Skip to main content

Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder

  • Chapter
  • First Online:
The Neurobiology and Treatment of OCD: Accelerating Progress

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 49))

Abstract

Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1–3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

MB was supported by her studentship from the Mental Health Research UK. LCM has received support from the Swiss National Science Foundation: Doc-mobility grant No. P1GEP3_191308. PB was supported by the Sir Henry Wellcome Trust Postdoctoral Research Fellowship (204727/Z/16/Z).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biria, M., Cantonas, LM., Banca, P. (2021). Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. In: Fineberg, N.A., Robbins, T.W. (eds) The Neurobiology and Treatment of OCD: Accelerating Progress. Current Topics in Behavioral Neurosciences, vol 49. Springer, Cham. https://doi.org/10.1007/7854_2020_201

Download citation

Publish with us

Policies and ethics