Trans. Biomed. Eng. 24, 121–128 (1977)

    Google Scholar 

  352. H. Lerner, R.T. Zahradnik, M. Buchbinder: Miniature implantable tantalum tantalum oxide stimulating electrodes, IEEE Trans. Biomed. Eng. 29, 290–292 (1982)

    Google Scholar 

  353. G.E. Loeb, R.A. Peck, J. Martyniuk: Toward the ultimate metal microelectrode, J. Neurosci. Methods 63, 175–183 (1995)

    Google Scholar 

  354. E.M. Schmidt, M.J. Bak, P. Christensen: Laser exposure of Parylene-C insulated microelectrodes, J. Neurosci. Methods 62, 89–92 (1995)

    Google Scholar 

  355. N. Majid, S. Dabral, J.F. Mcdonald: The parylene-aluminum multilayer interconnection system for wafer scale integration and wafer scale hybrid packaging, J. Electron. Mater. 18, 301–311 (1989)

    Google Scholar 

  356. P.F. Man, D.K. Jones, C.H. Mastrangelo: Microfluidic Plastic Interconnects for Multi-bioanalysis Chip Modules, Bellingham WA, WA 98227-0010, United States, pp. 196–200 (1997)

    Google Scholar 

  357. C.Y. Shih, T.A. Harder, Y.C. Tai: Yield strength of thin-film parylene-C, Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 10, 407–411 (2004)

    Google Scholar 

  358. X.Q. Wang, Q. Lin, Y.C. Tai: A parylene micro check valve. Proceedings of the IEEE Microelectromechanical Systems Conference, Orlando, FL, pp. 177–182 (1999)

    Google Scholar 

  359. J. Xie, Y.N. Miao, J. Shih et al.: Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures, Anal. Chem. 77, 6947–6953 (2005)

    Google Scholar 

  360. X. Yang, J.M. Yang, Y.C. Tai et al.: Micromachined membrane particle filters, Sens. Act. A 73, 184–191 (1999)

    Google Scholar 

  361. T.J. Yao, X. Yang, Y.C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Act. A Phys. 97–98, 771–775 (2002).

    Google Scholar 

  362. E.T. Carlen, C.H. Mastrangelo: Electrothermally activated paraffin microactuators, J. Microelectromech. Syst. 11, 165–174 (2002)

    Google Scholar 

  363. E. Meng, P.Y. Li, Y.C. Tai: A biocompatible parylene MEMS thermal flow sensing array, Sens. Act. A Phys. 144, 18–28 (2008)

    Google Scholar 

  364. P.J. Chen, D.C. Rodger, R. Agrawal et al.: Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing, J. Micromech. Microeng. 17, 1931–1938 (2007)

    Google Scholar 

  365. P.J. Chen, D.C. Rodger, E.M. Meng et al.: Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation, J. Microelectromech. Syst. 16, 223–231 (2007)

    Google Scholar 

  366. A. Tooker, E. Meng, J. Erickson et al.: Biocompatible parylene neurocages, IEEE Eng. Med. Biol. Mag. 24, 30–33 (2005)

    Google Scholar 

  367. T. Stanczyk, B. Ilic, P.J. Hesketh et al.: A microfabricated electrochemical actuator for large displacements, J. Microelectromech. Syst. 9, 314–320 (2000)

    Google Scholar 

  368. P.J. Chen, D.C. Rodger, M.S. Humayun et al.: Floating-disk parylene microvalves for self-pressure-regulating flow controls, J. Microelectromech. Syst. 17, 1352–1361 (2008)

    Google Scholar 

  369. P.J. Chen, D.C. Rodger, S. Saati et al.: Microfabricated implantable parylene-based wireless passive intraocular pressure sensors, J. Microelectromech. Syst. 17, 1342–1351 (2008)

    Google Scholar 

  370. H.S. Noh, P.J. Hesketh, G.C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)

    Google Scholar 

  371. E.E. Hui, C.G. Keller, R.T. Howe: Carbonized Parylene as a Conformal Sacrifical Layer, 1998 Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 256–260 (1998)

    Google Scholar 

  372. S. Konishi, M. Liger, T.A. Harder et al.: Parylene-pyrolyzed carbon for MEMS applications. Proceedings of the IEEE Microelectromechanical Systems Conference, Maastricht, The Netherlands, pp. 161–164 (2004)

    Google Scholar 

  373. M. Liger, S. Konishi, Y.-C. Tai: Uncooled all-parylene bolometer. Proceedings of the IEEE Microelectromechanical Systems Conference, Maastricht, The Netherlands, pp. 593–596 (2004)

    Google Scholar 

  374. Y. Mizuno, M. Liger, Y.-C. Tai: Nanofluidic Flowmeter Using Carbon Sensing Element. Proceedings of the IEEE Microelectromechanical Systems Conference, Maastricht, The Netherlands, pp. 322–325 (2004)

    Google Scholar 

  375. M. Herrera-Alonso, T.J. McCarthy: Chemical surface modification of poly(p-xylylene) thin films, Langmuir 20, 9184–9189 (2004)

    Google Scholar 

  376. J. Lahann, D. Klee, H. Thelen et al.: Improvement of haemocompatibility of metallic stents by polymer coating, J. Mater. Sci.-Mater. M. 10, 443–448 (1999)

    Google Scholar 

  377. T.E. Nowlin, D.F. Smith Jr: Surface Characterization of plasma-treated poly-p-xylylene films, J. Appl. Polym. Sci. 25, 1619–1632 (1980)

    Google Scholar 

  378. Specialty Coating Systems: Solvent Resistance of Parylene (2001)

    Google Scholar 

  379. R.R.A. Callahan, K.G. Pruden, G.B. Raupp et al.: Downstream oxygen etching characteristics of polymers, J. Vac. Sci. Technol. B 21, 1496–1500 (2003)

    Google Scholar 

  380. R.R.A. Callahan, G.B. Raupp, S.P. Beaudoin: Effects of gas pressure and substrate temperature on the etching of parylene-N using a remote microwave oxygen plasma, J. Vac. Sci. Technol. B 19, 725–731 (2001)

    Google Scholar 

  381. J.T.C. Yeh, K.R. Grebe: Patterning of poly-para-xylylenes by reactive ion etching, J. Vac. Sci. Technol. A 1, 604–608 (1983)

    Google Scholar 

  382. B. Ratier, Y.S. Jeong, A. Moliton et al.: Vapor deposition polymerization and reactive ion beam etching of poly(p-xylylene) films for waveguide applications, Opt. Mater. 12, 229–233 (1999)

    Google Scholar 

  383. T.E.F.M. Standaert, P.J. Matsuo, X. Li et al.: High-density plasma patterning of low dielectric constant polymers: A comparison between polytetrafluoroethylene, parylene-N, and poly(arylene ether), J. Vac. Sci. Technol. A 19, 435–446 (2001)

    Google Scholar 

  384. S. Selvarasah, S.H. Chao, C.L. Chen et al.: A reusable high aspect ratio parylene-C shadow mask technology for diverse micropatterning applications, Sens. Act. A Phys. 145, 306–315 (2008)

    Google Scholar 

  385. D. Wright, B. Rajalingam, S. Selvarasah et al.: Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils, Lab Chip 7, 1272–1279 (2007)

    Google Scholar 

  386. S. Miserendino, Y.C. Tai: Photodefinable silicone MEMS gaskets and O-rings for modular microfluidic systems. Proceedings of the IEEE Microelectromechanical Systems Conference, Kobe, Japan, pp. 369–372 (2007)

    Google Scholar 

  387. R. Sabeti, E.M. Charlson, E.J. Charlson: Selective deposition of parylene, Polym. Commun. 30, 166–169 (1989)

    Google Scholar 

  388. M. Gazicki, G. Surendran, W. James et al.: Polymerization of para-xylylene derivatives (parylene polymerization) 2. Heat-effects during deposition of parylene-C at different temperatures, J. Polym. Sci. A Polym. Chem. 23, 2255–2277 (1985)

    Google Scholar 

  389. P. Kramer, A.K. Sharma, E.E. Hennecke et al.: Polymerization of para-xylylene derivatives (parylene polymerization) 1. Deposition kinetics for parylene-n and parylene-c, J. Polym. Sci., Polym. Chem. Ed. 22, 475–491 (1984)

    Google Scholar 

  390. S.W. Youn, H. Goto, M. Takahashi et al.: Thermal imprint process of parylene for MEMS applications, Key Eng. Mater. 340–341, 931–936 (2007)

    Google Scholar 

  391. H.S. Noh, Y. Huang, P.J. Hesketh: Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel, Sens. Act. B Chem. 102, 78–85 (2004)

    Google Scholar 

  392. H. Kim, K. Najafi: Characterization of low-temperature wafer bonding using thin-film Parylene, J. Microelectromech. Syst. 14, 1347–1355 (2005)

    Google Scholar 

  393. H.S. Noh, K.S. Moon, A. Cannon et al.: Wafer bonding using microwave heating of parylene intermediate layers, J. Micromech. Microeng. 14, 625–631 (2004)

    Google Scholar 

  394. X.Q. Wang, X. Yang, K. Walsh et al.: Gas-phase silicon etching with bromine trifluoride, Technical Digest. International Conference on Solid-State Sensors and Actuators, Chicago, IL, pp. 1505–1508 (1997)

    Google Scholar 

  395. L. Licklider, X.Q. Wang, A. Desai et al.: A micromachined chip-based electrospray source for mass spectrometry, Anal. Chem. 72, 367–375 (2000)

    Google Scholar 

  396. M. Liger, D.C. Rodger, Y.C. Tai: Robust parylene-to-silicon mechanical anchoring. Proceedings of the IEEE Microelectromechanical Systems Conference, Kyoto, Japan, pp. 602–605 (2003)

    Google Scholar 

  397. C.Y. Shih, Y. Chen, Y.C. Tai: Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications, Sens. Act. A Phys. 126, 270–276 (2006)

    Google Scholar 

  398. J. Erickson, A. Tooker, Y.C. Tai et al.: Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity, J. Neurosci. Meth. 175, 1–16 (2008)

    Google Scholar 

  399. W. Li, D.C. Rodger, E. Meng et al.: Flexible parylene packaged intraocular coil for retinal prostheses. Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology, Okinawa, Japan, pp. 105–108 (2006)

    Google Scholar 

  400. E.T.T. Jones, O.M. Chyan, M.S. Wrighton: Preparation and characterization of molecule-based transistors with a 50-nm source-drain separation with use of shadow deposition techniques – toward faster, more sensitive molecule-based devices, J. Am. Chem. Soc. 109, 5526–5528 (1987)

    Google Scholar 

  401. J. Madden: Conducting polymer actuators, Massachusetts Institute of Technology (2000)

    Google Scholar 

  402. P. Du, X. Lin, X. Zhang: Development of conducting polymer micro cantilever for conductivity measurement, Proceeding of ASME International Mechanical Engineering Congress and Exposition (IMECE ’08), Boston, MA, 67986 (2008)

    Google Scholar 

  403. T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds: Handbook of Conducting Polymers (CRC Press, Boca Raton, FL, 1998)

    Google Scholar 

  404. R.H. Baughman: Conducting polymer artificial muscles, Synth. Met. 78, 339–353 (1996)

    Google Scholar 

  405. T.F. Otero, H. Grande, J. Rodríuez: Reversible electrochemical reactions in conducting polymers: A molecular approach to artificial muscles, J. Phys. Org. Chem. 9, 381–386 (1996)

    Google Scholar 

  406. E. Smela: Conjugated polymer actuators, MRS Bull. 33, 197–204 (2008)

    Google Scholar 

  407. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil et al.: Artificial muscle technology: Physical principles and naval prospects, IEEE J. Ocean. Eng. 29, 706–728 (2004)

    Google Scholar 

  408. G.M. Spinks, E. Smela: Conjugated Polymers for Microelectromechanical and Other Microdevices. In Conjugated Polymers: Processing and Applications (Skotheim, T.A., Reynolds, J. (Eds.) CRC Press, Boca Raton, FL, 2006)

    Google Scholar 

  409. J.D.W. Madden, P.G.A. Madden, I.W. Hunter: Polypyrrole actuators: Modeling and performance. Proceedings of the SPIE – International Society of Optical Engineering, Newport Beach, CA, pp. 72–83 (2001)

    Google Scholar 

  410. A. Della Santa, D. De Rossi, A. Mazzoldi: Characterization and modelling of a conducting polymer muscle-like linear actuator, Smart Mater. Struct. 6, 23–34 (1997)

    Google Scholar 

  411. Q. Pei, O. Inganaes: Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox, J. Phys. Chem. 96, 10507–10514 (1992)

    Google Scholar 

  412. G. Alici, B. Mui, C. Cook: Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications, Sens. Act. A Phys. 126, 396–404 (2006)

    Google Scholar 

  413. S. Hara, T. Zama, A. Ametani et al.: Enhancement in electrochemical strain of a polypyrrole-metal composite film actuator, J. Mater. Chem. 14, 2724–2725 (2004)

    Google Scholar 

  414. G.M. Spinks, et al.: Ionic liquids and polypyrrole helix tubes: bringing the electronic Braille screen closer to reality. In Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, pp. 372–380 (2003)

    Google Scholar 

  415. E. Smela, O. Inganas, I. Lundstrom: Controlled folding of Micrometer-size structures, Science 268, 1735–1738 (1995)

    Google Scholar 

  416. K. Kaneto, M. Kaneko, Y. Min et al.: Artificial muscle – Electromechanical actuators using polyaniline films, Synth. Met. 71, 2211–2212 (1995)

    Google Scholar 

  417. E. Smela: Conjugated polymer actuators for biomedical applications, Adv. Mater. 15, 481–494 (2003)

    Google Scholar 

  418. W. Lu, A.G. Fadeev, B. Qi et al.: Use of ionic liquids for pi-conjugated polymer electrochemical devices, Science 297, 983–987 (2002)

    Google Scholar 

  419. Geoffrey M. Spinks, G.G. Wallace, L. Liu et al.: Conducting polymers electromechanical actuators and strain sensors, Macromol. Symp. 192, 161–170 (2003)

    Google Scholar 

  420. D. Chinn, J. Janata: SPIN-cast thin-films of polyaniline, Thin Solid Films 252, 145–151 (1994)

    Google Scholar 

  421. R.L. Elsenbaumer, K.Y. Jen, R. Oboodi: Processible and environmentally stable conducting polymers, Synth. Met. 15, 169–174 (1986)

    Google Scholar 

  422. E.W.H. Jager, E. Smela, O. Inganas: Microfabricating conjugated polymer actuators, Science 290, 1540–1545 (2000)

    Google Scholar 

  423. S. Maw, E. Smela, K. Yoshida et al.: The effects of varying deposition current density on bending behaviour in PPy(DBS)-actuated bending beams, Sens. Act. A Phys. 89, 175–184 (2001)

    Google Scholar 

  424. E. Smela: Microfabrication of PPy microactuators and other conjugated polymer devices, J. Micromech. Microeng. 1–18 (1999)

    Google Scholar 

  425. M. Christophersen, B. Shapiro, E. Smela: Characterization and modeling of PPy bilayer microactuators: Part 1. Curvature, Sens. Act. B Chem. 115, 596–609 (2006)

    Google Scholar 

  426. N.H. Hendricks: Low dielectric constant materials for IC intermetal dielectric applications: A status report on the leading candidates. Proceedings of the Materials Research Society Symposium, Boston, MA, pp. 3–14 (1997)

    Google Scholar 

  427. M.E. Mills, P. Townsend, D. Castillo et al.: Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material, Microelectron. Eng. 33, 327–334 (1997)

    Google Scholar 

  428. A. Modafe, N. Ghalichechian, B. Kleber et al.: Electrical characterization of benzocyclobutene polymers for electric micromachines, IEEE Trans. Device Mater. Reliab. 4, 495–508 (2004)

    Google Scholar 

  429. N. Ghalichechian, A. Modafe, R. Ghodssi et al.: Integration of benzocyclobutene polymers and silicon micromachined structures using anisotropic wet etching, J. Vac. Sci. Technol. B 22, 2439–2447 (2004)

    Google Scholar 

  430. P.B. Chinoy, J. Tajadod: Processing and microwave characterization of multilevel interconnects using benzocyclobutene dielectric, IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 714–719 (1993)

    Google Scholar 

  431. A.J.G. Strandjord, R.H. Heistand, J.N. Bremmer et al.: Photosensitive-BCB on laminate technology (MCM-LD). Proceedings – Electronic Components and Technology Conference, Washington, DC, pp. 374–386 (1994)

    Google Scholar 

  432. D. Burdeaux, P. Townsend, J. Carr et al.: Benzocyclobutene (Bcb) dielectrics for the fabrication of high-density, thin-film multichip modules, J. Electron. Mater. 19, 1357–1364 (1990)

    Google Scholar 

  433. L.A. Keser, R. Bajaj, T. Fang: Redistribution and bumping of a high I/O device for flip chip assembly, IEEE Trans. Adv. Packaging 23, 3–8 (2000)

    Google Scholar 

  434. D.T. Price, R.J. Gutmann, S.P. Murarka: Damascene copper interconnects with polymer ILDs, Thin Solid Films 308, 523–528 (1997)

    Google Scholar 

  435. J.B. Lee, J. English, C.H. Ahn et al.: Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits, J. Micromech. Microeng. 7, 44–54 (1997)

    Google Scholar 

  436. R. Carrillo-Ramirez, R.W. Jackson: A technique for interconnecting millimeter wave integrated circuits using BCB and bump bonds, IEEE Microwave Wireless Compon. Lett. 13, 196–198 (2003)

    Google Scholar 

  437. J. Im, E.O. Shaffer, R. Peters et al.: Physical and mechanical properties determination of photo-BCB-based thin films. Proceedings of the International Symposium on Microelectronics, Minneapolis, MN, pp. 168–175 (1996)

    Google Scholar 

  438. J.-h. Im, E.O. Shaffer Ii, T. Stokich Jr et al.: On the mechanical reliability of Photo-BCB-based thin film dielectric polymer for electronic packaging applications, J. Electron. Packaging, Trans. ASME 122, 28–33 (2000)

    Google Scholar 

  439. J.T. Beechinor, E. McGlynn, M. Oreilly et al.: Optical characterisation of thin film benzocyclobutene (BCB) based polymers, Microelectron. Eng. 33, 363–368 (1997)

    Google Scholar 

  440. A. Modafe, N. Ghalichechian, A. Frey et al.: Microball-bearing-supported electrostatic micromachines with polymer dielectric films for electromechanical power conversion, J. Micromech. Microeng. 16, S182–S190 (2006)

    Google Scholar 

  441. N. Ghalichechian, A. Modafe, M.I. Beyaz et al.: Design, fabrication, and characterization of a rotary micromotor supported on microball bearings, J. Microelectromech. Syst. 17, 632–642 (2008)

    Google Scholar 

  442. N. Ghalichechian, A. Modafe, J.H. Lang et al.: Dynamic characterization of a linear electrostatic micromotor supported on microball bearings, Sens. Act. A Phys. 136, 496–503 (2007)

    Google Scholar 

  443. K. Lee, J.P. He, R. Clement et al.: Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel, Biosens. Bioelectron. 20, 404–407 (2004)

    Google Scholar 

  444. P.E. Garrou, R.H. Heistand, M.G. Dibbs et al.: Rapid thermal curing of Bcb dielectric, IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 46–52 (1993)

    Google Scholar 

  445. J. Bryzek, K. Petersen, W. McCulley: Micromachines on the March, IEEE Spectrum 31, 20–31 (1994)

    Google Scholar 

  446. A. Modafe, N. Ghalichechian, M. Powers et al.: Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS, Microelectron. Eng. 82, 154–167 (2005)

    Google Scholar 

  447. S.Y. Kook, J.M. Snodgrass, A. Kirtikar et al.: Adhesion and reliability of polymer/inorganic interfaces, J. Electron. Packaging 120, 328–335 (1998)

    Google Scholar 

  448. S. Seok, N. Rolland, P.A. Rolland: Packaging methodology for RF devices using a BCB membrane transfer technique, J. Micromech. Microeng. 16, 2384–2388 (2006)

    Google Scholar 

  449. S.J. Woltman, G.D. Jay, G.P. Crawford: Liquid-crystal materials find a new order in biomedical applications, Nat. Mater. 6, 929–938 (2007)

    Google Scholar 

  450. C.G.L. Khoo, B. Brox, R. Norrhede et al.: Effect of copper lamination on the rheological and copper adhesion properties of a thermotropic liquid crystalline polymer used in PCB applications, IEEE Trans. Compon., Packaging, Manuf. Technol. C: Manuf. 20, 219–226 (1997)

    Google Scholar 

  451. E.C. Culbertson: New laminate material for high performance PCBs: liquid crystal polymer copper clad films. Proceedings Electronic Components and Technology Conference, Las Vegas, NV, pp. 520–523 (1995)

    Google Scholar 

  452. X.F. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: Processes and applications, J. Micromech. Microeng. 13, 628–633 (2003)

    Google Scholar 

  453. H.A. Broadbent, S.Z. Ivanov, D.P. Fries: Fabrication of a LCP-based conductivity cell and resistive temperature device via PCB MEMS technology, J. Micromech. Microeng. 17, 722–729 (2007)

    Google Scholar 

  454. J.N. Palasagaram, R. Ramadoss: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques, IEEE Sens. J. 6, 1374–1375 (2006)

    Google Scholar 

  455. Z. Illyefalvi-Vitez: Laser processing of adhesives and polymeric materials for microelectronics packaging applications. Proceedings International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, Espoo, Finland, pp. 289–295 (2000)

    Google Scholar 

  456. E.E. Guzzo, J.S. Preston: Laser-ablation as a processing technique for metallic and polymer layered structures, IEEE Trans. Semicond. Manuf. 7, 73–78 (1994)

    Google Scholar 

  457. B. Gu, J.M. Morrison: Cost effective small via generation – the laser solution. Proceedings of the IEEE Multi-Chip Module Conference, Santa Cruz, CA, pp. 212–216 (1995)

    Google Scholar 

  458. J. Schroers, Q. Pham, A. Desai: Thermoplastic forming of bulk metallic glass – A technology for MEMS and microstructure fabrication, J. Microelectromech. Syst. 16, 240–247 (2007)

    Google Scholar 

  459. D.M. Bryce: Plastic Injection Molding: Manufacturing Startup and Management (Society of Manufacturing Engineers, Dearborn, MI, 1999)

    Google Scholar 

  460. D.V. Rosato, D.V. Rosato, M.G. Rosato: Injection Molding Handbook (Kluwer, Boston, MA, 2000)

    Google Scholar 

  461. B.A. Davis: Compression Molding (Hanser Publishers, Munich, Cincinnati Hanser Gardner Publications, 2003)

    Google Scholar 

  462. A.I. Isayev: Injection and Compression Molding Fundamentals (Dekker, New York, NY, 1987)

    Google Scholar 

  463. MicroChem Corporation. http://www.microchem.com/ (accessed on 9-9-2008)

  464. V. Kudryashov, X.C. Yuan, W.C. Cheong et al.: Grey scale structures formation in SU-8 with e-beam and UV, Microelectron Eng. 67–68, 306–311 (2003)

    Google Scholar 

  465. Specialty Coating Systems. http://www.scscoatings.com/ (accessed on 9-9-2008)

  466. HD MicroSystems, Polyimides for Microelectronics Product Selector Guide

    Google Scholar 

  467. G. Genolet, M. Despont, P. Vettiger et al.: All-photoplastic, soft cantilever cassette probe for scanning force microscopy, J. Vac. Sci. Technol. B 18, 617–620 (2000)

    Google Scholar 

  468. H.S. Khoo, K.K. Liu, F.G. Tseng: Mechanical strength and interfacial failure analysis of cantilevered SU-8 microposts, J. Micromech. Microeng. 13, 822–831 (2003)

    Google Scholar 

  469. K. Lian, Z.-g. Ling, C. Liu: Thermal stability of SU-8 Fabricated microstructures as a function of photo initiator and exposure doses. Proceedings of SPIE – The International Society for Optical Engineering, San Jose, CA, pp. 208–212 (2003)

    Google Scholar 

  470. M. Hopcroft, T. Kramer, G. Kim et al.: Micromechanical testing of SU-8 cantilevers, Fatigue Fract. Eng. Mater. Struct. 28, 735–742 (2005)

    Google Scholar 

  471. J.P.F. Spratley, M.C.L. Ward, P.S. Hall: Bending characteristics of SU-8, Micro Nano Lett. 2, 20–23 (2007)

    Google Scholar 

  472. C. Luo, T.W. Schneider, R.C. White et al.: A simple deflection-testing method to determine Poisson’s ratio for MEMS applications, J. Micromech. Microeng. 13, 129–133 (2003)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Engineering Research Centers Program of the NSF under Award Number EEC-0310723 (Meng), NSF CAREER grant under Award Number ECS-0547544 (Meng), NSF CAREER grant under Award Number CMMI-0239163 (Zhang), NSF grant under Award Number CMMI-0826191 (Zhang), and NSF grant under Award Number CBET-0933653

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellis Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meng, E., Zhang, X., Benard, W. (2011). Additive Processes for Polymeric Materials. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics