Skip to main content

Lipid Rafts as Regulators of SNARE Activity and Exocytosis

  • Chapter
Molecular Mechanisms of Exocytosis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 684 Accesses

Abstract

Lipid rafts, cholesterol and sphingolipid rich microdomains of the plasma membrane, have been implicated in the regulation of several intracellular pathways. Interestingly, components of the SNARE membrane fusion machinery associate with raft domains, and recent work suggests that this interaction may play an important role in regulated exocytosis. Here, we review the relationship between rafts and SNAREs, and discuss how rafts might participate in regulated exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jahn R, Südhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999;68:863–911.

    Article  PubMed  CAS  Google Scholar 

  2. Lindau M, Aimers W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 1995;7:509–517.

    Article  PubMed  CAS  Google Scholar 

  3. Han X, Wang CT, Bai J et al. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 2004;304:289–92.

    Article  PubMed  CAS  Google Scholar 

  4. Peters C, Bayer MJ, Buhler S et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001;409:581–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lee J, Lentz BR. Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers. Proc Natl Acad Sci USA 1998;95:9274–9279.

    Article  PubMed  CAS  Google Scholar 

  6. Siegel DP. Energetics and intermediates in membrane fusion: Comparison of stalk and inverted micellar intermediate mechanisms. Biophys J 1993;65:2124–2140.

    Article  PubMed  CAS  Google Scholar 

  7. Chernomordik L. Nonbilayer lipids and biological fusion intermediates. Chem Phys Lipids 1996;81:203–213.

    Article  PubMed  CAS  Google Scholar 

  8. Kemble GW, Danieli T, White JM. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 1994;76(2):383–91.

    Article  PubMed  CAS  Google Scholar 

  9. Chernomordik LV, Frolov VA, Leikina et al. The pathway of membrane fusion catalyzed by influenza hemagglutinin: Restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 1998;140:1369–82.

    Article  PubMed  CAS  Google Scholar 

  10. Gaudin Y. Rabies virus-induced membrane fusion pathway. J Cell Biol 2000;150:601–12.

    Article  PubMed  CAS  Google Scholar 

  11. Melikyan GB, Barnard RJ, Abrahamyan LG et al. Imaging individual retroviral fusion events: From hemifusion to pore formation and growth. Proc Natl Acad Sci USA 2005;102(24):8728–33.

    Article  PubMed  CAS  Google Scholar 

  12. Markosyan RM, Cohen FS, Melikyan GB. Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol Biol Cell 2005, (in press).

    Google Scholar 

  13. Xu Y, Zhang F, Su Z et al. Hemifusion in SNAREmediated membrane fusion. Nat Struct Mol Biol 2005;12:417–422.

    Article  PubMed  CAS  Google Scholar 

  14. Lu X, Zhang F, McNew JA. Membrane fusion induced by neuronal SNAREs transits through hemifusion. J Biol Chem 2005;280:30538–30541.

    Article  PubMed  CAS  Google Scholar 

  15. Giraudo CG, Hu C, You D et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J Cell Biol 2005;170:249–260.

    Article  PubMed  CAS  Google Scholar 

  16. Reese C, Heise F, Mayer A. Trans-SNARE pairing can precede a hemifusion intermediate in intra-cellular membrane fusion. Nature 2005;436:410–414.

    PubMed  CAS  Google Scholar 

  17. Yang L, Huang HW. Observation of a membrane fusion intermediate structure. Science 2002;297:1877–18797.

    Article  PubMed  CAS  Google Scholar 

  18. Salaün C, James DE, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic 2004;5:255–264.

    Article  PubMed  Google Scholar 

  19. Edidin M. The state of lipid rafts: From model membranes to cells. Ann Rev Biophys Biomol Struct 2003;32:257–283.

    Article  CAS  Google Scholar 

  20. Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry 1988;27:6197–6202.

    Article  PubMed  CAS  Google Scholar 

  21. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997;387:569–572.

    Article  PubMed  CAS  Google Scholar 

  22. Palade GE. Fine structure of blood capillaries. J Appl Physiol 1953;24:1424.

    Google Scholar 

  23. Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biochem Biophys Cytol 1955;1:445–458.

    Article  CAS  Google Scholar 

  24. Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. JHistochem Cytochem 1994;42:155–166.

    CAS  Google Scholar 

  25. Simionescu N, Lupu F, Simionescu M. Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium. J Cell Biol 1983;97:1592–1600.

    Article  PubMed  CAS  Google Scholar 

  26. Rothberg KG, Heuser JE, Donzell WC et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992;68:673–682.

    Article  PubMed  CAS  Google Scholar 

  27. Sargiacomo M, Scherer PE, Tang ZL et al. Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995;92:9407–9411.

    Article  PubMed  CAS  Google Scholar 

  28. Moldovan NI, Heltianu C, Simionescu N et al. Ultrastructural evidence of differential solubility in Triton X-100 of endothelial vesicles and plasma membrane. Exp Cell Res 1995;219:309–313.

    Article  PubMed  CAS  Google Scholar 

  29. Fra AM, Williamson E, Simons et al. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 1994;269:30745–30748.

    PubMed  CAS  Google Scholar 

  30. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992;68:533–544.

    Article  PubMed  CAS  Google Scholar 

  31. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:31–41.

    Article  PubMed  CAS  Google Scholar 

  32. Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 2001;13:470–477.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson RGW. The caveolae membrane system. Ann Rev Biochem 1998;67:199–225.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma P, Varma R, Sarasij RC et al. Nanoscale organisation of multiple GPI-anchored proteins in living cell membranes. Cell 2004;116:577–589.

    Article  PubMed  CAS  Google Scholar 

  35. Plowman SJ, Muncke C, Parton RG et al. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci USA 2005, (in press).

    Google Scholar 

  36. Munro S. Lipid rafts: Elusive or illusive? Cell 2003;115:377–388.

    Article  PubMed  CAS  Google Scholar 

  37. Prior IA, Muncke C, Parton RG et al. Direct visualisation of ras proteins in spatially distinct cell surface microdomains. J Cell Biol 2003;160:165–170.

    Article  PubMed  CAS  Google Scholar 

  38. Friedrichson T, Kurzchalia TV. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 1998;394:802–805.

    Article  PubMed  CAS  Google Scholar 

  39. Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998;394:798–801.

    Article  PubMed  CAS  Google Scholar 

  40. Pralle A, Keller P, Florin EL et al. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000;148:997–1007.

    Article  PubMed  CAS  Google Scholar 

  41. Gaus K, Gratton E, Kable EPW et al. Visualising lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 2003;100:15554–15559.

    Article  PubMed  CAS  Google Scholar 

  42. Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys J 2002;83:2693–2701.

    PubMed  CAS  Google Scholar 

  43. Heerklotz H, Szadkowska H, Anderson T et al. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 2003;329:793–799.

    Article  PubMed  CAS  Google Scholar 

  44. Lafont F, Verkade P, Galli T et al. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci USA 1999;96:3734–3738.

    Article  PubMed  CAS  Google Scholar 

  45. Chamberlain LH, Burgoyne RD, Gould GW. SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 2001;98:5619–5624.

    Article  PubMed  CAS  Google Scholar 

  46. Lang T, Bruns D, Wenzel D et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001;20:2202–2213.

    Article  PubMed  CAS  Google Scholar 

  47. Chamberlain LH, Gould GW. The vesicle-and target-SNARE proteins that mediate Glut4 vesicle fusion are localised in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem 2002;277:49750–49754.

    Article  PubMed  CAS  Google Scholar 

  48. Pombo I, Rivera J, Blank U. Muncl8-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Letts 2003;550:144–148.

    Article  CAS  Google Scholar 

  49. Foster LJ, de Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 2003;100:5813–5818.

    Article  PubMed  CAS  Google Scholar 

  50. Taverna E, Saba E, Rowe J et al. Role of lipid microdomains in P/Q-type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J Biol Chem 2004;279:5127–5134.

    Article  PubMed  CAS  Google Scholar 

  51. Xia F, Gao X, Kwan E et al. Disruption of pancreatic beta cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 2004;279:24685–24691.

    Article  PubMed  CAS  Google Scholar 

  52. Gil C, Soler-Jover A, Blasi J et al. Synaptic proteins and SNARE complexes are localised in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Comm 2005;329:117–124.

    Article  PubMed  CAS  Google Scholar 

  53. Veit M, Sollner TH, Rothman JE. Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Letts 1996;385:119–123.

    Article  CAS  Google Scholar 

  54. Vogel K, Roche PA. SNAP-23 and SNAP-25 are palmitoylated in vivo. Biochem Biophys Res Comm 1999;258:407–410.

    Article  PubMed  CAS  Google Scholar 

  55. Melkonian KA, Ostermeyer AG, Chen JZ et al. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999;274:3910–3907.

    Article  PubMed  CAS  Google Scholar 

  56. Gonzalo S, Greentree WK, Linder ME. SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J Biol Chem 1999;274:21313–21318.

    Article  PubMed  CAS  Google Scholar 

  57. Salaün C, Gould GW, Chamberlain LH. The SNARE proteins SNAP-25 and SNAP-23 display different affinities for lipid rafts in PC12 cells: Regulation by distinct cysteine-rich domains. J Biol Chem 2005;280:1236–1240.

    Article  PubMed  CAS  Google Scholar 

  58. Gonzalo S, Linder ME. SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 1998;9:585–597.

    PubMed  CAS  Google Scholar 

  59. Sprong H, van der Sluijs P, van Meer G. How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2001;2:504–513.

    Article  PubMed  CAS  Google Scholar 

  60. Aoyagi K, Sugaya T, Umeda M et al. The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 2005;280:17346–17352.

    Article  PubMed  CAS  Google Scholar 

  61. Hope HR, Pike LJ. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 1996;7:843–851.

    PubMed  CAS  Google Scholar 

  62. Saslowsky DE, Lawrence JC, Henderson RM et al. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol. J Membr Biol 2003;194:153–164.

    Article  PubMed  CAS  Google Scholar 

  63. Bacia K, Schuette CG, Kahya N et al. SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted in giant unilameller vesicles. J Biol Chem 2004;279:37951–37955.

    Article  PubMed  CAS  Google Scholar 

  64. Weber T, Zemelman BV, McNew JA et al. SNAREpins: Minimal machinery for membrane fusion. Cell 1998;92:759–772.

    Article  PubMed  CAS  Google Scholar 

  65. Littleton JT, Barnard RJ, Titus SA et al. SNARE complex disassembly by NSF follows synaptic vesicle fusion. Proc Natl Acad Sci USA 2001;98:12233–12238.

    Article  PubMed  CAS  Google Scholar 

  66. Pevsner J, Hsu SC, Braun JE et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 1994;13:353–361.

    Article  PubMed  CAS  Google Scholar 

  67. McMahon HT, Missler M, Li C et al. Complexins: Cytosolic proteins that regulate SNAP receptor function. Cell 1995;83:111–119.

    Article  PubMed  CAS  Google Scholar 

  68. Reim K, Mansour M, Varoqueaux F et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 2001;104:71–81.

    Article  PubMed  CAS  Google Scholar 

  69. Tokumaru H, Umayahara K, Pellegrini LL et al. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 2001;104:421–432.

    Article  PubMed  CAS  Google Scholar 

  70. Chen X, Tomchick DR, Kovrigin E et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 2002;33:397–409.

    Article  PubMed  CAS  Google Scholar 

  71. Chapman ER. Synaptotagmin: A Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol 2002;3:498–508.

    Article  PubMed  CAS  Google Scholar 

  72. Voets T, Toonen RF, Brian EC et al. Muncl8-1 promotes large dense-core vesicle docking. Neuron 2001;30:581–591.

    Article  Google Scholar 

  73. Augustin I, Rosenmund C, Sudhof TC et al. Muncl3-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 1999;400:457–461.

    Article  PubMed  CAS  Google Scholar 

  74. Fisher RJ, Pevsner J, Burgoyne RD. Control of fusion pore dynamics during exocytosis by muncl8. Science 2001;291:875–878.

    Article  PubMed  CAS  Google Scholar 

  75. Ilangumaran S, Hoessli DC. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 1998;335:433–440.

    PubMed  CAS  Google Scholar 

  76. Rodal SK, Skretting G, Garred O. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999;10:961–974.

    PubMed  CAS  Google Scholar 

  77. Chasserot-Golaz S, Vitale N, Umbrecht-Jenck E et al. Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell 2005;16:1108–1119.

    Article  PubMed  CAS  Google Scholar 

  78. Wick PF, Trenkle JM, Holz RW. Punctate appearance of dopamine-beta-hydroxylase on the chro-maffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis. Neuro-science 1997;80:847–860.

    CAS  Google Scholar 

  79. Salaün C, Gould GW, Chamberlain LH. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. J Biol Chem 2005;280:19449–19453.

    Article  PubMed  CAS  Google Scholar 

  80. Mousavia SA, Malerod L, Berg T et al. Clathrin-dependent endocytosis. Biochem J 2004;377:1–16.

    Article  Google Scholar 

  81. Artalejo CR, Henley JR, McNiven MA et al. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc Natl Acad Sci USA 1995;92:8328–8332.

    Article  PubMed  CAS  Google Scholar 

  82. Palfrey HC, Artalejo CR. Vesicle recycling revisited: Rapid endocytosis may be the first step. Neu-roscience 1998;83:969–989.

    CAS  Google Scholar 

  83. Ales E, Tabares L, Poyato JM et al. High calcium concentrations shift the mode of exocytosis to the kiss and run mechanism. Nat Cell Biol 1999;1:40–44.

    Article  PubMed  CAS  Google Scholar 

  84. Stevens CF, Williams JH. “Kiss and run” exocytosis at hippocampal synapses. Proc Natl Acad Sci USA 2000;97:12828–12833.

    Article  PubMed  CAS  Google Scholar 

  85. Graham ME, O’Callaghan DW, McMahon HT et al. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci USA 2002;99:7124–7129.

    Article  PubMed  CAS  Google Scholar 

  86. Holroyd P, Lang T, Wenzel D et al. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci USA 2002;99:16806–16811.

    Article  PubMed  CAS  Google Scholar 

  87. Tsuboi T, McMahon HT, Rutter GA. Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 2004;279:47115–47124.

    Article  PubMed  CAS  Google Scholar 

  88. Wang CT, Grishanin R, Earles CA et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 2001;294:1111–1115.

    Article  PubMed  CAS  Google Scholar 

  89. Wang CT, Lu JC, Bai J et al. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 2003;424:943–947.

    Article  PubMed  CAS  Google Scholar 

  90. Graham ME, Fisher RJ, Burgoyne RD. Measurement of exocytosis by amperometry in adrenal chromaffin cells: Effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie 2000;82:469–479.

    Article  PubMed  CAS  Google Scholar 

  91. Graham ME, Burgoyne RD. Comparison of Cysteine-string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for Csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J Neurosci 2000;20:1281–1289.

    PubMed  CAS  Google Scholar 

  92. Archer DA, Graham ME, Burgoyne RD. Complexin regulates the closure of the fusion pore during regulated exocytosis. J Biol Chem 2002;277:18249–18252.

    Article  PubMed  CAS  Google Scholar 

  93. Owen PJ, Marriott DB, Boarder MR. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells. Br J Pharmacol 1989;97:133–138.

    PubMed  CAS  Google Scholar 

  94. Lopez MG, Villarroya M, Lara B et al. Q-and L-type calcium channels dominate the control of secretion in bovine chromaffin cells. FEBS Letts 1994;349:331–337.

    Article  CAS  Google Scholar 

  95. Pallavi B, Nagaraj R. Palmitoylated peptides from the cysteine-rich domain of SNAP-23 cause membrane fusion depending on peptide length, position of cysteines, and extent of palmitoylation. J Biol Chem 2003;278:12737–12744.

    Article  PubMed  CAS  Google Scholar 

  96. Tuma PL, Hubbard AL. Transcytosis: Crossing cellular barriers. Physiol Rev 2003;83:871–932.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Salaün, C., Chamberlain, L.H. (2007). Lipid Rafts as Regulators of SNARE Activity and Exocytosis. In: Molecular Mechanisms of Exocytosis. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39961-4_7

Download citation

Publish with us

Policies and ethics