Skip to main content

Principles of Contrast Medium Delivery and Scan Timing in MDCT

  • Chapter
MDCT:A Practical Approach

Abstract

The advent of multidetector-row computed tomography (MDCT) technology has brought substantial advantages over single-detector-row CT (SDCT) in terms of image quality and clinical practice. The dramatically improved spatial and temporal resolution achievable on MDCT permits previously highly technically demanding clinical applications such as CT angiography and cardiac CT to be practiced routinely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kormano M, Partanen K, Soimakallio S, Kivimaki T (1983) Dynamic contrast enhancement of the upper abdomen: effect of contrast medium and body weight. Invest Radiol 18:364–367

    Article  PubMed  CAS  Google Scholar 

  2. Heiken JP, Brink JA, McClennan BL et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357

    PubMed  CAS  Google Scholar 

  3. Platt JF, Reige KA, Ellis JH (1999) Aortic enhancement during abdominal CT angiography: correlation with test injections, flow rates, and patient demographics. AJR Am J Roentgenol 172:53–56

    PubMed  CAS  Google Scholar 

  4. Bae KT (2003) Technical aspects of contrast delivery in advanced CT. Applied Radiology 32[Suppl]: 12–19

    Google Scholar 

  5. van Hoe L, Marchal G, Baert AL et al (1995) Determination of scan delay time in spiral CT-angiography: utility of a test bolus injection. J Comput Assist Tomogr 19:216–220

    Article  PubMed  Google Scholar 

  6. Kirchner J, Kickuth R, Laufer U (2000) Optimized enhancement in helical CT: experiences with a real-time bolus tracking system in 628 patients. Clin Radiol 55:368–373

    Article  PubMed  CAS  Google Scholar 

  7. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662

    PubMed  CAS  Google Scholar 

  8. Dean PB, Violante MR, Mahoney JA (1980) Hepatic CT contrast enhancement: effect of dose, duration of infusion, and time elapsed following infusion. Invest Radiol 15:158–161

    Article  PubMed  CAS  Google Scholar 

  9. Heiken JP, Brink JA, McClennan BL et al (1993) Dynamic contrast-enhanced CT of the liver: comparison of contrast medium injection rates and uniphasic and biphasic injection protocols. Radiology 187:327–331

    PubMed  CAS  Google Scholar 

  10. Chambers TP, Baron RL, Lush RM (1994) Hepatic CT enhancement. Part I. Alterations in the volume of contrast material within the same patients. Radiology 193:513–517

    PubMed  CAS  Google Scholar 

  11. Kopka L, Rodenwaldt J, Fischer U et al (1996) Dualphase helical CT of the liver: effects of bolus tracking and different volumes of contrast material. Radiology 201:321–326

    PubMed  CAS  Google Scholar 

  12. Han JK, Kim AY, Lee KY et al (2000) Factors influencing vascular and hepatic enhancement at CT: experimental study on injection protocol using a canine model. J Comput Assist Tomogr 24:400–406

    Article  PubMed  CAS  Google Scholar 

  13. Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230:142–150

    PubMed  Google Scholar 

  14. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207:647–655

    PubMed  CAS  Google Scholar 

  15. Berland LL, Lee JY (1988) Comparison of contrast media injection rates and volumes for hepatic dynamic incremented computed tomography. Investigative Radiology 23:918–922

    Article  PubMed  CAS  Google Scholar 

  16. Small WC, Nelson RC, Bernardino ME, Brummer LT (1994) Contrast-enhanced spiral CT of the liver: effect of different amounts and injection rates of contrast material on early contrast enhancement. AJR Am J Roentgenol 163:87–92

    PubMed  CAS  Google Scholar 

  17. Freeny PC, Gardner JC, von Ingersleben G et al (1995) Hepatic helical CT: effect of reduction of iodine dose of intravenous contrast material on hepatic contrast enhancement. Radiology 197:89–93

    PubMed  CAS  Google Scholar 

  18. Han JK, Choi BI, Kim AY, Kim SJ (2001) Contrast media in abdominal computed tomography: optimization of delivery methods. Korean J Radiol 2:28–36

    Article  PubMed  CAS  Google Scholar 

  19. Megibow AJ, Jacob G, Heiken JP et al (2001) Quantitative and qualitative evaluation of volume of low osmolality contrast medium needed for routine helical abdominal CT. AJR Am J Roentgenol 176:583–589

    PubMed  CAS  Google Scholar 

  20. Bae KT (2003) Peak contrast enhancement in CT and MR angiography: When does it occur and why? Pharmacokinetic study in a porcine model. Radiology 2003; 227:809–816

    PubMed  Google Scholar 

  21. Roos JE, Desbiolles LM, Weishaupt D et al (2004) Multi-detector row CT: effect of iodine dose reduction on hepatic and vascular enhancement. Rofo 176:556–563

    PubMed  CAS  Google Scholar 

  22. Garcia PA, Bonaldi VM, Bret PM et al (1996) Effect of rate of contrast medium injection on hepatic enhancement at CT. Radiology 199:185–189

    PubMed  CAS  Google Scholar 

  23. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate — pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464

    PubMed  CAS  Google Scholar 

  24. Garcia P, Genin G, Bret PM et al (1999) Hepatic CT enhancement: effect of the rate and volume of contrast medium injection in an animal model. Abdom Imaging 24:597–603

    Article  PubMed  CAS  Google Scholar 

  25. Awai K, Takada K, Onishi H, Hori S (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763

    PubMed  Google Scholar 

  26. Becker CR, Hong C, Knez A et al (2003) Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 38:690–694

    Article  PubMed  Google Scholar 

  27. Brink JA (2003) Use of high concentration contrast media (HCCM): principles and rationale-body CT. Eur J Radiol 45[Suppl 1]:S53–58

    Article  PubMed  Google Scholar 

  28. Fleischmann D (2003) High-concentration contrast media in MDCT angiography: principles and rationale. Eur Radiol 13[Suppl 3]:N39–43

    Article  PubMed  Google Scholar 

  29. Fleischmann D (2003) Use of high-concentration contrast media in multiple-detector-row CT: principles and rationale. Eur Radiol 13[Suppl 5]:M14–20

    PubMed  Google Scholar 

  30. Fleischmann D (2003) Use of high concentration contrast media: principles and rationale-vascular district. Eur J Radiol 45[Suppl 1]:S88–93

    Article  PubMed  Google Scholar 

  31. Shinagawa M, Uchida M, Ishibashi M et al (2003) Assessment of pancreatic CT enhancement using a high concentration of contrast material. Radiat Med 21:74–79

    PubMed  Google Scholar 

  32. Awai K, Inoue M, Yagyu Y et al (2004) Moderate versus high concentration of contrast material for aortic and hepatic enhancement and tumor-to-liver contrast at multi-detector row CT. Radiology 233:682–688

    PubMed  Google Scholar 

  33. Furuta A, Ito K, Fujita T et al (2004) Hepatic enhancement in multiphasic contrast-enhanced MDCT: comparison of high-and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR Am J Roentgenol 183:157–162

    PubMed  Google Scholar 

  34. Suzuki H, Oshima H, Shiraki N et al (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099–2104

    Article  PubMed  Google Scholar 

  35. Yagyu Y, Awai K, Inoue M et al (2005) MDCT of hypervascular hepatocellular carcinomas: a prospective study using contrast materials with different iodine concentrations. AJR Am J Roentgenol 184:1535–1540

    PubMed  Google Scholar 

  36. Schoellnast H, Deutschmann HA, Fritz GA et al (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939

    PubMed  Google Scholar 

  37. Marchiano A, Spreafico C, Lanocita R et al (2005) Does iodine concentration affect the diagnostic efficacy of biphasic spiral CT in patients with hepatocellular carcinoma? Abdom Imaging 30:274–280

    Article  PubMed  CAS  Google Scholar 

  38. Itoh S, Ikeda M, Achiwa M (2005) Multiphase contrast-enhanced CT of the liver with a multislice CT scanner: effects of iodine concentration and delivery rate. Radiat Med 23:61–69

    PubMed  Google Scholar 

  39. Cademartiri F, Mollet NR, van der Lugt A et al (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236:661–665

    PubMed  Google Scholar 

  40. Hopper KD, Mosher TJ, Kasales CJ et al (1997) Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 205:269–271

    PubMed  CAS  Google Scholar 

  41. Dorio PJ, Lee FT Jr, Henseler KP et al (2003) Using a saline chaser to decrease contrast media in abdominal CT. AJR Am J Roentgenol 180:929–934

    PubMed  Google Scholar 

  42. Haage P, Schmitz-Rode T, Hubner D et al (2000) Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol 174:1049–1053

    PubMed  CAS  Google Scholar 

  43. Irie T, Kajitani M, Yamaguchi M, Itai Y (2002) Contrast-enhanced CT with saline flush technique using two automated injectors: how much contrast medium does it save? J Comput Assist Tomogr 26:287–291

    Article  PubMed  Google Scholar 

  44. Schoellnast H, Tillich M, Deutschmann HA et al (2003) Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr 27:847–853

    Article  PubMed  Google Scholar 

  45. Cademartiri F, Mollet N, van der Lugt A et al (2004) Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. Eur Radiol 14:178–183

    Article  PubMed  Google Scholar 

  46. Schoellnast H, Tillich M, Deutschmann MJ et al (2004) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26

    Article  PubMed  Google Scholar 

  47. Schoellnast H, Tillich M, Deutschmann HA et al (2004) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664

    Article  PubMed  Google Scholar 

  48. Cademartiri F, Nieman K, van der Lugt A et al (2004) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823

    PubMed  Google Scholar 

  49. Bae KT (2005) Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology 236:369–370 (Author reply 370)

    PubMed  Google Scholar 

  50. Yankelevitz DF, Shaham D, Shah A et al (1998) Optimization of contrast delivery for pulmonary CT angiography. Clin Imaging 22:398–403

    Article  PubMed  CAS  Google Scholar 

  51. Washington L, Gulsun M (2003) CT for thromboembolic disease. Curr Probl Diagn Radiol 32:105–126

    Article  PubMed  Google Scholar 

  52. Fleischmann D, Rubin GD (2005) Quantification of intravenously administered contrast medium transit through the peripheral arteries: implications for CT angiography. Radiology 236:1076–1082

    PubMed  Google Scholar 

  53. Bae KT, Heiken JP (2000) Computer modeling approach to contrast medium administration and scan timing for multislice CT. In: Marincek B, Ros PR, Reiser M, Baker ME, eds. Multislice CT: a practical guide: Springer, Berlin, Heidelberg, New York, pp 28–36

    Google Scholar 

  54. Leggett RW, Williams LR (1995) A proposed blood circulation model for Reference Man. Health Phys 69:187–201

    Article  PubMed  CAS  Google Scholar 

  55. Frederick MG, McElaney BL, Singer A et al (1996) Timing of parenchymal enhancement on dualphase dynamic helical CT of the liver: how long does the hepatic arterial phase predominate? AJR Am J Roentgenol 166:1305–1310

    PubMed  CAS  Google Scholar 

  56. Foley WD, Kerimoglu U (2004) Abdominal MDCT: liver, pancreas, and biliary tract. Semin Ultrasound CT MR 25:122–144

    Article  PubMed  Google Scholar 

  57. Hollett MD, Jeffrey RB Jr, Nino-Murcia M et al (1995) Dual-phase helical CT of the liver: value of arterial phase scans in the detection of small (< or = 1.5 cm) malignant hepatic neoplasms. AJR Am J Roentgenol 164:879–884

    PubMed  CAS  Google Scholar 

  58. Oliver JH 3rd, Baron RL (1996) Helical biphasic contrast-enhanced CT of the liver: technique, indications, interpretation, and pitfalls. Radiology 201:1–14

    PubMed  Google Scholar 

  59. Oliver JH 3rd, Baron RL, Federle MP et al (1997) Hypervascular liver metastases: do unenhanced and hepatic arterial phase CT images affect tumor detection? Radiology 205:709–715

    PubMed  Google Scholar 

  60. Oliver JH 3rd, Baron RL, Federle MP, Rockette HE Jr (1996) Detecting hepatocellular carcinoma: value of unenhanced or arterial phase CT imaging or both used in conjunction with conventional portal venous phase contrast-enhanced CT imaging. AJR Am J Roentgenol 167:71–77

    PubMed  Google Scholar 

  61. Paulson EK, McDermott VG, Keogan MT et al (1998) Carcinoid metastases to the liver: role of triple-phase helical CT. Radiology 206:143–150

    PubMed  CAS  Google Scholar 

  62. Mitsuzaki K, Yamashita Y, Ogata I et al (1996) Multiple-phase helical CT of the liver for detecting small hepatomas in patients with liver cirrhosis: contrast-injection protocol and optimal timing. AJR Am J Roentgenol 167:753–757

    PubMed  CAS  Google Scholar 

  63. Baron RL, Oliver JH 3rd, Dodd GD 3rd et al (1996) Hepatocellular carcinoma: evaluation with biphasic, contrast-enhanced, helical CT. Radiology 199: 505–511

    PubMed  CAS  Google Scholar 

  64. Foley WD, Mallisee TA, Hohenwalter MD et al (2000) Multiphase hepatic CT with a multirow detector CT scanner. AJR Am J Roentgenol 175: 679–685

    PubMed  CAS  Google Scholar 

  65. Lee KH, Choi BI, Han JK et al (2000) Nodular hepatocellular carcinoma: variation of tumor conspicuity on single-level dynamic scan and optimization of fixed delay times for two-phase helical CT. J Comput Assist Tomogr 24:212–218

    Article  PubMed  CAS  Google Scholar 

  66. Murakami T, Kim T, Takamura M et al (2001). Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology 218:763–767

    PubMed  CAS  Google Scholar 

  67. Kanematsu M, Goshima S, Kondo H et al (2005) Optimizing scan delays of fixed duration contrast injection in contrast-enhanced biphasic multidetector-row CT for the liver and the detection of hypervascular hepatocellular carcinoma. J Comput Assist Tomogr 29:195–201

    Article  PubMed  Google Scholar 

  68. Lim JH, Choi D, Kim SH et al (2002) Detection of hepatocellular carcinoma: value of adding delayed phase imaging to dual-phase helical CT. AJR Am J Roentgenol 179:67–73

    PubMed  Google Scholar 

  69. Lacomis JM, Baron RL, Oliver JH 3rd et al (1997) Cholangiocarcinoma: delayed CT contrast enhancement patterns. Radiology; 203:98–104

    PubMed  CAS  Google Scholar 

  70. Claussen CD, Banzer D, Pfretzschner C et al (1984) Bolus geometry and dynamics after intravenous contrast medium injection. Radiology 153:365–368

    PubMed  CAS  Google Scholar 

  71. Harmon BH, Berland LL, Lee JY (1992) Effect of varying rates of low-osmolarity contrast media injection for hepatic CT: correlation with indocyanine green transit time. Radiology 184:379–382

    PubMed  CAS  Google Scholar 

  72. Chambers TP, Baron RL, Lush RM (1994) Hepatic CT enhancement. Part II. Alterations in contrast material volume and rate of injection within the same patients. Radiology 193:518–522

    PubMed  CAS  Google Scholar 

  73. Tello R, Seltzer SE, Polger M et al (1997) A contrast agent delivery nomogram for hepatic spiral CT. J Comput Assist Tomogr 21:236–245

    Article  PubMed  CAS  Google Scholar 

  74. Kim T, Murakami T, Takahashi S et al (1998) Effects of injection rates of contrast material on arterial phase hepatic CT. AJR Am J Roentgenol 171:429–432

    PubMed  CAS  Google Scholar 

  75. Tublin ME, Tessler FN, Cheng SL et al (1999) Effect of injection rate of contrast medium on pancreatic and hepatic helical CT. Radiology 210:97–101

    PubMed  CAS  Google Scholar 

  76. Hanninen EL, Vogl TJ, Felfe R et al (2000) Detection of focal liver lesions at biphasic spiral CT: randomized double-blind study of the effect of iodine concentration in contrast materials. Radiology 216:403–409

    PubMed  CAS  Google Scholar 

  77. Yamashita Y, Komohara Y, Takahashi M et al (2000) Abdominal helical CT: evaluation of optimal doses of intravenous contrast material — a prospective randomized study. Radiology 216:718–723

    PubMed  CAS  Google Scholar 

  78. Awai K, Hori S (2003) Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol 13:2155–2160

    Article  PubMed  Google Scholar 

  79. Bluemke DA, Fishman EK, Anderson JH (1994) Dose requirements for a nonionic contrast agent for spiral computed tomography of the liver in rabbits. Invest Radiol 29:195–200

    Article  PubMed  CAS  Google Scholar 

  80. Baker ME, Beam C, Leder R et al (1993) Contrast material for combined abdominal and pelvic CT: can cost be reduced by increasing the concentration and decreasing the volume? AJR Am J Roentgenol 160:637–641

    PubMed  CAS  Google Scholar 

  81. Herts BR, Paushter DM, Einstein DM et al (1995) Use of contrast material for spiral CT of the abdomen: comparison of hepatic enhancement and vascular attenuation for three different contrast media at two different delay times. AJR Am J Roentgenol 164:327–331

    PubMed  CAS  Google Scholar 

  82. Herts BR, O’Malley CM, Wirth SL et al (2001) Power injection of contrast media using central venous catheters: feasibility, safety, and efficacy. AJR Am J Roentgenol 176:447–453

    PubMed  CAS  Google Scholar 

  83. Walkey MM (1991) Dynamic hepatic CT: how many years will it take ‘til we learn? Radiology 181:17–18

    PubMed  CAS  Google Scholar 

  84. Brink JA, Heiken JP, Forman HP et al (1995) Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197:83–88

    PubMed  CAS  Google Scholar 

  85. Takeshita K (2001) Prediction of maximum hepatic enhancement on computed tomography from dose of contrast material and patient weight: proposal of a new formula and evaluation of its accuracy. Radiat Med 19:75–79

    PubMed  CAS  Google Scholar 

  86. Shimizu T, Misaki T, Yamamoto K et al (2000) Helical CT of the liver with computer-assisted bolustracking technology: scan delay of arterial phase scanning and effect of flow rates. J Comput Assist Tomogr 24:219–223

    Article  PubMed  CAS  Google Scholar 

  87. Schoellnast H, Brader P, Oberdabernig B et al (2005) High-concentration contrast media in multiphasic abdominal multidetector-row computed tomography: effect of increased iodine flow rate on parenchymal and vascular enhancement. J Comput Assist Tomogr 29:582–587

    Article  PubMed  Google Scholar 

  88. Bader TR, Prokesch RW, Grabenwoger F (2000) Timing of the hepatic arterial phase during contrast-enhanced computed tomography of the liver: assessment of normal values in 25 volunteers. Invest Radiol 35:486–492

    Article  PubMed  CAS  Google Scholar 

  89. Kim T, Murakami T, Hori M et al (2002) Small hypervascular hepatocellular carcinoma revealed by double arterial phase CT performed with single breath-hold scanning and automatic bolus tracking. AJR Am J Roentgenol 178:899–904

    PubMed  Google Scholar 

  90. Mehnert F, Pereira PL, Trubenbach J et al (2001) Biphasic spiral CT of the liver: automatic bolus tracking or time delay? Eur Radiol 11:427–431

    Article  PubMed  CAS  Google Scholar 

  91. Sandstede JJ, Tschammler A, Beer M et al (2001) Optimization of automatic bolus tracking for timing of the arterial phase of helical liver CT. Eur Radiol 11:1396–1400

    Article  PubMed  CAS  Google Scholar 

  92. Itoh S, Ikeda M, Achiwa M et al (2004) Late-arterial and portal-venous phase imaging of the liver with a multislice CT scanner in patients without circulatory disturbances: automatic bolus tracking or empirical scan delay? Eur Radiol 14:1665–1673

    Article  PubMed  Google Scholar 

  93. Irie T, Kusano S (1996) Contrast-enhanced spiral CT of the liver: effect of injection time on time to peak hepatic enhancement. J Comput Assist Tomogr 20:633–637

    Article  PubMed  CAS  Google Scholar 

  94. Bae KT (2004) Contrast injection techniques and CT scan timing. In: Claussen CD, Fishman EK, Marincek B, Reiser M (eds.) Multislice CT: a practical guide. Springer, Berlin, Heidelberg, New York, pp 121–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Bae, K.T. (2006). Principles of Contrast Medium Delivery and Scan Timing in MDCT. In: Saini, S., Rubin, G.D., Kalra, M.K. (eds) MDCT:A Practical Approach. Springer, Milano. https://doi.org/10.1007/88-470-0413-6_2

Download citation

  • DOI: https://doi.org/10.1007/88-470-0413-6_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0412-2

  • Online ISBN: 978-88-470-0413-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics