Skip to main content
  • 990 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116

    PubMed  CAS  Google Scholar 

  2. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  3. Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  4. Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140

    PubMed  CAS  Google Scholar 

  5. Luecke T, Roth H, Herrmann P et al (2003) decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury. Intensive Care Med 29:2026–2033

    Article  PubMed  Google Scholar 

  6. Luecke T, Roth H, Joachim A et al (2004) Effects of end-inspiratory and end-expiratory pressures on alveolar recruitment and derecruitment in saline-washout-induced lung injury — a computed tomography study. Acta Anaesthesiol Scand 48:82–92

    Article  PubMed  CAS  Google Scholar 

  7. Pelosi P, Goldner M, McKibben A et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130

    PubMed  CAS  Google Scholar 

  8. Rouby JJ, Lu Q, Vieira S (2003) Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl 42:S27–S36

    Article  Google Scholar 

  9. Rouby JJ, Puybasset L, Cluzel P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056

    Article  PubMed  CAS  Google Scholar 

  10. Hall JB (1998) Respiratory system mechanics in adult respiratory distress syndrome. Stretching our understanding. Am J Respir Crit Care Med 158:1–2

    PubMed  CAS  Google Scholar 

  11. Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151:737–742

    PubMed  CAS  Google Scholar 

  12. Gattinoni L, Caironi P, Pelosi P et al (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711

    PubMed  CAS  Google Scholar 

  13. Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142

    Article  PubMed  CAS  Google Scholar 

  14. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13

    PubMed  CAS  Google Scholar 

  15. Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the by the heart. Am J Respir Crit Care Med 161:1660–1665

    PubMed  CAS  Google Scholar 

  16. Malbouisson LM, Busch CJ, Puybasset L et al (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med 161:2005–2012

    PubMed  CAS  Google Scholar 

  17. Quintel M, Pelosi P, Caironi P et al (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med 169:534–541

    Article  PubMed  Google Scholar 

  18. Maggiore S, Brochard L (2000) Pressure-volume curve in the critically ill. Curr Opin Crit Care 6:1–10

    Article  Google Scholar 

  19. Bone RC (1976) Diagnosis of causes for acute respiratory distress by pressure-volume curves. Chest 70:740–746

    PubMed  CAS  Google Scholar 

  20. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2:319–323

    Article  PubMed  CAS  Google Scholar 

  21. Matamis D, Lemaire F, Harf A et al (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66

    PubMed  CAS  Google Scholar 

  22. Petty TL, Silvers GW, Paul GW, Stanford RE (1979) Abnormalities in lung elastic properties and surfactant function in adult respiratory distress syndrome. Chest 75:571–574

    PubMed  CAS  Google Scholar 

  23. Gattinoni L, Pesenti A, Caspani ML et al (1984) The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 10:121–126

    Article  PubMed  CAS  Google Scholar 

  24. Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  25. Gattinoni L, Pesenti A, Bombino M et al (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832

    Article  PubMed  CAS  Google Scholar 

  26. Roupie E, Dambrosio M, Servillo G et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128

    PubMed  CAS  Google Scholar 

  27. Maggiore SM, Jonson B, Richard JC et al (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801

    PubMed  CAS  Google Scholar 

  28. Nagano O, Tokioka H, Ohta Y et al (2001) Inspiratory pressure-volume curves at different positive end-expiratory pressure levels in patients with ALI/ARDS. Acta Anaesthesiol Scand 45:1255–1261

    Article  PubMed  CAS  Google Scholar 

  29. Richard JC, Maggiore SM, Jonson B et al (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613

    PubMed  CAS  Google Scholar 

  30. Servillo G, Svantesson C, Beydon L et al (1997) Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636

    PubMed  CAS  Google Scholar 

  31. Ranieri VM, Giunta F, Suter PM et al (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44

    Article  PubMed  CAS  Google Scholar 

  32. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202

    PubMed  CAS  Google Scholar 

  33. Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178

    PubMed  CAS  Google Scholar 

  34. Downie JM, Nam AJ, Simon BA (2004) Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 169:957–962

    Article  PubMed  Google Scholar 

  35. Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    PubMed  CAS  Google Scholar 

  36. Luecke T, Meinhardt JP, Herrmann P et al (2003) Setting mean airway pressure during high-frequency oscillatory ventilation according to the static pressure-volume curve in surfactant-deficient lung injury: a computed tomography study. Anesthesiology 99:1313–1322

    Article  PubMed  Google Scholar 

  37. Gattinoni L, Mascheroni D, Basilico E et al (1987) Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med 13:19–25

    Article  PubMed  CAS  Google Scholar 

  38. Janney CD (1959) Super-syringe. Anesthesiology 20:709–711

    PubMed  CAS  Google Scholar 

  39. Gottfried SB, Rossi A, Calverley PM, Zocchi L et al (1984) Interrupter technique for measurement of respiratory mechanics in anesthetized cats. J Appl Physiol 56:681–690

    PubMed  CAS  Google Scholar 

  40. Rossi A, Gottfried SB, Higgs BD et al (1985) Respiratory mechanics in mechanically ventilated patients with respiratory failure. J Appl Physiol 58:1849–1858

    PubMed  CAS  Google Scholar 

  41. Rossi A, Gottfried SB, Zocchi L et al (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. The effect of intrinsic positive end-expiratory pressure. Am Rev Respir Dis 131:672–677

    PubMed  CAS  Google Scholar 

  42. Sydow M, Burchardi H, Zinserling J et al (1991) Improved determination of static compliance by automated single volume steps in ventilated patients. Intensive Care Med 17:108–114

    Article  PubMed  CAS  Google Scholar 

  43. Lu Q, Vieira SR, Richecoeur J et al (1999) A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 159:275–282

    PubMed  CAS  Google Scholar 

  44. Rodriguez L, Marquer B, Mardrus P et al (1999) A new simple method to perform pressure-volume curves obtained under quasi-static conditions during mechanical ventilation. Intensive Care Med 25:173–179

    Article  PubMed  CAS  Google Scholar 

  45. Svantesson C, Drefeldt B, Sigurdsson S et al (1999) A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J Clin Monit Comput 15:9–16

    Article  PubMed  CAS  Google Scholar 

  46. Karason S, Sondergaard S, Lundin S et al (2000) Evaluation of pressure/volume loops based on intratracheal pressure measurements during dynamic conditions. Acta Anaesthesiol Scand 44:571–577

    Article  PubMed  CAS  Google Scholar 

  47. Karason S, Sondergaard S, Lundin S et al (2000) A new method for non-invasive, manoeuvre-free determination of “static” pressure-volume curves during dynamic/therapeutic mechanical ventilation. Acta Anaesthesiol Scand 44:578–585

    PubMed  CAS  Google Scholar 

  48. Mols G, Brandes I, Kessler V et al (1999) Volume-dependent compliance in ARDS: proposal of a new diagnostic concept. Intensive Care Med 25:1084–1091

    Article  PubMed  CAS  Google Scholar 

  49. Gattinoni L, Pelosi P, Suter PM et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Differentsyndromes? Am J Respir Crit Care Med 158:3–11

    PubMed  CAS  Google Scholar 

  50. Pelosi P, Bottino N, Chiumello D et al (2003) Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med 167:521–527

    Article  PubMed  Google Scholar 

  51. Pelosi P, D’Onofrio D, Chiumello D et al (2003) Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl 42:S48–S56

    Article  Google Scholar 

  52. Ranieri VM, Brienza N, Santostasi S et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091

    PubMed  CAS  Google Scholar 

  53. Malbrain ML (2004) Is it wise not to think about intraabdominal hypertension in the ICU? Curr Opin Crit Care 10:132–145

    Article  PubMed  Google Scholar 

  54. Mancebo J, Benito S, Martin M et al (1988) Value of static pulmonary compliance in predicting mortality in patients with acute respiratory failure. Intensive Care Med 14:110–114

    Article  PubMed  CAS  Google Scholar 

  55. Pelosi P, Cereda M, Foti G et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152:531–537

    PubMed  CAS  Google Scholar 

  56. Sibilla S, Tredici S, Porro A et al (2002) Equal increases in respiratory system elastance reflect similar lung damage in experimental ventilator-induced lung injury. Intensive Care Med 28:196–203

    Article  PubMed  Google Scholar 

  57. Suwanvanichkij V, Curtis JR (2004) The use of high positive end-expiratory pressure for respiratory failure in abdominal compartment syndrome. Respir Care 49:286–290

    PubMed  Google Scholar 

  58. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  59. Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol 84:389–395

    PubMed  CAS  Google Scholar 

  60. Schmitt JM, Vieillard-Baron A, Augarde R et al (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158

    Article  PubMed  CAS  Google Scholar 

  61. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  62. Vieillard-Baron A, Loubieres Y, Schmitt JM et al (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    PubMed  CAS  Google Scholar 

  63. Vieillard-Baron A, Jardin F (2003) Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care 9:15–21

    Article  PubMed  Google Scholar 

  64. Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73:158–162

    PubMed  CAS  Google Scholar 

  65. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  66. Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

    Article  PubMed  CAS  Google Scholar 

  67. Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  PubMed  CAS  Google Scholar 

  68. Kunst PW, Bohm SH, Vazquez de Anda G et al (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183

    Article  PubMed  CAS  Google Scholar 

  69. Pelosi P, Croci M, Calappi E et al (1995) The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg 80:955–960

    Article  PubMed  CAS  Google Scholar 

  70. Pelosi P, Ravagnan I, Giurati G et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91:1221–1231

    Article  PubMed  CAS  Google Scholar 

  71. Ranieri VM, Giuliani R, Cinnella G et al (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13

    PubMed  CAS  Google Scholar 

  72. Gattinoni L, Pelosi P, Crotti S et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  73. Bohm S, Lachmann B (1996) Pressure Control Ventilation: Putting a mode into a perspective. Int J Intensive Care 4:45–55

    Google Scholar 

  74. Rimensberger PC, Cox PN, Frndova H et al (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952

    Article  PubMed  CAS  Google Scholar 

  75. Rimensberger PC, Pache JC, McKerlie C et al (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755

    Article  PubMed  CAS  Google Scholar 

  76. Rouby JJ, Lu Q, Goldstein I (2002) Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1182–1186

    PubMed  Google Scholar 

  77. Hickling KG, Wright T, Laubscher K et al (1998) Extreme hypoventilation reduces ventilator-induced lung injury during ventilation with low positive end-expiratory pressure in saline-lavaged rabbits. Crit Care Med 26:1690–1697

    Article  PubMed  CAS  Google Scholar 

  78. Rossi N, Kolobow T, Aprigliano M et al (1998) Intratracheal pulmonary ventilation at low airway pressures in a ventilator-induced model of acute respiratory failure improves lung function and survival. Chest 114:1147–1157

    PubMed  CAS  Google Scholar 

  79. Gattinoni L, Pesenti A, Bombino M et al (1993) Role of extracorporeal circulation in adult respiratory distress syndrome management. New Horiz 1:603–612

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this paper

Cite this paper

Luecke, T., Fiedler, F., Pelosi, P. (2005). Respiratory mechanics at the bedside. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0351-2_26

Download citation

  • DOI: https://doi.org/10.1007/88-470-0351-2_26

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0288-3

  • Online ISBN: 978-88-470-0351-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics