Skip to main content

Chemical and Radiation Mutagenesis: Induction and Detection by Whole Genome Sequencing

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Abstract

Brachypodium distachyon has emerged as an effective model system to address fundamental questions in grass biology. With its small sequenced genome, short generation time and rapidly expanding array of genetic tools, B. distachyon is an ideal system to elucidate the molecular basis of important traits in crops and bioenergy feedstocks. Induced mutations are one of the pillars of modern molecular genetics and are particularly useful for assigning function to individual genes. Due to their ease of use and low cost, mutagenic chemicals and ionizing radiation have been widely used to create mutant populations of many different organisms. The major limitations for these mutagens are the difficulty of identifying the specific mutation responsible for an observed phenotype and the difficulty of identifying mutations in a gene of interest. As a step toward addressing these limitations, Targeting Induced Local Lesions in Genomes (TILLING) has been developed as an efficient method to rapidly identify mutations in genes of interest. Recently, the decreasing cost of DNA sequencing has made it feasible to detect mutations throughout the genome using whole genome sequencing. This promises to revolutionize the use of chemical and radiation mutants in research. In this chapter we describe the status of B. distachyon mutagenesis including the methods, mutagens, TILLING populations and initial results using whole genome sequencing to identify induced genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135(2):187–204.

    Article  Google Scholar 

  • Al-Qurainy F, Khan S. Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J. 2009;6(12):1589–601.

    CAS  Google Scholar 

  • Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, et al. Next-generation mapping of Arabidopsis genes. Plant J. 2011;67(4):715–25.

    Article  CAS  PubMed  Google Scholar 

  • Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, et al. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res. 2012;22(7):1306–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell. 2011;23(3):1124–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolon Y-T, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, et al. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol. 2011;156(1):240–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouvier d'Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Légée F, et al. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 2013;73(3):496–508.

    Article  PubMed  Google Scholar 

  • Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, et al. Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics. 2009;10(1):129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bruggemann EP, Doan B, Handwerger K, Storz G. Characterization of an unstable allele of the Arabidopsis HY4 locus. Genetics. 1998;149(3):1575–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brutnell TP, Bennetzen JL, Vogel JP. Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol. 2015;66(1):465–85.

    Article  CAS  PubMed  Google Scholar 

  • Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, d'Yvoire MB, et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One. 2013;8(6):e65503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derbyshire P, Byrne ME. MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiol. 2013;161(3):1291–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engvild KC. Mutagenesis of the model grass Brachypodium distachyon with sodium azide. Roskilde, Denmark: Report; 2005.

    Google Scholar 

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, et al. MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One. 2013;8(7):e68529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gady ALF, Hermans FWK, Van de Wal MHBJ, et al. Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods. 2009. doi:10.1186/1746-4811-5-13.

    PubMed Central  PubMed  Google Scholar 

  • Gordon SP, Priest H, Marais Des DL, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 2014;79:361–74. doi:10.1111/tpj.12569.

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics. 2003;164(2):731–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gruszka D, Szarejko I, Maluszynski M. Sodium azide as a mutagen. In: Shu QY, Forster BP, Nakagawa H, editors. Plant mutation breeding and biotechnology. Wallingford: CABI; 2012. p. 159–66.

    Chapter  Google Scholar 

  • Henikoff S, Till BJ, Comai L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 2004;135:630–6. doi:10.1104/pp. 104.041061.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henry IM, Nagalakshmi U, Lieberman MC, et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell. 2014;26:1382–97. doi:10.1105/tpc.113.121590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgdon AL, Marcus AH, Arenaz P, Rosichan JL, Bogyo TP, Nilan RA. Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations. Environ Health Perspect. 1981;37:5–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann GR. Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. Mutat Res. 1980;75(1):63–129.

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Li L, Peng Z, Wei B, Tang S, Ding M, et al. A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant J. 2010;63(5):880–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Schumaker KS, Zhu J-K. EMS mutagenesis of Arabidopsis. Methods Mol Biol. 2006;323:101–3.

    CAS  PubMed  Google Scholar 

  • Koornneef M, Dellaert LW, van der Veen JH. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res. 1982;93(1):109–23.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B. Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J. 2000;19(17):4431–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krieg DR. Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics. 1963;48(4):561–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaVelle JM, Mangold JB. Structure-activity relationships of the azide metabolite, azidoalanine, in S. typhimurium. Mutat Res. 1987;177(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  • Lee MB, Kim DY, Jeon WB, Hong MJ, Lee YJ, Bold O, et al. Effect of Gamma radiation on growth and lignin content in Brachypodium distachyon. J Crop Sci Biotechnol. 2013;16:105–10.

    Article  Google Scholar 

  • Li X, Lassner M, Zhang Y. Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genomics. 2002;3(2):158–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lochlainn SO, Amoah S, Graham NS, et al. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods. 2011. doi:10.1186/1746-4811-7-43.

    PubMed Central  PubMed  Google Scholar 

  • Maple J, Møller SG. Mutagenesis in Arabidopsis. Methods Mol Biol. 2007;362:197–206.

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S. Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol. 2000a;123(2):439–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S. Targeted screening for induced mutations. Nat Biotechnol. 2000b;18(4):455–7.

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ. Artifial transmutation of the gene. Science. 1927;66(1699):84–7.

    Article  CAS  PubMed  Google Scholar 

  • Nilan RA. Increasing the effectiveness, efficiency, and specificity of mutation induction in flowering plants. Basic Life Sci. 1973;2:205–22.

    CAS  PubMed  Google Scholar 

  • O'Rourke JA, Iniguez LP, Bucciarelli B, Roessler J, Schmutz J, McClean PE, et al. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Front Plant Sci. 2013;4:210.

    Article  PubMed Central  PubMed  Google Scholar 

  • Olsen O, Wang X, von Wettstein D. Sodium azide mutagenesis: preferential generation of A.T→G.C transitions in the barley Ant18 gene. Proc Natl Acad Sci. 1993;90(17):8043–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owais WM. The lack of L-azidoalanine interaction with DNA. In vitro studies. Mutat Res. 1993;302(3):147–51.

    Article  CAS  PubMed  Google Scholar 

  • Owais WM, Kleinhofs A. Metabolic-activation of the mutagen azide in biological-systems. Mutat Res. 1988;197(2):313–23.

    Article  CAS  PubMed  Google Scholar 

  • Owais WM, Ronald RC, Kleinhofs A, Nilan RA. Synthesis and mutagenicity of the 2 stereoisomers of an azide metabolite (azidoalanine). Mutat Res. 1986;175(3):121–6.

    Article  CAS  PubMed  Google Scholar 

  • Page DR, Grossniklaus U. The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet. 2002;3(2):124–36.

    Article  CAS  PubMed  Google Scholar 

  • Pathirana R. Plant mutation breeding in agriculture. CAB Rev Perspect Agr Vet Sci Nutr Nat Res. 2011;6(032):1–20.

    Google Scholar 

  • Perez-de-Castro AM, Vilanova S, Canizares J, et al. Application of genomic tools in plant breeding. Curr Genomics. 2012;13:179–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu L-J, Qin G. Generation and identification of Arabidopsis EMS mutants. Methods Mol Biol. 2014;1062:225–39.

    Article  PubMed  Google Scholar 

  • Rines HW. Sodium-azide mutagenesis in diploid and hexaploid oats and comparison with ethyl methanesulfonate treatments. Environ Exp Bot. 1985;25(1):7–16.

    Article  CAS  Google Scholar 

  • Rogers C, Wen J, Chen R, Oldroyd G. Deletion-based reverse genetics in Medicago truncatula. Plant Physiol. 2009;151(3):1077–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. A genome wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics. 2009;181(2):783–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sattler SE, Funnell-Harris DL, Pedersen JF. Efficacy of singular and stacked brown midrib 6 and 12 in the modification of lignocellulose and grain chemistry. J Agric Food Chem. 2010;58(6):3611–6.

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, et al. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods. 2009;6(8):550–1.

    Article  CAS  PubMed  Google Scholar 

  • Stadler LJ. Mutations in barley induced by X-rays and radium. Science. 1928a;68(1756):186–7.

    Article  CAS  PubMed  Google Scholar 

  • Stadler LJ. Genetic effects of x-rays in maize. Proc Natl Acad Sci. 1928b;14(1):69–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugihara N, Higashigawa T, Aramoto D, Kato A. Haploid plants carrying a sodium azide-induced mutation (fdr1) produce fertile pollen grains due to first division restitution (FDR) in maize (Zea mays L.). Theor Appl Genet. 2013;126(12):2931–41.

    Article  PubMed  Google Scholar 

  • Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, et al. High-throughput TILLING for functional genomics. Methods Mol Biol. 2003;236:205–20.

    CAS  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, et al. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007;7(1):19.

    Article  PubMed Central  PubMed  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, et al. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J. 2007;51(6):1116–25.

    Article  CAS  PubMed  Google Scholar 

  • Vattem DA, Jang HD, Levin R, Shetty K. Synergism of cranberry phenolics with ellagic acid and rosmarinic acid for antimutagenic and DNA protection functions. J Food Biochem. 2006;30(1):98–116.

    Article  CAS  Google Scholar 

  • Wang L, Hu W, Sun J, Liang X, Yang X, Wei S, et al. Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci. 2015;237:33–45.

    Article  CAS  PubMed  Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B. TILLING in extremis. Plant Biotechnol J. 2012;10:761–72. doi:10.1111/j.1467-7652.2012.00708.x.

    Article  CAS  PubMed  Google Scholar 

  • Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol. 2005;59(1):85–97.

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Anad G, Dubey AK, Gupta S, Yadav S. Patents in the era of genomics: an overview. Recent Pat DNA Gene Seq. 2012;6(2):127–44.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, et al. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol. 2006;140(3):972–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Sean Gordon for providing high and low confidence SNP files. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. Yin Wang was funded by the China Scholarship Council. Aurélie Lemaire was funded BRAVO (ANR-14-CE19-0012-01). The preliminary data on sequencing were funded by the SILICOTIL project from INRA. The Institut Jean-Pierre Bourgin benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS). Work done at the U.S. Department of Agriculture was supported by CRIS project 2030-21000-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Sibout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Granier, F. et al. (2015). Chemical and Radiation Mutagenesis: Induction and Detection by Whole Genome Sequencing. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_20

Download citation

Publish with us

Policies and ethics