Skip to main content

Reduction of Plasma Globotriaosylsphingosine Levels After Switching from Agalsidase Alfa to Agalsidase Beta as Enzyme Replacement Therapy for Fabry Disease

  • Research Report
  • Chapter
  • First Online:
JIMD Reports, Volume 25

Abstract

Introduction: Agalsidase alfa and agalsidase beta, recombinant enzyme preparations for treatment of Fabry disease (FD), have different approved dosing schedules: 0.2 mg/kg and 1.0 mg/kg every other week (EOW), respectively.

Methods: This open-label, multicenter, exploratory phase 4 study evaluated plasma globotriaosylsphingosine (lyso-GL-3) and plasma and urine globotriaosylceramide (GL-3) levels at baseline and 2, 4, and 6 months after the switch from agalsidase alfa (0.2 mg/kg EOW for ≥12 months) to agalsidase beta (1.0 mg/kg EOW) in 15 male patients with FD. Immunoglobulin (Ig)G antidrug antibody titers were assessed, and safety was monitored throughout the study.

Results: Plasma lyso-GL-3 concentrations decreased significantly within 2 months after switch and reductions continued through month 6 (mean absolute changes, −12.8, −16.1, and −16.7 ng/mL at 2, 4, and 6 months, respectively; all P < 0.001). The mean percentage reduction from baseline was 39.5% (P < 0.001) at month 6. For plasma GL-3, the mean absolute change from baseline (−0.9 μg/mL) and percentage reduction (17.9%) at month 6 were both significant (P < 0.05). Urine GL-3 measurements showed intra-patient variability and changes from baseline were not significant. No clinical outcomes were assessed in this 6-month study, and, therefore, no conclusions can be drawn regarding the correlation of observed reductions in glycosphingolipid concentrations with clinically relevant outcomes. There were no differences in IgG antidrug antibody titers between the two enzymes. The switch from agalsidase alfa to agalsidase beta was well tolerated.

Conclusion: Plasma lyso-GL-3 and GL-3 levels reduced after switching from agalsidase alfa to agalsidase beta, indicating that agalsidase beta has a greater pharmacodynamic effect on these markers at the recommended dose. These data further support the use of agalsidase beta 1.0 mg/kg EOW as enzyme replacement therapy in FD.

Competing interests: None declared

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts JM, Groener JE, Kuiper S et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105:2812–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbey F, Brakch N, Linhart A et al (2006) Cardiac and vascular hypertrophy in Fabry disease: evidence for a new mechanism independent of blood pressure and glycosphingolipid deposition. Arterioscler Thromb Vasc Biol 26:839–844

    Article  CAS  PubMed  Google Scholar 

  • Barbey F, Lidove O, Schwarting A (2008) Fabry nephropathy: 5 years of enzyme replacement therapy – a short review. NDT Plus 1:11–19

    CAS  Google Scholar 

  • Biegstraaten M, Hollak CE, Bakkers M, Faber CG, Aerts JM, van Schaik IN (2012) Small fiber neuropathy in Fabry disease. Mol Genet Metab 106:135–141

    Article  CAS  PubMed  Google Scholar 

  • Blanch LC, Meaney C, Morris CP (1996) A sensitive mutation screening strategy for Fabry disease: detection of nine mutations in the alpha-galactosidase A gene. Hum Mutat 8:38–43

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Speijer D, Linthorst GE, Donker-Koopman WG, Strijland A, Aerts JM (2003) Recombinant enzyme therapy for Fabry disease: absence of editing of human alpha-galactosidase A mRNA. Am J Hum Genet 72:23–31

    Article  CAS  PubMed  Google Scholar 

  • Chambless LE, Folsom AR, Clegg LX et al (2000) Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol 151:478–487

    Article  CAS  PubMed  Google Scholar 

  • Chien YH, Bodamer OA, Chiang SC, Mascher H, Hung C, Hwu WL (2013) Lyso-globotriaosylsphingosine (lyso-Gb3) levels in neonates and adults with the Fabry disease later-onset GLA IVS4+919G>A mutation. J Inherit Metab Dis 36:881–885

    Article  CAS  PubMed  Google Scholar 

  • Clarke JT, West ML, Bultas J, Schiffmann R (2007) The pharmacology of multiple regimens of agalsidase alfa enzyme replacement therapy for Fabry disease. Genet Med 9:504–509

    Article  CAS  PubMed  Google Scholar 

  • DeGraba T, Azhar S, Dignat-George F et al (2000) Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol 47:229–233

    Article  CAS  PubMed  Google Scholar 

  • Desnick RJ (2004) Enzyme replacement therapy for Fabry disease: lessons from two alpha-galactosidase A orphan products and one FDA approval. Expert Opin Biol Ther 4:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Desnick RJ, Schuchman EH (2012) Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet 13:307–335

    Article  CAS  PubMed  Google Scholar 

  • Eng CM, Resnick-Silverman LA, Niehaus DJ, Astrin KH, Desnick RJ (1993) Nature and frequency of mutations in the alpha-galactosidase A gene that cause Fabry disease. Am J Hum Genet 53:1186–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng CM, Niehaus DJ, Enriquez AL, Burgert TS, Ludman MD, Desnick RJ (1994) Fabry disease: twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase A gene. Hum Mol Genet 3:1795–1799

    Article  CAS  PubMed  Google Scholar 

  • Eng CM, Ashley GA, Burgert TS, Enriquez AL, D’Souza M, Desnick RJ (1997) Fabry disease: thirty-five mutations in the alpha-galactosidase A gene in patients with classic and variant phenotypes. Mol Med 3:174–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng CM, Guffon N, Wilcox WR et al (2001) Safety and efficacy of recombinant human alpha-galactosidase A – replacement therapy in Fabry’s disease. N Engl J Med 345:9–16

    Article  CAS  PubMed  Google Scholar 

  • Eng CM, Fletcher J, Wilcox WR et al (2007) Fabry disease: baseline characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis 30:184–192

    Article  CAS  PubMed  Google Scholar 

  • Fabrazyme® Summary of product characteristics, last updated October 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000370/WC500020547.pdf. Accessed 23 Jul 2015

  • Fabrazyme® Prescribing information, last updated May 2010. http://www.fabrazyme.com/hcp/pi/fz_us_hc_pi.pdf. Accessed 23 Jul 2015

  • Ferraz MJ, Kallemeijn WW, Mirzaian M et al (2014) Gaucher disease and Fabry disease: new markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim Biophys Acta 1841:811–825

    Article  CAS  PubMed  Google Scholar 

  • Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkin RJ, Bissler J, Banikazemi M et al (2008) Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr Res 64:550–555

    Article  PubMed  Google Scholar 

  • Keslová-Veselíková J, Hůlková H, Dobrovolný R et al (2008) Replacement of alpha-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients. Virchows Arch 452:651–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K, Jin X, Zhang K et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13:305–313

    Article  PubMed  Google Scholar 

  • Lee BH, Heo SH, Kim GH et al (2010) Mutations of the GLA gene in Korean patients with Fabry disease and frequency of the E66Q allele as a functional variant in Korean newborns. J Hum Genet 55:512–517

    Article  CAS  PubMed  Google Scholar 

  • Lenders M, Stypmann J, Duning T, Schmitz B, Brand SM, Brand E (2015) Serum-mediated inhibition of enzyme replacement therapy in Fabry disease. J Am Soc Nephrol. pii: ASN.2014121226 (Epub ahead of print)

    Google Scholar 

  • Lin HY, Huang YH, Liao HC et al (2014) Clinical observations on enzyme replacement therapy in patients with Fabry disease and the switch from agalsidase beta to agalsidase alfa. J Chin Med Assoc 77:190–197

    Article  CAS  PubMed  Google Scholar 

  • Linthorst GE, Hollak CE, Donker-Koopman WE, Strijland A, Aerts JM (2004) Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int 66:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Meaney C, Blanch LC, Morris CP (1994) A nonsense mutation (R220X) in the alpha-galactosidase A gene detected in a female carrier of Fabry disease. Hum Mol Genet 3:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Nelson BC, Roddy T, Araghi S et al (2004) Globotriaosylceramide isoform profiles in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 805:127–134

    Article  CAS  PubMed  Google Scholar 

  • Niemann M, Rolfs A, Störk S et al (2014) Gene mutations versus clinically relevant phenotypes: lyso-Gb3 defines Fabry disease. Circ Cardiovasc Genet 7:8–16

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim JA, Joo KY et al (2011) Globotriaosylceramide leads to K(Ca)3.1 channel dysfunction: a new insight into endothelial dysfunction in Fabry disease. Cardiovasc Res 89:290–299

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Spinelli L, Visciano B et al (2013) Effects of switching from agalsidase beta to agalsidase alfa in 10 patients with Anderson-Fabry disease. JIMD Rep 9:41–48

    Article  CAS  PubMed  Google Scholar 

  • Replagal® Summary of product characteristics, last updated September 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000369/WC500053612.pdf. Accessed 23 Jul 2015

  • Roddy TP, Nelson BC, Sung CC et al (2005) Liquid chromatography-tandem mass spectrometry quantification of globotriaosylceramide in plasma for long-term monitoring of Fabry patients treated with enzyme replacement therapy. Clin Chem 51:237–240

    Article  CAS  PubMed  Google Scholar 

  • Rombach SM, Dekker N, Bouwman MG et al (2010) Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta 1802:741–748

    Article  CAS  PubMed  Google Scholar 

  • Rombach SM, van den Bogaard B, de Groot E et al (2012) Vascular aspects of Fabry disease in relation to clinical manifestations and elevations in plasma globotriaosylsphingosine. Hypertension 60:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Murata-Ohsawa M, Kawashima I et al (2006) Comparison of the effects of agalsidase alfa and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 51:180–188

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Niño MD, Sanz AB, Carrasco S et al (2011) Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant 26:1797–1802

    Article  PubMed  Google Scholar 

  • Schaefer RM, Tylki-Szymańska A, Hilz MJ (2009) Enzyme replacement therapy for Fabry disease: a systematic review of available evidence. Drugs 69:2179–2205

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H (2008) The immunogenicity of therapeutic proteins and the Fabry antibody standardization initiative. Clin Ther 30(Suppl B):S50–S51

    Article  PubMed  Google Scholar 

  • Schiffmann R, Murray GJ, Treco D et al (2000) Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc Natl Acad Sci U S A 97:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffmann R, Martin RA, Reimschisel T et al (2010) Four-year prospective clinical trial of agalsidase alfa in children with Fabry disease. J Pediatr 156:832–837

    Article  CAS  PubMed  Google Scholar 

  • Shabbeer J, Yasuda M, Benson SD, Desnick RJ (2006) Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2:297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JS, Meng XL, Moore DF et al (2008) Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 95:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirrs SM, Bichet DG, Casey R et al (2014) Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab 111:499–506

    Article  CAS  PubMed  Google Scholar 

  • Smid BE, Rombach SM, Aerts JM et al (2011) Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients. Orphanet J Rare Dis 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Togawa T, Kodama T, Suzuki T et al (2010) Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol Genet Metab 100:257–261

    Article  CAS  PubMed  Google Scholar 

  • Togawa T, Takada M, Aizawa Y, Tsukimura T, Chiba Y, Sakuraba H (2014) Comparative study on mannose 6-phosphate residue contents of recombinant lysosomal enzymes. Mol Genet Metab 111:369–373

    Article  CAS  PubMed  Google Scholar 

  • Tøndel C, Bostad L, Larsen KK et al (2013) Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol 24:137–148

    Article  PubMed  Google Scholar 

  • Topaloglu AK, Ashley GA, Tong B et al (1999) Twenty novel mutations in the alpha-galactosidase A gene causing Fabry disease. Mol Med 5:806–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi K, Yamamoto H (2014) Clinical course of patients with Fabry disease who were switched from agalsidase-β to agalsidase-α. Genet Med 16:766–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Breemen MJ, Rombach SM, Dekker N et al (2011) Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry disease following enzyme replacement therapy. Biochim Biophys Acta 1812:70–76

    Article  PubMed  Google Scholar 

  • Vedder AC, Linthorst GE, Houge G et al (2007) Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One 2: e598

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnock DG, Mauer M (2014) Fabry disease: dose matters. J Am Soc Nephrol 25:653–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidemann F, Krämer J, Duning T et al (2014) Patients with Fabry disease after enzyme replacement therapy dose reduction versus treatment switch. J Am Soc Nephrol 25:837–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox WR, Banikazemi M, Guffon N et al (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors received editorial/writing support in the preparation of this manuscript provided by Alessia Piazza, PhD, of Excerpta Medica, funded by Genzyme. The authors were responsible for all content and editorial decisions and have not received honoraria related to the development of this publication.

The authors would like to acknowledge the staff at the Genzyme Clinical Specialty Laboratory (Framingham, MA, USA) for performing all laboratory assays.

We dedicate this manuscript to the memory of John A. Barranger who acted as the principal study investigator but sadly passed away.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Goker-Alpan .

Editor information

Editors and Affiliations

Additional information

Communicated by: Markus Ries, MD, PhD, MHSc, FCP

Appendices

Synopsis

Agalsidase beta at a dose of 1.0 mg/kg administered EOW may further reduce plasma and urine glycosphingolipid concentrations beyond reductions previously achieved with agalsidase alfa in patients with Fabry disease.

Compliance with Ethics Guidelines

Conflict of Interest

Ozlem Goker-Alpan has received research support (Actelion, Shire HGT, Genzyme, Amicus, Pfizer-Protalix Biotherapeutics), payments for consultancy (Actelion, Shire HGT, Pfizer-Protalix Biotherapeutics), and speaker bureaus (Actelion, Shire HGT, Genzyme). Daniel J. Gruskin and Larry Blankstein are Genzyme employees. Neal J. Weinreb receives travel reimbursements and/or honoraria and/or research support from Shire HGT, Genzyme, Pfizer Corporation, and Actelion Corporation. Michael J. Gambello, Gustavo H.B. Maegawa, and Khan J. Nedd declare that they have no conflict of interest.

The study is registered at www.ClinicalTrials.gov under the identifier NCT01650779 and was sponsored by Genzyme, a Sanofi company.

Patient Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients, or their parents, or legal guardians, for being included in the study.

Details of the Contributions of Individual Authors

Daniel J. Gruskin and Larry Blankstein were involved in the study planning and coordination of statistical analyses. Ozlem Goker-Alpan, Michael J. Gambello, Gustavo H.B. Maegawa, Khan J. Nedd, and Neal J. Weinreb were involved in the study conduct. All authors contributed to the first draft of the manuscript, were involved in the critical review and revision of subsequent drafts, and approved the final draft for submission.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goker-Alpan, O. et al. (2015). Reduction of Plasma Globotriaosylsphingosine Levels After Switching from Agalsidase Alfa to Agalsidase Beta as Enzyme Replacement Therapy for Fabry Disease. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 25. JIMD Reports, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2015_483

Download citation

  • DOI: https://doi.org/10.1007/8904_2015_483

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49667-1

  • Online ISBN: 978-3-662-49668-8

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics