Advertisement

Geographical and Ethnic Distribution of Mutations of the Fumarylacetoacetate Hydrolase Gene in Hereditary Tyrosinemia Type 1

  • Francesca Angileri
  • Anne Bergeron
  • Geneviève Morrow
  • Francine Lettre
  • George Gray
  • Tim Hutchin
  • Sarah Ball
  • Robert M. TanguayEmail author
Research Report
Part of the JIMD Reports book series (JIMD, volume 19)

Abstract

Hereditary tyrosinemia type 1 (HT1) (OMIM 276700) is a severe inherited metabolic disease affecting mainly hepatic and renal functions that leads to a fatal outcome if untreated. HT1 results from a deficiency of the last enzyme of tyrosine catabolism, fumarylacetoacetate hydrolase (FAH). Biochemical findings include elevated succinylacetone in blood and urine; elevated plasma concentrations of tyrosine, methionine and phenylalanine; and elevated tyrosine metabolites in urine. The HT1 frequency worldwide is about 1 in 100,000 individuals. In some areas, where the incidence of HT1 is noticeably higher, prevalence of characteristic mutations has been reported, and the estimated incidence of carriers of a specific mutation can be as high as 1 out of 14 adults. Because the global occurrence of HT1 is relatively low, a considerable number of cases may go unrecognized, underlining the importance to establish efficient prenatal and carrier testing to facilitate an early detection of the disease. Here we describe the 95 mutations reported so far in HT1 with special emphasis on their geographical and ethnic distributions. Such information should enable the establishment of a preferential screening process for mutations most predominant in a given region or ethnic group.

Keywords

Nonsense Mutation Tubular Dysfunction Splice Mutation Autosomal Recessive Disease Splice Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BCH

Birmingham Children’s Hospital

FAH

Fumarylacetoacetate hydrolase

GTR

Genetic Testing Registry

HCC

Hepatocellular carcinoma

HT1

Hereditary tyrosinemia type 1

LGCD

Laboratory of Cell and Developmental Genetics

NTBC

2-(2-Nitro-trifluoromethylbenzoyl) 1,3-cyclohexanedione

SLSJ

Saguenay-Lac-St-Jean region

Notes

Acknowledgements

Work on HT1 was supported by the Canadian Institutes for Health Research (grant to RMT, studentship to AB and postdoctoral fellowship to FA).

References

  1. Al-Shamsi A, Hertecant JL, Al-Hamad S, Souid AK, Al-Jasmi F (2014) Mutation spectrum and birth prevalence of inborn errors of metabolism among Emiratis: a study from Tawam Hospital Metabolic Center, United Arab Emirates. Sultan Qaboos Univ Med J 14(1):e42–e49PubMedCentralCrossRefPubMedGoogle Scholar
  2. Arranz JA, Pinol F, Kozak L et al (2002) Splicing mutations, mainly IVS6-1(G>T), account for 70% of fumarylacetoacetate hydrolase (FAH) gene alterations, including 7 novel mutations, in a survey of 29 tyrosinemia type I patients. Hum Mutat 20(3):180–188CrossRefPubMedGoogle Scholar
  3. Awata H, Endo F, Tanoue A, Kitano A, Nakano Y, Matsuda I (1994) Structural organization and analysis of the human fumarylacetoacetate hydrolase gene in tyrosinemia type I. Biochim Biophys Acta 1226(2):168–172CrossRefPubMedGoogle Scholar
  4. Barnby E (2014) Tyrosinemia type 1: an overview of nursing care. Pediatr Nursing 40(2):61–68Google Scholar
  5. Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN (2014) Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 37(5):745–752.CrossRefPubMedGoogle Scholar
  6. Berger R, Smit GP, Stoker-de Vries SA, Duran M, Ketting D, Wadman SK (1981) Deficiency of fumarylacetoacetase in a patient with hereditary tyrosinemia. Clin Chim Acta 114(1):37–44CrossRefPubMedGoogle Scholar
  7. Bergeron A, D’Astous M, Timm DE, Tanguay RM (2001) Structural and functional analysis of missense mutations in fumarylacetoacetate hydrolase, the gene deficient in hereditary tyrosinemia type 1. J Biol Chem 276(18):15225–15231CrossRefPubMedGoogle Scholar
  8. Bergman AJ, van den Berg IE, Brink W, Poll-The BT, Ploos van Amstel JK, Berger R (1998) Spectrum of mutations in the fumarylacetoacetate hydrolase gene of tyrosinemia type 1 patients in northwestern Europe and Mediterranean countries. Hum Mutat 12(1):19–26CrossRefPubMedGoogle Scholar
  9. Bliksrud YT, Brodtkorb E, Andresen PA, van den Berg IE, Kvittingen EA (2005) Tyrosinaemia type I–de novo mutation in liver tissue suppressing an inborn splicing defect. J Mol Med (Berl) 83(5):406–410CrossRefGoogle Scholar
  10. Bliksrud YT, Brodtkorb E, Backe PH, Woldseth B, Rootwelt H (2012) Hereditary tyrosinaemia type I in Norway: incidence and three novel small deletions in the fumarylacetoacetase gene. Scand J Clin Lab Invest 72(5):369–373CrossRefPubMedGoogle Scholar
  11. Cao YY, Zhang YL, Du J et al (2012) Compound mutations (R237X and L375P) in the fumarylacetoacetate hydrolase gene causing tyrosinemia type I in a Chinese patient. Chin Med J (Engl) 125(12):2132–2136Google Scholar
  12. Cassiman D, Zeevaert R, Holme E, Kvittingen EA, Jaeken J (2009) A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): a case report. Orphanet J Rare Dis 4:28PubMedCentralCrossRefPubMedGoogle Scholar
  13. Choi HJ, Bang HI, Ki CS et al (2014) Two novel FAH gene mutations in a patient with hereditary tyrosinemia type I. Ann Clin Lab Sci 44(3):317–323PubMedGoogle Scholar
  14. Couce ML, Dalmau J, del Toro M, Pintos-Morell G, Aldamiz-Echevarria L (2011) Tyrosinemia type 1 in Spain: mutational analysis, treatment and long-term outcome. Pediatr Int 53(6):985–989CrossRefPubMedGoogle Scholar
  15. De Braekeleer M, Larochelle J (1990) Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet 47(2):302–307PubMedCentralPubMedGoogle Scholar
  16. de Laet C, Dionisi-Vici C, Leonard JV et al (2013) Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 8:8PubMedCentralCrossRefPubMedGoogle Scholar
  17. Dehghani SM, Haghighat M, Imanieh MH, Karamnejad H, Malekpour A (2013) Clinical and para clinical findings in the children with tyrosinemia referring for liver transplantation. Int J Prev Med 4(12):1380–1385PubMedCentralPubMedGoogle Scholar
  18. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15(1):7–12CrossRefGoogle Scholar
  19. Dou LM, Fang LJ, Wang XH et al (2013) Mutation analysis of FAH gene in patients with tyrosinemia type 1. Zhonghua Er Ke Za Zhi 51(4):302–307PubMedGoogle Scholar
  20. Dreumont N, Poudrier JA, Bergeron A, Levy HL, Baklouti F, Tanguay RM (2001) A missense mutation (Q279R) in the fumarylacetoacetate hydrolase gene, responsible for hereditary tyrosinemia, acts as a splicing mutation. BMC Genet 2:9PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dursun A, Ozgul RK, Sivri S et al (2011) Mutation spectrum of fumarylacetoacetase gene and clinical aspects of tyrosinemia type I disease. JIMD Rep 1:17–21PubMedCentralCrossRefPubMedGoogle Scholar
  22. Elpeleg ON, Shaag A, Holme E et al (2002) Mutation analysis of the FAH gene in Israeli patients with tyrosinemia type I. Hum Mutat 19(1):80–81CrossRefPubMedGoogle Scholar
  23. Fällström S-P, Lindblad B, Lindstedt S, Steen G (1979) Hereditary tyrosinemia-fumarylacetoacetase deficiency. Pediatr Res 13:78CrossRefGoogle Scholar
  24. Georgouli H, Schulpis KH, Michelakaki H, Kaltsa M, Sdogou T, Kossiva L (2010) Persistent coagulopathy during Escherichia coli sepsis in a previously healthy infant revealed undiagnosed tyrosinaemia type 1. BMJ Case Rep 2010. pii: bcr0720103150. doi: 10.1136/bcr.07.2010.3150
  25. Grompe M, al-Dhalimy M (1993) Mutations of the fumarylacetoacetate hydrolase gene in four patients with tyrosinemia, type I. Hum Mutat 2(2):85–93CrossRefPubMedGoogle Scholar
  26. Grompe M, St-Louis M, Demers SI, al-Dhalimy M, Leclerc B, Tanguay RM (1994) A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. N Engl J Med 331(6):353–357Google Scholar
  27. Haghighi-Kakhki H, Rezazadeh J, Ahmadi-Shadmehri A (2014) Identification of a combined missense/splice-site mutation in FAH causing tyrosinemia type 1. J Pediatr Endocrinol Metab. doi:10.1515/jpem-2013-0489
  28. Hahn SH, Krasnewich D, Brantly M, Kvittingen EA, Gahl WA (1995) Heterozygosity for an exon 12 splicing mutation and a W234G missense mutation in an American child with chronic tyrosinemia type 1. Hum Mutat 6(1):66–73CrossRefPubMedGoogle Scholar
  29. Heath SK, Gray RG, McKiernan P, Au KM, Walker E, Green A (2002) Mutation screening for tyrosinaemia type I. J Inherit Metab Dis 25(6):523–524CrossRefPubMedGoogle Scholar
  30. Hutchesson AC, Hall SK, Preece MA, Green A (1996) Screening for tyrosinaemia type I. Arch Dis Child Fetal Neonatal Ed 74(3):F191–F194PubMedCentralCrossRefPubMedGoogle Scholar
  31. Hutchesson AC, Bundey S, Preece MA, Hall SK, Green A (1998) A comparison of disease and gene frequencies of inborn errors of metabolism among different ethnic groups in the West Midlands, UK. J Med Genet 35(5):366–370PubMedCentralCrossRefPubMedGoogle Scholar
  32. Imtiaz F, Rashed MS, Al-Mubarak B et al (2011) Identification of mutations causing hereditary tyrosinemia type I in patients of Middle Eastern origin. Mol Genet Metab 104(4):688–690CrossRefPubMedGoogle Scholar
  33. Jitraruch S, Treepongkaruna S, Teeraratkul S et al (2011) Long-term outcome of living donor liver transplantation in a Thai boy with hereditary tyrosinemia type I: a case report. J Med Assoc Thai 94(10):1276–1280PubMedGoogle Scholar
  34. Kim SZ, Kupke KG, Ierardi-Curto L et al (2000) Hepatocellular carcinoma despite long-term survival in chronic tyrosinaemia I. J Inherit Metab Dis 23(8):791–804CrossRefPubMedGoogle Scholar
  35. Kvittingen EA, Jellum E, Stokke O (1981) Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 115(3):311–319.CrossRefPubMedGoogle Scholar
  36. la Marca G, Malvagia S, Pasquini E et al (2011) Newborn screening for tyrosinemia type I: further evidence that succinylacetone determination on blood spot is essential. JIMD Rep 1:107–109PubMedCentralCrossRefPubMedGoogle Scholar
  37. Labelle Y, Phaneuf D, Leclerc B, Tanguay RM (1993) Characterization of the human fumarylacetoacetate hydrolase gene and identification of a missense mutation abolishing enzymatic activity. Hum Mol Genet 2(7):941–946CrossRefPubMedGoogle Scholar
  38. Larochelle J, Alvarez F, Bussieres JF et al (2012) Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Quebec. Mol Genet Metab 107(1–2):49–54CrossRefPubMedGoogle Scholar
  39. Laszlo A, Rozsa M, Sallay E et al (2013) The fate of tyrosinaemic Hungarian patients before the NTBC aera. Ideggyogy Sz 66(11–12):415–419PubMedGoogle Scholar
  40. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 74(10):4641–4645PubMedCentralCrossRefPubMedGoogle Scholar
  41. Lindstedt S, Holme E, Lock EA, Hjalmarrson T, Strandvik B (1992) Treatment of hereditary tyrosinemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340:813–817CrossRefPubMedGoogle Scholar
  42. Mak CM, Lam CW, Chim S, Siu TS, Ng KF, Tam S (2013) Biochemical and molecular diagnosis of tyrosinemia type I with two novel FAH mutations in a Hong Kong Chinese patient: recommendation for expanded newborn screening in Hong Kong. Clin Biochem 46(1–2):155–159CrossRefPubMedGoogle Scholar
  43. Mayorandan S, Meyer U, Gokcay G et al (2014) Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 9(1):107PubMedCentralCrossRefPubMedGoogle Scholar
  44. Mitchell GA, Grompe M, Lambert H, Tanguay RM (2001) Hypertyrosinemia.In: The metabolic and molecular bases of inherited diseases. McGrawHill, New York, pp 1777–1805Google Scholar
  45. Mohamed S, Kambal MA, Al Jurayyan NA et al (2013) Tyrosinemia type 1: a rare and forgotten cause of reversible hypertrophic cardiomyopathy in infancy. BMC Res Notes 6(1):362PubMedCentralCrossRefPubMedGoogle Scholar
  46. Morrissey MA, Sunny S, Fahim A, Lubowski C, Caggana M (2011) Newborn screening for Tyr-I: two years’ experience of the New York State program. Mol Genet Metab 103(2):191–192CrossRefPubMedGoogle Scholar
  47. Mustonen A, Ploos van Amstel HK, Berger R, Salo MK, Viinikka L, Simola KO (1997) Mutation analysis for prenatal diagnosis of hereditary tyrosinaemia type 1. Prenat Diagn 17(10):964–966CrossRefPubMedGoogle Scholar
  48. Park HD, Lee DH, Choi TY et al (2009) Clinical, biochemical, and genetic analysis of a Korean neonate with hereditary tyrosinemia type 1. Clin Chem Lab Med 47(8):930–933CrossRefPubMedGoogle Scholar
  49. Perez-Carro R, Sanchez-Alcudia R, Perez B et al (2013) Functional analysis and in vitro correction of splicing FAH mutations causing tyrosinemia type I. Clin Genet. doi: 10.1111/cge.12243 PubMedGoogle Scholar
  50. Phaneuf D, Labelle Y, Berube D et al (1991) Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet 48(3):525–535PubMedCentralPubMedGoogle Scholar
  51. Phaneuf D, Lambert M, Laframboise R, Mitchell G, Lettre F, Tanguay RM (1992) Type 1 hereditary tyrosinemia. Evidence for molecular heterogeneity and identification of a causal mutation in a French Canadian patient. J Clin Invest 90(4):1185–1192PubMedCentralCrossRefPubMedGoogle Scholar
  52. Ploos van Amstel JK, Bergman AJ, van Beurden EA et al (1996) Hereditary tyrosinemia type 1: novel missense, nonsense and splice consensus mutations in the human fumarylacetoacetate hydrolase gene; variability of the genotype–phenotype relationship. Hum Genet 97(1):51–59CrossRefPubMedGoogle Scholar
  53. Poudrier J, St-Louis M, Lettre F, et al (1996) Frequency of the IVS12 + 5G>A splice mutation of the fumarylacetoacetate hydrolase gene in carriers of hereditary tyrosinaemia in the French Canadian population of Saguenay-Lac-St-Jean. Prenat Diagn 16(1): 59–64Google Scholar
  54. Poudrier J, Lettre F, St-Louis M, Tanguay RM (1999) Genotyping of a case of tyrosinaemia type I with normal level of succinylacetone in amniotic fluid. Prenat Diagn 19(1):61–63CrossRefPubMedGoogle Scholar
  55. Prieto-Alamo MJ, Laval F (1998) Deficient DNA-ligase activity in the metabolic disease tyrosinemia type I. Proc Natl Acad Sci U S A 95(21):12614–12618PubMedCentralCrossRefPubMedGoogle Scholar
  56. Rootwelt H, Berger R, Gray G, Kelly DA, Coskun T, Kvittingen EA (1994a) Novel splice, missense, and nonsense mutations in the fumarylacetoacetase gene causing tyrosinemia type 1. Am J Hum Genet 55(4):653–658PubMedCentralPubMedGoogle Scholar
  57. Rootwelt H, Brodtkorb E, Kvittingen EA (1994b) Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type I. Am J Hum Genet 55(6):1122–1127PubMedCentralPubMedGoogle Scholar
  58. Rootwelt H, Chou J, Gahl WA et al (1994c) Two missense mutations causing tyrosinemia type 1 with presence and absence of immunoreactive fumarylacetoacetase. Hum Genet 93(6):615–619CrossRefPubMedGoogle Scholar
  59. Rootwelt H, Kristensen T, Berger R, Hoie K, Kvittingen EA (1994d) Tyrosinemia type 1–complex splicing defects and a missense mutation in the fumarylacetoacetase gene. Hum Genet 94(3):235–239CrossRefPubMedGoogle Scholar
  60. Rootwelt H, Hoie K, Berger R, Kvittingen EA (1996) Fumarylacetoacetase mutations in tyrosinaemia type I. Hum Mutat 7(3):239–243CrossRefPubMedGoogle Scholar
  61. Russo PA, Mitchell GA, Tanguay RM (2001) Tyrosinemia: a review. Pediatr Dev Pathol 4(3):212–221CrossRefPubMedGoogle Scholar
  62. Sakai K, Kitagawa T (1957) An atypical case of tyrosinosis (1-Parahydroxyphenyl-lactic aciduria) Part 1. Clinical and laboratory findings. Jikei Med J 2:1–5CrossRefGoogle Scholar
  63. Seda Neto J, Leite KM, Porta A et al (2014) HCC prevalence and histopathological findings in liver explants of patients with hereditary tyrosinemia type 1. Pediatr Blood Cancer. doi: 10.1002/pbc.25094 PubMedGoogle Scholar
  64. Sheth JJ, Ankleshwaria CM, Pawar R, Sheth FJ (2012) Identification of novel mutations in FAH Gene and Prenatal Diagnosis of Tyrosinemia in Indian Family. Case Rep Genet 2012:428075PubMedCentralPubMedGoogle Scholar
  65. Sniderman King L, Trahms C, Scott CR (2011) Tyrosinemia type 1. Retrieved from GeneReviews® June 2014 http://www.ncbi.nlm.nih.gov/books/NBK1515/)
  66. St-Louis M, Leclerc B, Laine J, Salo MK, Holmberg C, Tanguay RM (1994) Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I. Hum Mol Genet 3(1):69–72CrossRefPubMedGoogle Scholar
  67. St-Louis M, Poudrier J, Phaneuf D, Leclerc B, Laframboise R, Tanguay RM (1995) Two novel mutations involved in hereditary tyrosinemia type I. Hum Mol Genet 4(2):319–320CrossRefPubMedGoogle Scholar
  68. St-Louis M, Tanguay RM (1997) Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I:overview. Hum Mutat 9(4):291–299.CrossRefPubMedGoogle Scholar
  69. Tanguay RM, Valet JP, Lescault A et al (1990) Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am J Hum Genet 47(2):308–316PubMedCentralPubMedGoogle Scholar
  70. Timmers C, Grompe M (1996) Six novel mutations in the fumarylacetoacetate hydrolase gene of patients with hereditary tyrosinemia type I. Hum Mutat 7(4):367–369CrossRefPubMedGoogle Scholar
  71. van Spronsen FJ, Thomasse Y, Smit GP et al (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20(5):1187–1191CrossRefPubMedGoogle Scholar
  72. Vondrackova A, Tesarova M, Magner M et al (2010) Clinical, biochemical and molecular characteristics in 11 Czech children with tyrosinemia type I. Cas Lek Cesk 149(9):411–416PubMedGoogle Scholar
  73. Yang N, Han LS, Ye J et al (2012) Analysis of clinical data and genetic mutations in three Chinese patients with tyrosinemia type I. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(6):648–652PubMedGoogle Scholar
  74. Zytkovicz TH, Sahai I, Rush A et al (2013) Newborn screening for hepatorenal tyrosinemia-I by tandem mass spectrometry using pooled samples: a four-year summary by the New England newborn screening program. Clin Biochem 46(7–8):681–684CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesca Angileri
    • 1
  • Anne Bergeron
    • 1
  • Geneviève Morrow
    • 1
  • Francine Lettre
    • 1
  • George Gray
    • 2
  • Tim Hutchin
    • 2
  • Sarah Ball
    • 2
  • Robert M. Tanguay
    • 1
    Email author
  1. 1.Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, IBIS and PROTEO, Pav CE-MarchandUniversité LavalQuébecCanada
  2. 2.Department of Clinical ChemistryBirmingham Children’s HospitalBirminghamUK

Personalised recommendations