Skip to main content

Fluorescence Techniques in Biomedicine: From the Monitoring of Cell Metabolism to Image Processing in Cancer Detection

  • Chapter
Reviews in Fluorescence 2004

Part of the book series: Reviews in Fluorescence 2004 ((RFLU,volume 2004))

  • 377 Accesses

Abstract

The state of the art in fluorescence imaging for biomedical applications is demonstrated. 2-dimensional profiles of fluorophores gained with non-contact techniques show the quantitative distribution of endogenous NADH in the UV and synthetic markers in the NIR spectral range. The biomedical use extends from basic research investigations on the metabolism in mitochondria to clinical applications when differentiating the tumor border zone.

One of the outstanding advantages of near infrared so-called Optical Molecular Imaging (OMI) is bright fluorescence of the markers by specific molecular interaction with tumor specific enzymes. For the in vivo tests of the dyes an experimental NIR imager was used. NIR fluorescence of the entire body of small animals can be imaged.

The analysis of fluorescences from the interior of the probes shows strong intensity distortion due to tissue optics. Rescaling as the physical basis for image processing taking into account biochemical and biooptical methods result in the real concentration of the fluorophore under consideration. For example, the diameter of the fluorescent volume is apparently larger without rescaling. This new interpretation of fluorescence pictures has useful applications in biomedicine now and in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul H (ed.): Lexikon der Optik Spektruumm Akademischer Verlag, Heidelberg, Berlin, 1999

    Google Scholar 

  2. Chance B, Legallais V, Schoener B: Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal. Nature 195 (1962) 1073–1075

    Article  CAS  Google Scholar 

  3. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y: Oxidation-Reduction Ratio studies of mitichondria in freeze-trapped samples. J. Biol. Chem. 254 (1979) 4766–4771

    Google Scholar 

  4. Renault G, Raynal E, Sinet M, Berthier JP, Godard B, Cornillault J: A laser fluorimeter for direct cardiac metabolism monitoring. Opt. Laser Technol. 14 (1982) 143–148

    Article  CAS  Google Scholar 

  5. Renault G, Sinet M, Muffat-Joly M, Fourati T, Polianski J, Meric P, Weiser M, Pocidalo J: Evaluation in situ du métabolisme tissulaire par fluorimétrie laser. La Presse Médicale 13 (1984) 2381–2385

    CAS  Google Scholar 

  6. Richards-Kortum, R, Raya R, Fitzmaurice M, Tong L, Ratliff N, Kramer J: A one-layer model of laserinduced fluorescence for diagnosis in human tissue: Applications to artheroscleroris. IEEE Trans. Biomed. Eng. 36 (1989) 1222–1232

    Article  CAS  Google Scholar 

  7. Beuthan J, Zur C, Hofmann H: Quantitative (in vivo) NADH-Messung — ein methodisch klinischer Anssatz zur biologischen Äquivalentdosimetrie. Adv. Laser Medicine 5 (1990) 253–260

    Google Scholar 

  8. Beuthan J, Minet O, Müller G: Observations of the fluorescence response of the coenzyme NADH in biological samples, Opt. Lett 18 (1993) 1098–1099

    Article  CAS  Google Scholar 

  9. Lohmann W, Schill WB, Bucher D, Peters T, Nilles M, Schulz A, Bohle R, Schramm W: Tissue diagnosis using autofluorescence. Proc. SPIE 2081 (1993) 10–24

    Google Scholar 

  10. Wu J, Field S, Raya RP: Analytical model for extracting intrinsic fluorescence in turbid media. Appl. Opt. 32 (1993) 3285–3295

    Google Scholar 

  11. Beuthan J, Weber A, Minet O, Hagemann R, Roggan A, Schmitt I, Müller G, Germer C, Albrecht D, Bocher T: Untersuchungen zur NADH-Konzentrationsbestimmung mittels optischer Biopsie. Lasermedizin 10 (1994) 57–63

    Google Scholar 

  12. Beuthan J, Bocher T, Minet O, Roggan A, Schmitt I, Weber A, Müller G: Investigations concerning the determination of NADH-concentrations using optical biopsy. Proc. SPIE 2135 (1994) 147–156

    Article  CAS  Google Scholar 

  13. Chung YG, Schwartz J, Gardner C, Sawaya R, Jacques SL: Fluorescence of normal and cancerous brain tissues: the excitation/emission matrix. Proc. SPIE 2135 (1994) 66–75

    Article  CAS  Google Scholar 

  14. Gandjbakhche A, Ganmot I: Quantitative fluorescent imaging of specific markers of diseased tissue. IEEE Sel. Topics QE 2 (1996) 914–921

    Article  CAS  Google Scholar 

  15. Pogue BW, Hasan T: Fluorophore quantition in tissue-simulating media with confocal detection. IEEE SeL Topics QE 2 (1996) 959–964

    Article  Google Scholar 

  16. Yova D, Atlamazoglou V, Davaris P, Kavantzas N, Loukas S: Colon cancer diagnosis using fluorescence spectroscopy and fluorescence imaging technique. Proc. SPIE 3197 (1997) 4–15

    Article  CAS  Google Scholar 

  17. af Klinteberg C, Wang I, Lindquist C, Vaitkuviene A, Svanberg K: Laser-induced fluorescence studies of premalignant and benign lesions in the female genital tract. Proc. SPIE 3197 (1997) 34–40

    Article  Google Scholar 

  18. Padilla-Ybarra JJ, Bourg-Heckly G, A’Amar O, Biais J, Etienne J, Guillemin F: UV induced autofluorescence spectroscopy in Barrett’s esophagus. Proc. SPIE 3197 (1997) 54–59

    Article  Google Scholar 

  19. Lohmann W, Schill WB, Bohle RM, Dreyer T: Autofluorescence of seborrheic keratosis (warts) and of tissue surrrounding malignant tumors. Proc. SPIE 3197 (1997) 140–150

    Article  Google Scholar 

  20. Beuthan J, Minet O, Müüller G: Optical Biopsy of Cytokeratin and NADH in the Tumor Border Zone. Ann. N.Y. Acad. SCi 838 (1998) 150–170

    Article  CAS  Google Scholar 

  21. Beuthan J, Minet O: Fluorescence Diagnosis in the Border Zone of Liver Tumors. In: Rettig W. et al (eds.): Applied Fluorescence in Chemistry, Biology and Medicine. Springer, Berlin 1999, pp.537–551

    Chapter  Google Scholar 

  22. Shehada REN, Marmarelis VZ, Mansour HN, Grundfest WS: Laser Induced Fluorescence Attenuation Spectroscopy: Detection of Hypoxia. IEEE Trans. Biomed. Eng. 47 (2000) 301–312

    Article  CAS  Google Scholar 

  23. Schuchmann S, Kovacs R, Kann O, Heinemann U, Buchheim K: Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices. Brain Res. Prot. 7 (2001) 267–276

    Article  CAS  Google Scholar 

  24. Zeilweger M, Goujon D, Conde R, Forrer M, van den Bergh, H, Wagnières G: Absolute autofluorescence spectra of human healthy, metaplastic, and early cancerous bronchial tissue in vivo. Appl. Opt. 40 (2001) 3784–3791

    Google Scholar 

  25. Loetscher P, Alvarez-Gonsalez R, Althaus FR: Poly(ADP-ribose) may signal changing metabolic conditions to the chromatin of mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 84 (1987), 1286–1289

    Article  CAS  Google Scholar 

  26. D’Amours D, Desnoyers S, D’Silva I, Poirier GG: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 324 (1999) 249–268

    Article  Google Scholar 

  27. Ziegler M: New functions of a long-known molecule. Emerging roles of NAD in cellular signalling. Eur. J. Biochem. 267(2000) 1550–1564

    Article  CAS  Google Scholar 

  28. Skidmore CJ, Davies MI, Goodwin PM, Halldorsson H, Lewis PJ, Shall S, Zia’ee AA: The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma-radiation and N-methyl-N-nitrosourea. Eur. J. Biochem. 101 (1979) 135–142

    Article  CAS  Google Scholar 

  29. Berger NA: Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101 (1985) 4–15

    Article  CAS  Google Scholar 

  30. Ha HC, Snyder SH: Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. NatL Acad Sci. U.S.A. 96 (1999) 13978–13982

    Article  CAS  Google Scholar 

  31. Lee HC: Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Ann. Rev. Pharmacol. Toxicol. 41 (2001) 317–345

    Article  Google Scholar 

  32. Guse AH: Cyclic ADP-ribose: a novel Ca2+-mobilising second messenger. Cell. Signal. 11 (1999) 309–316

    Article  CAS  Google Scholar 

  33. Sahnan JM, Kohen E, Viallet P, Hirschberg JG, Wouters AW, Kohen C, Thorell B: Microspectrofluometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem. Photobiol. 36 (1982) 585–593

    Article  Google Scholar 

  34. Galeotti T, van Rossum GDV, Mayer DH, Chance B: On the fluorescence of NAD(P)H in Whole-Cell Preparations of Tumours and Normal Tissues. Eur. J. Biochem. 17 (1970) 485–496

    Article  CAS  Google Scholar 

  35. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML: Fluorescence Lifetime Imaging of Free and Protein-Bound NADH. Proc. Natl. Acad. Sci. USA. 89 (1992) 1271–1275

    Article  CAS  Google Scholar 

  36. Virag L, Szabo C: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54 (2002) 375–429

    Article  CAS  Google Scholar 

  37. Tentorri L, Portarena I, Graziani G: Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors Phamnacol Res. 45 (2002) 73–85

    Article  Google Scholar 

  38. Varadarajan SG, An J, Novalija E, Smart SC, Stowe DF: Changes in [Na i, compartmental [Ca2+], and NADH with dysfunction after global ischemia in intact hearts. Am. J. Physiol. Heart Circ. PhysioL 280 (2001) H280–293

    Google Scholar 

  39. Halmosi R, Berente Z, Osz E, Toth K, Literati-Nagy P, Sumegi B: Effect of Poly(ADP-Ribose) Polymerase Inhibitors on the Ischemia-Reperfusion-Induced Oxidative Cell Damage and Mitochondrial Metabolism in Langendorff Heart Perfusion System. Mol. Pharmacol. 59 (2001) 1479–1505

    Google Scholar 

  40. Kohen E, Santus R, Hirschberg JG: Fluorescence Probes in Oncology. Imperial College Press, London 2002

    Book  Google Scholar 

  41. Mildažiene V, Baniene R: private communication July 2003

    Google Scholar 

  42. Gornal AG, Bardavill GJ, David MM: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177 (1949) 751–766

    Google Scholar 

  43. Fabiato A, Fabiato F: Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol.(Paris), 75 (1979) 463–505

    CAS  Google Scholar 

  44. Roggan A, Minet O, Schröder C, Müller G: Measurements of optical tissue properties using integratinng sphere technique. In: Medical Optical Tomography. G. Müller et al. (eds.), SPIE IS 11, Bellingham 1993, pp. 149–165

    Google Scholar 

  45. Ishimaru I: Wave Propagation and Scattering in Random Media. Academic Press, San Diego, New York 1978

    Google Scholar 

  46. Tuchin V: Selected Papers on Tissue Optics. SPIE MS 102, Bellingham 1994

    Google Scholar 

  47. Bocher T, Luhmann T, Baier S, Dierolf M, Naumann M, Beuthan J, Berlien HP, Müller GJ: Multispectral fluorescence imaging device for malignancy detection. Proc. SPIE 3197 (1997) 60–67

    Article  Google Scholar 

  48. Weissleder R: Molecular Imaging: Exploring the next frontier. Radiology 212 (1999) 609–614

    CAS  Google Scholar 

  49. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmnann B, Grötzinger C: Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotech. 19 (2001) 327–331

    Article  CAS  Google Scholar 

  50. Bugaj JE, Achilefu S, Dorshow RB, Rajagopalan R: Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform. J. Biomed Opt. 6 (2001) 122–133

    Article  CAS  Google Scholar 

  51. Weissleder R, Tung C, Mahmood U, Bognanov A: In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotech. 17 (1999) 375–378

    Article  CAS  Google Scholar 

  52. Weissleder R: Scaling down Imaging: Molecular Mapping of Cancer in Mice. Nature Rev. 2 (2002) 1–7

    Google Scholar 

  53. Adams JY, Johnson M, Sato M, Berger F, Gambhie SS, Carey M, Iruela-Arispe ML, Wu L: Visualization of advanced human prostate cancer lesions in mice by a targeted gene transfer vector and optical imaging. Nature Med. 8 (2002) 891–896

    CAS  Google Scholar 

  54. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W: Hydrophilic Cyanine Dyes as Contrast Agents for Near-Infrrared Tumor Imaging: Synthesis, Photophysical Properties and Spectroscopic In Vivo Characterization. Photochem. Photobiol. 72 (2000) 392–398

    Article  CAS  Google Scholar 

  55. Licha K: Contrast Agents for Optical imaging. In: Krause W (ed.): Contrast Agents II (Topics in Current Chemistry, Vol. 222). Springer, Berlin, Heidelberg, NY. 2002, pp. 1–29

    Chapter  Google Scholar 

  56. Minet O, Beuthan J, Licha K, Mahnke C: The biomedical use of rescaling procedures in Optical Biopsy and Optical Molecular Imaging. In R. Kraayenhof, A.J.W.G. Visser, H.C. Germitsen, (ed): Fluorescence Spectroscopy, Imaging and Probes. Springer, Berlin, Heidelberg, NY. 2002, pp. 349–360

    Chapter  Google Scholar 

  57. Riefke, B, Licha, K, Nolte, D, Ebert, B, Rinneberg, H, Semmler, W: In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging. Proc. SPIE 2927 (1996) 199–208

    Article  CAS  Google Scholar 

  58. Ebert B, Sukowski U, Grosenick D, Wabnitz H, Moesta KT, Licha K, Becker A, Semmler W, Schlag PM, Rinneberg H: Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments. J. Biomed. Opt 6 (2001) 134–40

    Article  CAS  Google Scholar 

  59. Minet O: Zur Bestimmung der räumlichen Verteilung von Fluoreszenzzentren in streuenden Medien. Fortschritte in der Lasermedizin 12 (1995) 98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minet, O., Beuthan, J., Mildažiene, V., Baniene, R. (2004). Fluorescence Techniques in Biomedicine: From the Monitoring of Cell Metabolism to Image Processing in Cancer Detection. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2004. Reviews in Fluorescence 2004, vol 2004. Springer, Boston, MA. https://doi.org/10.1007/978-0-306-48672-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48672-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0992-6

  • Online ISBN: 978-0-306-48672-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics