Skip to main content

Stem Cell Interaction with Topography

  • Chapter
  • First Online:
Biomaterials as Stem Cell Niche

Abstract

The growth and differentiation of stem cells are regulated by biochemical and biophysical cues in the extracellular microenvironment. Increasing evidences have shown that substrate topography, one of the biophysical properties of the microenvironment, can affect stem cell fate, such as the maintenance of embryonic stem cells and the differentiation of adult and embryonic stem cells. The underlying mechanism of how topography influences stem cells remains unknown. Nevertheless, the advancement in technology has enabled the fabrication of synthetic topography with different materials, chemistries, geometries and sizes, allowing systematic studies of the underlying mechanism. Recent studies show that the topography-induced stem cells response can be a result of mechanotransduction via cellular components such as intergrins, focal adhesion and cytoskeleton organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, S., Schultz, P.G.: A role for chemistry in stem cell biology. Nat. Biotechnol. 22(7), 833–840 (2004)

    Google Scholar 

  2. Fuchs, E., Tumbar, T., Guasch, G.: Socializing with the neighbors: stem cells and their niche. Cell 116(6), 769–778 (2004)

    Google Scholar 

  3. Moore, K.A., Lemischka, I.R.: Stem cells and their niches. Science 311(5769), 1880–1885 (2006)

    Google Scholar 

  4. Abrams, G.A., et al.: Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299(1), 39–46 (2000)

    MathSciNet  Google Scholar 

  5. Weiss, P., Garber, B.: Shape and movement of mesenchyme cells as functions of the physical structure of the medium. Proc. Natl Acad. Sci. USA 38(3), 264–280 (1952)

    Google Scholar 

  6. Curtis, A.S., Varde, M.: Control of cell behavior: topological factors. J. Natl. Cancer Inst. 33, 15–26 (1964)

    Google Scholar 

  7. Bettinger, C.J., Langer, R., Borenstein, J.T.: Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. 48(30), 5406–5415 (2009)

    Google Scholar 

  8. Yim, E.K.F., Leong, K.W.: Significance of synthetic nanostructures in dictating cellular response. Nanomed. Nanotechnol. Biol. Med. 1(1), 10–21 (2005)

    Google Scholar 

  9. Seidlits, S.K., Lee, J.Y., Schmidt, C.E.: Nanostructured scaffolds for neural applications. Nanomedicine 3(2), 183–199 (2008)

    Google Scholar 

  10. Martínez, E., et al.: Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. Anatomischer Anzeiger 191(1), 126–135 (2009)

    Google Scholar 

  11. Gong, H., et al.: A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp. Eye Res. 75(3), 347–358 (2002)

    Google Scholar 

  12. Yim, E.K., Pang, S.W., Leong, K.W.: Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313(9), 1820–1829 (2007)

    Google Scholar 

  13. Curtis, A., Wilkinson, C.: Nantotechniques and approaches in biotechnology. Trends Biotechnol. 19(3), 97–101 (2001)

    Google Scholar 

  14. Curtis, A., Wilkinson, C.: Topographical control of cells. Biomaterials 18(24), 1573–1583 (1997)

    Google Scholar 

  15. Flemming, R.G., et al.: Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6), 573–588 (1999)

    Google Scholar 

  16. Folch, A., Toner, M.: Cellular micropatterns on biocompatible materials. Biotechnol. Prog. 14(3), 388–392 (1998)

    Google Scholar 

  17. Patel, N., et al.: Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB J. 12(14), 1447–1454 (1998)

    Google Scholar 

  18. Vieu, C., et al.: Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1–4), 111–117 (2000)

    Google Scholar 

  19. Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)

    Google Scholar 

  20. Zhang, F.X., Low, H.Y.: Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography. Nanotechnology 17(8), 1884–1890 (2006)

    Google Scholar 

  21. Zhang, F.X., Low, H.Y.: Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp. Nanotechnology 19(41) (2008)

    Google Scholar 

  22. Schmid, H., Michel, B.: Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography. Macromolecules 33(8), 3042-3049 (2000)

    Google Scholar 

  23. Odom, T.W., et al.: Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir 18(13), 5314-5320 (2002)

    Google Scholar 

  24. Basnar, B., Willner, I.: Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small 5(1), 28–44 (2009)

    Google Scholar 

  25. Kaehr, B., et al.: Guiding neuronal development with in situ microfabrication. Proc. Natl Acad. Sci. USA 101(46), 16104–16108 (2004)

    Google Scholar 

  26. Norman, J.J., Desai, T.A.: Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 34(1), 89–101 (2006)

    Google Scholar 

  27. Desai, T.A., et al.: Nanopore technology for biomedical applications. Biomed. Microdev. 2(1), 11–40 (1999)

    MathSciNet  Google Scholar 

  28. Moldovan, N.I., et al.: Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5), 378–384 (2000)

    Google Scholar 

  29. Malarkey, E.B., Parpura, V.: Applications of carbon nanotubes in neurobiology. Neurodegener. Dis. 4(4), 292–299 (2007)

    Google Scholar 

  30. Fan, Y.W., et al.: Culture of neural cells on silicon wafers with nano-scale surface topograph. J. Neurosci. Meth. 120(1), 17–23 (2002)

    Google Scholar 

  31. Turner, S., et al.: Cell attachment on silicon nanostructures. In Papers from the 41st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication. AVS, Dana Point (1997)

    Google Scholar 

  32. Low, S.P., et al.: Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27(26), 4538–4546 (2006)

    MathSciNet  Google Scholar 

  33. Frenot, A., Chronakis, I.S.: Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8, 64–75 (2003)

    Google Scholar 

  34. Matthews, J.A., et al.: Electrospinning of Collagen Nanofibers. Biomacromolecules 3(2), 232–238 (2002)

    Google Scholar 

  35. Hartgerink, J.D., Beniash, E., Stupp, S.I.: Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99(8), 5133–5138 (2002)

    Google Scholar 

  36. Holmes, T.C., et al.: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA 97(12), 6728–6733 (2000)

    Google Scholar 

  37. Affrossman, S., et al.: Surface topography and composition of deuterated polystyrene–poly(bromostyrene) blends. Macromolecules 29(14), 5010–5016 (1996)

    Google Scholar 

  38. Affrossman, S., Stamm, M.: Topography and surface composition of thin films of blends of polystyrene with brominated polystyrenes: effects of varying the degree of bromination and annealing. Macromolecules 31(18), 6280–6288 (1998)

    Google Scholar 

  39. Affrossman, S., Stamm, M.: The effect of molecular weight on the topography of thin films of blends of poly(4-bromostyrene) and polystyrene. Colloid Polym. Sci. 278(9), 888–893 (2000)

    Google Scholar 

  40. Dalby, M.J., et al.: Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int. J. Biochem. Cell Biol. 36(10), 2005–2015 (2004)

    Google Scholar 

  41. Sen, R., et al.: Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4(3), 459–464 (2004)

    Google Scholar 

  42. Smith, L.A., Ma, P.X.: Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B Biointerfaces 39(3), 125–131 (2004)

    Google Scholar 

  43. Huang, X.D., et al.: Reversal imprinting by transferring polymer from mold to substrate. In: Papers from the 46th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication. AVS, Anaheim (2002)

    Google Scholar 

  44. Stojkovic, M., et al.: Derivation, growth and applications of human embryonic stem cells. Reproduction 128(3), 259–267 (2004)

    Google Scholar 

  45. Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Google Scholar 

  46. Markert, L.D.A., et al.: Identification of distinct topographical surface microstructures favoring either undifferentiated expansion or differentiation of murine embryonic stem cells. Stem Cells Dev. (2009)

    Google Scholar 

  47. Gerecht, S., et al.: The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28(28), 4068–4077 (2007)

    Google Scholar 

  48. Murray, P., Edgar, D.: The topographical regulation of embryonic stem cell differentiation. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359(1446), 1009–1020 (2004)

    Google Scholar 

  49. Sasaki, D., et al.: Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method. Biomaterials 30(26), 4384–4389 (2009)

    Google Scholar 

  50. Smith, L.A., et al.: Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng. Part A 15(7), 1855–1864 (2009)

    Google Scholar 

  51. Morshead, C.M., et al.: Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13(5), 1071–1082 (1994)

    Google Scholar 

  52. Johansson, C.B., et al.: Identification of a neural stem cell in the adult mammalian central nervous system, Cell 96(1), 25–34 (1999)

    Google Scholar 

  53. Goldman, S.A.: Neural progenitor cells of the adult human brain. In: Rao, M.S. (ed.) Neural Development and Stem Cells, Chapter 12, 2nd edn, pp. 267–297. Humana Press, Totowa (2006)

    Google Scholar 

  54. Goldman, S.A., et al.: Isolation and induction of adult neural progenitor cells. Clin. Neurosci. Res. 2(1), 70–79 (2002)

    Google Scholar 

  55. Johansson, C.B., et al.: Neural stem cells in the adult human brain. Exp. Cell Res. 253(2), 733–736 (1999)

    MathSciNet  Google Scholar 

  56. Svendsen, C.N., Caldwell, M.A., Ostenfeld, T.: Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9(3), 499–513 (1999)

    Google Scholar 

  57. Scolding, N., et al.: Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121(12), 2221–2228 (1998)

    Google Scholar 

  58. Roy, N.S., et al.: Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19(22), 9986–9995 (1999)

    Google Scholar 

  59. Christopherson, G.T., Song, H., Mao, H.-Q.: The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4), 556–564 (2009)

    Google Scholar 

  60. Recknor, J.B., Sakaguchi, D.S., Mallapragada, S.K.: Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27(22), 4098–4108 (2006)

    Google Scholar 

  61. Silva, G.A., et al.: Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662), 1352–1355 (2004)

    Google Scholar 

  62. Soen, Y., et al.: Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Biol. 2, 1–14 (2006)

    Google Scholar 

  63. Even-Ram, S., Artym, V., Yamada, K.M.: Matrix control of stem cell fate. Cell 126(4), 645–647 (2006)

    Google Scholar 

  64. Ciapetti, G., et al.: Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27(36), 6150–6160 (2006)

    Google Scholar 

  65. Sanchez-Ramos, J., et al.: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164(2), 247–256 (2000)

    Google Scholar 

  66. Caplan, A.I.: Mesenchymal stem cells. J. Orthop. Res. 9(5), 641–650 (1991)

    Google Scholar 

  67. Dalby, M.J., et al.: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6(12), 997–1003 (2007)

    Google Scholar 

  68. Huang, N.F., Li, S.: Mesenchymal stem cells for vascular regeneration. Regen. Med. 3(6), 877–892 (2008)

    Google Scholar 

  69. McBeath, R., et al.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)

    Google Scholar 

  70. Dang, J.M., Leong, K.W.: Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 19(19), 2775–2779 (2007)

    Google Scholar 

  71. Martino, S., et al.: Hydrogenated amorphous carbon nanopatterned film designs drive human bone marrow mesenchymal stem cell cytoskeleton architecture. Tissue Eng. Part A (2009)

    Google Scholar 

  72. Engel, E., et al.: Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates. Ann. Anat. Anatomischer Anzeiger 191(1), 136–144 (2009)

    MathSciNet  Google Scholar 

  73. Terje, S., et al.: Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 5(5), 1433–1441 (2009)

    Google Scholar 

  74. Kantawong, F., et al.: Whole proteome analysis of osteoprogenitor differentiation induced by disordered nanotopography and mediated by ERK signalling. Biomaterials 30(27), 4723–4731 (2009)

    Google Scholar 

  75. Prabhakaran, M.P., Venugopal, J.R., Ramakrishna, S.: Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28), 4996–5003 (2009)

    Google Scholar 

  76. Dalby, M.J., et al.: Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27(15), 2980–2987 (2006)

    Google Scholar 

  77. Alberts, B., Bray, D., Lewis, J., Raff, M., Watson, J.: Molecular Biology of the Cell. Garland Publishing, New York (1994)

    Google Scholar 

  78. Brunette, D.M., Chehroudi, B.: The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng. 121(1), 49–57 (1999)

    Google Scholar 

  79. Dunn, G.A., Brown, A.F.: Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell Sci. 83, 313–340 (1986)

    Google Scholar 

  80. Bissell, M.J., et al.: Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59(7 suppl), 1757s–1763s; discussion 1763s–1764s (1999)

    Google Scholar 

  81. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)

    Google Scholar 

  82. Geiger, B., Spatz, J.P., Bershadsky, A.D.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10(1), 21–33 (2009)

    Google Scholar 

  83. Dalby, M.J., et al.: Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 24(6), 927–935 (2003)

    Google Scholar 

  84. Riveline, D., et al.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1186 (2001)

    Google Scholar 

  85. Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94(3), 849–854 (1997)

    Google Scholar 

  86. Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273(5661), 345–349 (1978)

    Google Scholar 

  87. Ingber, D.E.: Control of capillary growth and differentiation by extracellular matrix. Use of a tensegrity (tensional integrity) mechanism for signal processing. Chest 99(3 suppl), 34S–40S (1991)

    Google Scholar 

  88. Chen, C.S., et al.: Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14(3), 356–363 (1998)

    Google Scholar 

  89. Titushkin, I., Cho, M.: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93(10), 3693–3702 (2007)

    Google Scholar 

  90. Yourek, G., Hussain, M.A., Mao, J.J.: Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J. 53(2), 219–228 (2007)

    Google Scholar 

  91. Hoben, G.M., Koay, E.J., Athanasiou, K.A.: Fibrochondrogenesis in two embryonic stem cell lines: effects of differentiation timelines. Stem Cells 26(2), 422–430 (2008)

    Google Scholar 

  92. Johnstone, B., et al.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238(1), 265–272 (1998)

    MathSciNet  Google Scholar 

  93. McBride, S.H., Falls, T., Knothe Tate, M.L.: Modulation of stem cell shape and fate B: mechanical modulation of cell shape and gene expression. Tissue Eng. Part A 14(9), 1573–1580 (2008)

    Google Scholar 

  94. Guilak, F., et al.: Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1), 17–26 (2009)

    Google Scholar 

  95. Ingber, D.E.: The mechanochemical basis of cell and tissue regulation. Mech. Chem. Biosyst. 1(1), 53–68 (2004)

    Google Scholar 

  96. Lecuit, T., Lenne, P.F.: Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8(8), 633–644 (2007)

    Google Scholar 

  97. Zamir, E., Geiger, B.: Molecular complexity and dynamics of cell–matrix adhesions. J. Cell Sci. 114(Pt 20), 3583–3590 (2001)

    Google Scholar 

  98. Ruoslahti, E., Obrink, B.: Common principles in cell adhesion. Exp. Cell Res. 227(1), 1–11 (1996)

    Google Scholar 

  99. Arnold, M., et al.: Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5(3), 383–388 (2004)

    Google Scholar 

  100. Arnold, M., et al.: Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 8(7), 2063–2069 (2008)

    Google Scholar 

  101. Jiang, F., et al.: Assembly of collagen into microribbons: effects of pH and electrolytes. J. Struct. Biol. 148(3), 268–278 (2004)

    Google Scholar 

  102. Little, W.C., et al.: Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 27(5), 451–461 (2008)

    MathSciNet  Google Scholar 

  103. Smith, M.L., et al.: Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5(10), e268 (2007)

    Google Scholar 

  104. Zaidel-Bar, R., et al.: Functional atlas of the integrin adhesome. Nat. Cell Biol. 9(8), 858–867 (2007)

    Google Scholar 

  105. Burridge, K., et al.: Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell. Biol. 4, 487–525 (1988)

    MathSciNet  Google Scholar 

  106. Geiger, B., et al.: Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2(11), 793–805 (2001)

    Google Scholar 

  107. Gingras, A.R., et al.: The structure of the C-terminal actin-binding domain of talin. EMBO J. 27(2), 458–469 (2008)

    Google Scholar 

  108. Choi, C.K., et al.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10(9), 1039–1050 (2008)

    Google Scholar 

  109. Even-Ram, S., et al.: Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nat. Cell Biol. 9(3), 299–309 (2007)

    Google Scholar 

  110. Humphries, J.D., et al.: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179(5), 1043–1057 (2007)

    Google Scholar 

  111. Gingras, A.R., et al.: Structural and dynamic characterization of a vinculin binding site in the talin rod. Biochemistry 45(6), 1805–1817 (2006)

    Google Scholar 

  112. Sawada, Y., et al.: Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5), 1015–1026 (2006)

    Google Scholar 

  113. Berrier, A.L., Yamada, K.M.: Cell–matrix adhesion. J. Cell Physiol. 213(3), 565–573 (2007)

    Google Scholar 

  114. Delon, I., Brown, N.H.: Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19(1), 43–50 (2007)

    Google Scholar 

  115. Lowe, J., van den Ent, F., Amos, L.A.: Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct. 33, 177–198 (2004)

    Google Scholar 

  116. Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003)

    Google Scholar 

  117. Dechat, T., et al.: Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22(7), 832–853 (2008)

    Google Scholar 

  118. Fujita, S., Ohshima, M., Iwata H.: Time-lapse observation of cell alignment on nanogrooved patterns. J. R. Soc. Interface 6(suppl 3), S269–S277 (2009)

    Google Scholar 

  119. Engler, A.J., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Google Scholar 

  120. Harris, A.K., Wild, P., Stopak, D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440), 177–179 (1980)

    Google Scholar 

  121. Tan, J.L., et al.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100(4), 1484–1489 (2003)

    Google Scholar 

  122. Galbraith, C.G., Yamada, K.M., Sheetz, M.P.: The relationship between force and focal complex development. J. Cell Biol. 159(4), 695–705 (2002)

    Google Scholar 

  123. Galbraith, C.G., Yamada, K.M., Galbraith, J.A.: Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315(5814), 992–995 (2007)

    Google Scholar 

  124. Dalby, M.J., et al.: Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276(1), 1–9 (2002)

    Google Scholar 

  125. Crisp, M., et al.: Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172(1), 41–53 (2006)

    Google Scholar 

  126. Fey, E.G., Wan, K.M., Penman, S.: Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J. Cell Biol. 98(6), 1973–1984 (1984)

    Google Scholar 

  127. Wang, N., Tytell, J.D., Ingber, D.E.: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10(1), 75–82 (2009)

    Google Scholar 

  128. Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006)

    Google Scholar 

  129. Bershadsky, A.D., et al.: Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85(3–4), 165–173 (2006)

    Google Scholar 

  130. Bershadsky, A., Kozlov, M., Geiger, B.: Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol. 18(5), 472–481 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn K. F. Yim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teo, B.K.K., Ankam, S., Yim, E.K.F. (2010). Stem Cell Interaction with Topography. In: Roy, K. (eds) Biomaterials as Stem Cell Niche. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_4

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13892-8

  • Online ISBN: 978-3-642-13893-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics