Skip to main content

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 35))

Abstract

Glaucoma is one of the leading causes of irreversible blindness globally, with over 75.0 million people anticipated to be affected in 2020 with that number growing to over 110 million in 2040. The prevalence of glaucoma coupled with the unfortunate reality that the disease still progresses in 30–80% of patients prescribed the standard of care has led to continued interest in glaucoma drug discovery. This chapter reviews advances in glaucoma therapies over the last 5 years. The focus is on: (1) advancements in drug delivery that offer the potential for enhancing the efficacy of current treatments; (2) new and emerging therapies for primary open angle glaucoma (POAG) in both the clinical and pre-clinical stages (the review of emerging glaucoma therapies highlighted in this chapter is limited to those for which in vivo efficacy data were published); and (3) progress toward treating the underlying optic neuropathy, which defines glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The review of emerging glaucoma therapies highlighted in this chapter is limited to those for which in vivo efficacy data were published.

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR (2017) Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

    Article  PubMed  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  3. Kim YC, Sung MS, Heo H, Park SW (2016) Anterior segment configuration as a predictive factor for refractive outcome after cataract surgery in patients with glaucoma. BMC Ophthalmol 16(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quigley RH (2011) Glaucoma. Lancet 377(9774):1367–1377

    Article  PubMed  Google Scholar 

  5. Morgan Franzco WH, Yu D-Y (2012) Surgical management of glaucoma: a review. Clin Experiment Ophthalmol 40:388–399

    Article  Google Scholar 

  6. Grover DS, Kornmann HL, Fellman RL (2018) New developments in the surgical treatment of glaucoma. Curr Ophthalmol Rep 6(3):165–172

    Article  Google Scholar 

  7. Jampel H (2007) Target IOP in clinical practice. In: Weinreb RN, Brandt JD, Garway-Heath D, Madeiros FA (eds) Intraocular pressure. Kugler, Amsterdam, pp 121–125

    Google Scholar 

  8. Prum BE Jr, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, Herndon LW Jr, Lim MC, Williams RD (2016) Primary open-angle glaucoma preferred practice pattern(®) guidelines. Ophthalmology 123(1):41–111

    Google Scholar 

  9. Crooke A, Colligris B, Pintor J (2012) Update in glaucoma medicinal chemistry: emerging evidence for the importance of melatonin analogues. Curr Med Chem 19(21):3508–3522

    Article  CAS  PubMed  Google Scholar 

  10. Lee DA, Higginbotham EJ (2005) Glaucoma and its treatment: a review. Am J Health Syst Pharm 62(7):691–699

    Article  PubMed  Google Scholar 

  11. Donegan RK, Lieberman RL (2016) Discovery of molecular therapeutics for glaucoma: challenges, successes, and promising directions. J Med Chem 59(3):788–809

    Article  CAS  PubMed  Google Scholar 

  12. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E (2003) Early manifest glaucoma trial group. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56

    Article  PubMed  Google Scholar 

  13. Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, Diamond JP, Fraser SG, Ho TA, Martin KR, McNaught AI, Negi A, Patel K, Russell RA, Shah A, Spry PG, Suzuki K, White ET, Wormald RP, Xing W, Zeyen TG (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385(9975):1295–1304

    Article  CAS  PubMed  Google Scholar 

  14. MacKean JM, Elkington AR (1983) Compliance with treatment of patients with chronic open-angle glaucoma. Br J Ophthalmol 67(1):46–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurwitz JH, Glynn RJ, Monane M, Everitt DE, Gilden D, Smith N, Avorn J (1993) Treatment for glaucoma: adherence by the elderly. Am J Public Health 83(5):711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okeke CO, Quigley HA, Jampel HD, Ying GS, Plyler RJ, Jiang Y, Friedman DS (2009) Adherence with topical glaucoma medication monitored electronically the Travatan dosing aid study. Ophthalmology 116(2):191–199

    Article  PubMed  Google Scholar 

  17. Schehlein EM, Novack G, Robin AL (2017) New pharmacotherapy for the treatment of glaucoma. Expert Opin Pharmacother 18(18):1939–1946

    Article  CAS  PubMed  Google Scholar 

  18. Prasanna G, Li B, Mogi M, Rice DS (2016) Pharmacology of novel intraocular pressure-lowering targets that enhance conventional outflow facility: pitfalls, promises and what lies ahead? Eur J Pharmacol 787:47–56

    Article  CAS  PubMed  Google Scholar 

  19. Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G (2018) Glaucoma next generation therapeutics: impossible to possible. Pharm Res 36(2):25

    Article  PubMed  CAS  Google Scholar 

  20. Patil PN (2012) Discoveries in pharmacological sciences. World Scientific, Singapore, p 684

    Book  Google Scholar 

  21. Nordstrom BL, Friedman DS, Mozaffari E, Quigley HA, Walker AM (2005) Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol 140(4):598–606

    Article  PubMed  Google Scholar 

  22. Newman-Casey PA, Robin AL, Blachley T, Farris K, Heisler M, Resnicow K, Lee PP (2015) The most common barriers to glaucoma medication adherence: a cross-sectional survey. Ophthalmology 122(7):1308–1316

    Article  PubMed  Google Scholar 

  23. Olthoff CM, Schouten JS, van de Borne BW, Webers CA (2005) Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension an evidence-based review. Ophthalmology 112(6):953–961

    Article  PubMed  Google Scholar 

  24. Stone JL, Robin AL, Novack GD, Covert DW, Cagle GD (2009) An objective evaluation of eyedrop instillation in patients with Glaucoma. Arch Ophthalmol 127(6):732–736

    Article  PubMed  Google Scholar 

  25. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K (2000) Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 9(2):134–142

    Article  CAS  PubMed  Google Scholar 

  26. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, Caprioli J (2004) Predictive factors for glaucomatous visual field progression in the advanced glaucoma intervention study. Ophthalmology 111(9):1627–1635

    Article  PubMed  Google Scholar 

  27. Kim JH, Caprioli J (2018) Intraocular pressure fluctuation: is it important? J Ophthalmic Vis Res 3(2):170–174

    Google Scholar 

  28. De Moraes CG, Mansouri K, Liebmann JM, Ritch R (2018) Association between 24-hour intraocular pressure monitored with contact lens sensor and visual field progression in older adults with glaucoma. JAMA Ophthalmol 136(7):779–785

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu JHK, Weinreb RN (2011) Monitoring intraocular pressure for 24 h. Br J Ophthalmol 95:599–600

    Article  PubMed  Google Scholar 

  30. Drance SM (1963) Diurnal variation of intraocular pressure in treated glaucoma. Significance in patients with chronic simple glaucoma. Arch Ophthalmol 70:302–311

    Article  CAS  PubMed  Google Scholar 

  31. Food and Drug Administration. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=017431. Accessed 17 May 2019

  32. Quigley HA, Pollack IP, Harbin TS Jr (1975) Pilocarpine ocuserts. Long-term clinical trials and selected pharmacodynamics. Arch Ophthalmol 93(9):771–775

    Article  CAS  PubMed  Google Scholar 

  33. Ozdemir S, Wong TT, Allingham RR, Finkelstein EA (2017) Predicted patient demand for a new delivery system for glaucoma medicine. Medicine (Baltimore) 96(15):e6626

    Article  Google Scholar 

  34. Szigiato AA, Podbielski DW, Ahmed IIK (2011) Sustained drug delivery for the management of glaucoma. Expert Rev Ophthalmol 12(2):173–186

    Article  CAS  Google Scholar 

  35. Manickavasagam D, Oyewumi MO (2013) Critical assessment of implantable drug delivery devices in glaucoma management. J Drug Deliv 2013:895013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Aref AA (2017) Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol 28:169–174

    Article  PubMed  Google Scholar 

  37. Klimko PG, Sharif NA (2019) Discovery, characterization and clinical utility of prostaglandin agonists for the treatment of glaucoma. Br J Pharmacol 176(8):1051–1058

    Article  CAS  PubMed  Google Scholar 

  38. Molla D, O’Connor M, Blizzard CD, Bassett M, Desa A, Takach S, Cowe W, Wittbold J, Driscoll A, Sawhney A (2015) One-year stability of a sustained release travoprost biodegradable hydrogel punctum plug for the treatment of glaucoma. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 56(7):5707

    Google Scholar 

  39. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – a review. Int J Pharm 415(1–2):34–52

    Article  CAS  PubMed  Google Scholar 

  41. Perera SA, Ting DS, Nongpiur ME, Chew PT, Aquino MCD, Sng CCA, Ho S-W, Aung T (2016) Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin Ophthalmol 10:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Denis P, Covert D, Realini A (2007) Travoprost in the management of open-angle glaucoma and ocular hypertension. Clin Ophthalmol 1(1):11–24

    CAS  PubMed  PubMed Central  Google Scholar 

  43. http://investors.ocutx.com/phoenix.zhtml?c=253650&p=irol-newsArticle&ID=2399181. Accessed 22 May 2019

  44. http://www.matitherapeutics.com/about/press/compare-latanoprost-to-timolol. Accessed 24 May 2019

  45. https://clinicaltrials.gov/ct2/show/study/NCT02014142. Accessed 24 May 2019

  46. Camras CB (1996) Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group. Ophthalmology 103(1):138–147

    Article  CAS  PubMed  Google Scholar 

  47. Evans D Repke C (2012) Safety and efficacy of the latanoprost punctal plug delivery system (L-PPDS) in subjects with ocular hypertension (OH) or open angel glaucoma (OAG). American Academy of Optometry Meeting Abstract; Phoenix, AZ Program Number: 125689

    Google Scholar 

  48. Goldberg DF, Williams RA (2012) Phase 2 study evaluating safety and efficacy of the latanoprost punctal plug delivery system (L-PPDS) in subjects with ocular hypertension (OH) or open-angle glaucoma (OAG). ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 53(14):5095

    Google Scholar 

  49. Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, Semba CP (2016) Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology 123(8):1685–1694

    Article  PubMed  Google Scholar 

  50. https://clinicaltrials.gov/ct2/show/NCT03318146. Accessed 24 May 2019

  51. Brandt JD, DuBiner HB, Benza R, Sall KN, Walker GA, Semba CP (2017) Long-term safety and efficacy of a sustained-release bimatoprost ocular ring. Ophthalmology 124(10):1565–1566

    Article  PubMed  Google Scholar 

  52. Brandt JD, Van Denburgh AM, Chen K, Whitcup SM (2001) Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP. Ophthalmology 108:1023–1032

    Article  CAS  PubMed  Google Scholar 

  53. Lee SS, Hughes P, Ross AD, Robinson MR (2010) Biodegradable implants for sustained drug release in the eye. Pharm Res 27(10):2043–2053

    Article  CAS  PubMed  Google Scholar 

  54. Lewis RA, Christie WC, Day DG, Craven ER, Walters T, Bejanian M, Lee SS, Goodkin ML, Zhang J, Whitcup SM, Robinson MR (2017) Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol 175:137–147

    Article  CAS  PubMed  Google Scholar 

  55. Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, Li XY, Cui H, Hashad Y, Whitcup SM (2014) Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121(10):1904–1914

    Article  PubMed  Google Scholar 

  56. Wirta D, Vandenburgh AM, Weng E, Whitcup SM, Kurstjens S, Beddingfield FC 3rd (2011) Long-term safety evaluation of bimatoprost ophthalmic solution 0.03%: a pooled analysis of six double-masked, randomized, active-controlled clinical trials. Clin Ophthalmol 5:759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Filippopoulos T, Paula JS, Torun N, Hatton MP, Pasquale LR, Grosskreutz CL (2008) Periorbital changes associated with topical bimatoprost. Ophthal Plast Reconstr Surg 24:302–307

    Article  PubMed  Google Scholar 

  58. Ichhpujani P, Katz LJ, Hollo G, Shields CL, Shields JA, Marr B, Eagle R, Alvim H, Wizov SS, Acheampong A, Chen J, Wheeler LA (2012) Comparison of human ocular distribution of bimatoprost and latanoprost. J Ocul Pharmacol Ther 28(2):134–145

    Article  CAS  PubMed  Google Scholar 

  59. Sjöquist B, Johansson A, Stjernschantz J (1999) Pharmacokinetics of latanoprost in the cynomolgus monkey: 3rd communication: tissue distribution after topical administration on the eye studied by whole body autoradiography. Arzneimittelforschung 49(3):240–249

    PubMed  Google Scholar 

  60. Seal JR, Robinson MR, Burke J, Bejanian M, Coote M, Attar M (2019) Intracameral sustained-release bimatoprost implant delivers bimatoprost to target tissues with reduced drug exposure to off-target tissues. J Ocul Pharmacol Ther 35(1):50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee SS, Burke J, Shen J, Almazan A, Orilla W, Hughes P, Zhang J, Li H, Struble C, Miller PE, Robinson MR (2018) Bimatoprost sustained-release intracameral implant reduces episcleral venous pressure in dogs. Vet Ophthalmol 21(4):376–381

    Article  CAS  PubMed  Google Scholar 

  62. Lee SS, Almazan A, Decker S, Zhong Y, Ghebremeskel AN, Hughes P, Robinson MR, Burke JA, Weinreb RN (2019) Intraocular pressure effects and mechanism of action of topical versus sustained-release bimatoprost. Transl Vis Sci Technol 8(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee SS, Dibas M, Almazan A, Robinson MR (2019) Dose-response of intracameral bimatoprost sustained-release implant and topical bimatoprost in lowering intraocular pressure. J Ocul Pharmacol Ther 35(3):138–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. https://www.allergan.com/news/news/thomson-reuters/allergan-announces-positive-topline-phase-3-clinic.aspx. Accessed 29 May 2019

  65. https://www.allergan.com/news/news/thomson-reuters/allergan-announces-positive-3-month-topline-result.aspx. Accessed 29 May 2019

  66. http://investors.ocutx.com/phoenix.zhtml?c=253650&p=irol-presentations. Accessed 30 May 2019

  67. Goldstein MH, Walters T, Goldberg DF, Day D, Braun E, Metzinger JL (2019) A prospective, multicenter, open-label first-in-human study to evaluate the safety, tolerability and efficacy of OTX-TIC (travoprost) implant in subjects with primary open-angle glaucoma or ocular hypertension: preliminary findings. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 60(9):3360

    Google Scholar 

  68. Blizzard CD, Desai A, Langh J, Buff N, Metzinger JL, Goldstein MH, Gelormini A, Driscoll A (2019) Pharmacokinetics of OTX-TIC, a sustained release travoprost intracameral implant in rabbits. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 60(9):3777

    Google Scholar 

  69. Navratil T, Garcia A, Tully J, Mayno B, Ahmed IIK, Budenz DL, Lewis RA, Mansberger SL, Gilger BC, Yerxa B (2014) Preclinical evaluation of ENV515 (travoprost) intracameral implant – clinical candidate for treatment of glaucoma targeting six-month duration of action. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 55(13):3548

    Google Scholar 

  70. Perry JL, Herlihy KP, Napier ME, DeSimone JM (2011) PRINT®: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44(10):990–998

    Google Scholar 

  71. Navratil T, Das S, Garcia A, Tully J. Glaucoma treatment via intracameral ocular implants. WO2017015675A1

    Google Scholar 

  72. Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, Budenz DL, Ahmed IIK, Lewis RA, Yerxa BR (2015) Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 56(7):5706

    Google Scholar 

  73. Mansberger SL, Conley J, Verhoeven RS, Blackwell K, Depenbusch M, Knox T, Walters TR, Ahmad I, Yerxa BR, Navratil T (2110) Interim analysis of low dose ENV515 travoprost XR with 11 month duration followed by dose escalation and 28 Day efficacy evaluation of high dose ENV515. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 58(8):2017

    Google Scholar 

  74. Komaromy AM, Koehl K, Harman CD, Stewart SG, Wolinski N, Norris TN, Valade D, Chekhtman I, Lambert JN, Donohue AC, Tait R (2017) Long-term intraocular pressure (IOP) control by means of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 58(8):4591

    Google Scholar 

  75. https://polyactiva.com/platform/. Accessed 30 May 2019

  76. https://polyactiva.com/products/glaucoma-program/. Accessed 30 May 2019

  77. Ng SMY, Donahue AC, Tait RJ, Birkett SL, Sulistio A, Blencowe A. Polymer conjugate for delivery of a bioactive agent. WO2014134689A1

    Google Scholar 

  78. Koehl K, Harman C, Stewart G, Wolinski N, Norris TN, Valade D, Donohue AC, Chekhtman I, Lambert JN, Tait R, Komaromy AM (2017) Safety of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant for long-term intraocular pressure (IOP) control. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 58(8):4592

    Google Scholar 

  79. Wong TT, Novack GD, Natarajan JV, Ho CL, Htoon HM, Venkatraman SS (2014) Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res 4(4):303–309

    Article  CAS  PubMed  Google Scholar 

  80. Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS (2012) Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 7:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, Tam KC, Wong TT, Venkatraman SS (2014) Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano 8(1):419–429

    Article  CAS  PubMed  Google Scholar 

  82. https://www.clinicaltrials.gov/ct2/show/NCT02466399. Accessed 30 May 2019

  83. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M (2002) Early manifest glaucoma trial group. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120(10):1268–1279

    Article  PubMed  Google Scholar 

  84. Zimmerman TJ, Wheeler TM (1982) Miotics: side effects and ways to avoid them. Ophthalmology 89(1):76–80

    Article  CAS  PubMed  Google Scholar 

  85. Alm A, Nilsson SF (2009) Uveoscleral outflow – a review. Exp Eye Res 88(4):760–768

    Article  CAS  PubMed  Google Scholar 

  86. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88(4):648–655

    Article  CAS  PubMed  Google Scholar 

  87. Saccà SC, Pulliero A, Izzotti A (2015) The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol 230(3):510–525

    Article  PubMed  CAS  Google Scholar 

  88. Vranka JA, Kelley MJ, Acott TS, Keller KE (2015) Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133:112–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Saccà SC, Izzotti A (2014) Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 71:2197–2218

    Article  PubMed  CAS  Google Scholar 

  90. Zhao J, Wang S, Zhong W, Yang B, Sun L, Zheng Y (2016) Oxidative stress in the trabecular meshwork (review). Int J Mol Med 38:995–1002

    Article  CAS  PubMed  Google Scholar 

  91. Tian B, Kaufman PL, Volberg T, Gabelt BT, Geiger B (1998) H-7 disrupts the actin cytoskeleton and increases outflow facility. Arch Ophthalmol 116(5):633–643

    Article  CAS  PubMed  Google Scholar 

  92. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23(21):5036–5041

    Article  CAS  PubMed  Google Scholar 

  93. Asano T, Suzuki T, Tsuchiya M, Satoh S, Ikegaki I, Shibuya M, Suzuki Y, Hidaka H (1989) Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinase. Br J Pharmacol 98(4):1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654):990–994

    Article  CAS  PubMed  Google Scholar 

  95. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol Pharmacol 57(5):976–983

    CAS  PubMed  Google Scholar 

  96. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rao PV, Deng PF, Kumar J, Epstein DL (2001) Modulation of aqueous humor outflow facility by the rho kinase–specific inhibitor Y-27632. Invest Ophthalmol Vis Sci 42(5):1029–1037

    CAS  PubMed  Google Scholar 

  98. Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, Narumiya S, Honda Y (2001) Effects of Rho-associated protein kinase inhibitor Y-27632 on intraocular Pressure and outflow facility. Invest Ophthalmol Vis Sci 42(1):137–144

    CAS  PubMed  Google Scholar 

  99. Honjo M, Inatani M, Kido N, Sawamura T, Yue BY, Honda Y, Tanihara H (2001) Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 119(8):1171–1178

    Article  CAS  PubMed  Google Scholar 

  100. Gomi N, Ohgiya T, Shibuya K, Katsuyama J, Masumoto M, Sakai H (2011) A practical synthesis of novel Rho-kinase inhibitor, (S)-4-fluoro-5-(2-methyl-1,4-diazepan-1-ylsulfonyl)-isoquinoline. Heterocycles 83(8):1771–1781

    Article  CAS  Google Scholar 

  101. Isobe T, Mizuno K, Kaneko Y, Ohta M, Koide T, Tanabe S (2014) Effects of K-115, a Rho-kinase inhibitor, on aqueous humor dynamics in rabbits. Curr Eye Res 39(8):813–822

    Article  CAS  PubMed  Google Scholar 

  102. Tanihara H, Inoue T, Yamamoto T et al (2013) Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open angle glaucoma and ocular hypertension. Am J Ophthalmol 156(4):731–736

    Article  CAS  PubMed  Google Scholar 

  103. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Fukushima A et al (2016) One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmol 94:e26–e34

    Article  CAS  PubMed  Google Scholar 

  104. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, Araie M, K-115 Clinical Study Group (2015) Additive intraocular pressure-lowering effects of the Rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol 133(7):755–761

    Article  PubMed  Google Scholar 

  105. Saito H, Kagami S, Mishima K, Mataki N, Fukushima A, Araie M (2019) Long-term side effects including blepharitis leading to discontinuation of ripasudil. J Glaucoma 28(4):289–293

    Article  PubMed  Google Scholar 

  106. Tokushige H, Inatani M, Nemoto S, Sakaki H, Katayama K, Uehata M, Tanihara H (2007) Effects of topical administration of Y-39983, a selective Rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci 48(7):3216–3222

    Article  PubMed  Google Scholar 

  107. Tanihara H, Inatani M, Honjo M, Tokushige H, Azuma J, Araie M (2008) Intraocular pressure–lowering effects and safety of topical administration of a Selective ROCK inhibitor, SNJ-1656, in healthy volunteers. Arch Ophthalmol 126(3):309–315

    Article  CAS  PubMed  Google Scholar 

  108. Williams RD, Novack GD, van Haarlem T, Kopczynski C, AR-12286 Phase 2A Study Group (2011) Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol 152(5):834–841.e1

    Article  CAS  PubMed  Google Scholar 

  109. Sturdivant JM, Royalty SM, Lin CW, Moore LA, Yingling JD, Laethem CL, Sherman B, Heintzelman GR, Kopczynski CC, deLong MA (2016) Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. Bioorg Med Chem Lett 26(10):2475–2480

    Article  CAS  PubMed  Google Scholar 

  110. Langham ME, Diggs EM (1972) Quantitative studies of the ocular response to norepinephrine. Exp Eye Res 13(2):161–171

    Article  CAS  PubMed  Google Scholar 

  111. Costagliola C, Parmeggiani F, Semeraro F, Sebastiani A (2008) Selective serotonin reuptake inhibitors: a review of its effects on intraocular Pressure. Curr Neuropharmacol 6(4):293–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen VC, Ng MH, Chiu WC, McIntyre RS, Lee Y, Lin TY, Weng JC, Chen PC, Hsu CY (2017) Effects of selective serotonin reuptake inhibitors on glaucoma: a nationwide population-based study. PLoS One 12(3):e0173005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. DeLong MA, Sturdivant JM (2019) Asymmetric synthesis of netarsudil: a new therapeutic for open-angle glaucoma. Synthesis 51:953–959

    Article  CAS  Google Scholar 

  114. Lin CW, Sherman B, Moore LA, Laethem CL, Lu DW, Pattabiraman PP, Rao PV, deLong MA, Kopczynski CC (2018) Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther 34(1–2):40–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang RF, Williamson JE, Kopczynski C, Serle JB (2015) Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma 24(1):51–54

    Article  CAS  PubMed  Google Scholar 

  116. Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H (2016) Netarsudil increases outflow facility in human eyes through multiple mechanisms. Invest Ophthalmol Vis Sci 57(14):6197–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD, Sit AJ (2018) The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocul Pharmacol Ther 34(5):380–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bacharach J, Dubiner HB, Levy B, Kopczynski CC, Novack GD, AR-13324-CS202 Study Group (2015) Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology 122(2):302–307

    Article  PubMed  Google Scholar 

  119. Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, Novack GD, Kopczynski CC, ROCKET-1 and ROCKET-2 Study Groups (2018) Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: Rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol 186:116–127

    Article  CAS  PubMed  Google Scholar 

  120. Khouri AS, Serle JB, Bacharach J, Usner DW, Lewis RA, Braswell P, Kopczynski CC, Heah T, Rocket-4 Study Group (2019) Once-daily netarsudil vs twice-daily timolol in patients with elevated intraocular pressure, the randomized phase 3 ROCKET-4 study. Am J Ophthalmol 204:97–104

    Article  CAS  PubMed  Google Scholar 

  121. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208254Orig1s000TOC.cfm. Accessed 15 July 2019

  122. Harrison BA, Whitlock NA, Voronkov MV, Almstead ZY, Gu KJ, Mabon R, Gardyan M, Hamman BD, Allen J, Gopinathan S, McKnight B, Crist M, Zhang Y, Liu Y, Courtney LF, Key B, Zhou J, Patel N, Yates PW, Liu Q, Wilson AG, Kimball SD, Crosson CE, Rice DS, Rawlins DB (2009) Novel class of LIM-kinase 2 inhibitors for the treatment of ocular hypertension and associated glaucoma. J Med Chem 52(21):6515–6518

    Article  CAS  PubMed  Google Scholar 

  123. Harrison BA, Almstead ZY, Burgoon H, Gardyan M, Goodwin NC, Healy J, Liu Y, Mabon R, Marinelli B, Samala L, Zhang Y, Stouch TR, Whitlock NA, Gopinathan S, McKnight B, Wang S, Patel N, Wilson AG, Hamman BD, Rice DS, Rawlins DB (2015) Discovery and development of LX7101, a dual LIM-kinase and ROCK inhibitor for the treatment of Glaucoma. ACS Med Chem Lett 6(1):84–88

    Article  CAS  PubMed  Google Scholar 

  124. Mezna M, Wong AC, Ainger M, Scott RW, Hammonds T, Olson MF (2012) Development of a high-throughput screening method for LIM kinase 1 using a luciferase-based assay of ATP consumption. J Biomol Screen 17(4):460–468

    Article  CAS  PubMed  Google Scholar 

  125. Goodwin NC, Cianchetta G, Burgoon HA, Healy J, Mabon R, Strobel ED, Allen J, Wang S, Hamman BD, Rawlins DB (2014) Discovery of a type III inhibitor of LIM kinase 2 that binds in a DFG-out conformation. ACS Med Chem Lett 6(1):53–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Boland S, Bourin A, Alen J, Geraets J, Schroeders P, Castermans K, Kindt N, Boumans N, Panitti L, Vanormelingen J, Fransen S, Van de Velde S (2015) Defert O design, synthesis and biological characterization of selective LIMK inhibitors. Bioorg Med Chem Lett 25(18):4005–4010

    Article  CAS  PubMed  Google Scholar 

  127. Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, Luo JL, LoGrasso PV, Feng Y (2015) Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 58(4):1846–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nathanson JA (1992) Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther 260(3):956–965

    CAS  PubMed  Google Scholar 

  129. Ellis DZ (2011) Guanylate cyclase activators, cell volume changes and IOP reduction. Cell Physiol Biochem 28(6):1145–1154

    Article  CAS  PubMed  Google Scholar 

  130. Kanno M, Araie M, Tomita K, Sawanobori K (1998) Effects of topical nipradilol, a beta-blocking agent with alpha-blocking and nitroglycerin-like activities, on aqueous humor dynamics and fundus circulation. Invest Ophthalmol Vis Sci 39(5):736–743

    CAS  PubMed  Google Scholar 

  131. Orihashi M, Shima Y, Tsuneki H, Kimura I (2005) Potent reduction of intraocular pressure by nipradilol plus latanoprost in ocular hypertensive rabbits. Biol Pharm Bull 28(1):65–68

    Article  CAS  PubMed  Google Scholar 

  132. Borghi V, Bastia E, Guzzetta M, Chiroli V, Toris CB, Batugo MR, Carreiro ST, Chong WK, Gale DC, Kucera DJ, Jia L, Prasanna G, Ongini E, Krauss AH, Impagnatiello F (2010) A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog, and primate models of glaucoma. J Ocul Pharmacol Ther 26(2):125–132

    Article  CAS  PubMed  Google Scholar 

  133. Krauss AH, Impagnatiello F, Toris CB, Gale DC, Prasanna G, Borghi V, Chiroli V, Chong WK, Carreiro ST, Ongini E (2011) Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res 93(3):250–255

    Article  CAS  PubMed  Google Scholar 

  134. Saeki T, Tsuruga H, Aihara M, Araie M, Rittenhouse K (2009) Dose-response profile of PF-03187207 (PF-207) and peak IOP lowering response following single topical administration to FP receptor knockout mice vs. wild type mice. Invest Ophthalmol Vis Sci 50:4064

    Article  Google Scholar 

  135. Cavet ME, Vollmer TR, Harrington KL, VanDerMeid K, Richardson ME (2015) Regulation of endothelin-1-induced trabecular meshwork cell contractility by latanoprostene bunod. Invest Ophthalmol Vis Sci 56(6):4108–4116

    Article  CAS  PubMed  Google Scholar 

  136. Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL, VOYAGER Study Group (2015) A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol 99(6):738–745

    Article  PubMed  Google Scholar 

  137. Liu JHK, Slight JR, Vittitow JL, Scassellati Sforzolini B, Weinreb RN (2016) Efficacy of latanoprostene bunod 0.024% compared with timolol 0.5% in lowering intraocular pressure over 24 hours. Am J Ophthalmol 169:249–257

    Article  CAS  PubMed  Google Scholar 

  138. Medeiros FA, Martin KR, Peace J et al (2016) Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR study. Am J Ophthalmol 168:250–259

    Article  CAS  PubMed  Google Scholar 

  139. Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J (2016) Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology 123(5):965–973

    Article  PubMed  Google Scholar 

  140. Kawase K, Vittitow JL, Weinreb RN, Araie M, JUPITER study Group (2016) Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the JUPITER study. Adv Ther 33(9):1612–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weinreb RN, Liebmann JM, Martin KR et al (2018) Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings. J Glaucoma 27(1):7–15

    Article  PubMed  Google Scholar 

  142. Hoy SM (2018) Latanoprostene bunod ophthalmic solution 0.024%: a review in open-angle glaucoma and ocular hypertension. Drugs 78(7):773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fingeret M, Gaddie IB, Bloomenstein M (2019) Latanoprostene bunod ophthalmic solution 0.024%: a new treatment option for open-angle glaucoma and ocular hypertension. Clin Exp Optom. https://doi.org/10.1111/cxo.12853. Epub ahead of print

  144. Impagnatiello F, Toris CB, Batugo M, Prasanna G, Borghi V, Bastia E, Ongini E, Krauss AH (2015) Intraocular pressure-lowering activity of NCX 470, a novel nitric oxide-donating bimatoprost in preclinical models. Invest Ophthalmol Vis Sci 56(11):6558–6564

    Article  CAS  PubMed  Google Scholar 

  145. https://clinicaltrials.gov/ct2/show/NCT03657797. Accessed 21 July 2019

  146. http://www.nicox.com/news-media/nicox-announces-completion-of-enrollment-in-ncx-470-phase-2-clinical-study-with-top-line-results-on-track-for-early-4q-2019/. Accessed 21 July 2019

  147. Ehara T, Adams CM, Bevan D, Ji N, Meredith EL, Belanger DB, Powers J, Kato M, Solovay C, Liu D, Capparelli M, Bolduc P, Grob JE, Daniels MH, Ferrara L, Yang L, Li B, Towler CS, Stacy RC, Prasanna G, Mogi M (2018) The discovery of (S)-1-(6-(3-((4-(1-(cyclopropanecarbonyl)piperidin-4-yl)-2-methylphenyl)amino)-2,3-dihydro-1 H-inden-4-yl)pyridin-2-yl)-5-methyl-1 H-pyrazole-4-carboxylic acid, a soluble guanylate cyclase activator specifically designed for topical ocular delivery as a therapy for glaucoma. J Med Chem 61(6):2552–2570

    Article  CAS  PubMed  Google Scholar 

  148. Ge P, Navarro ID, Kessler MM et al (2016) The soluble guanylate cyclase stimulator IWP-953 increases conventional outflow facility in mouse eyes. Invest Ophthalmol Vis Sci 57:1317–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Follmann M, Griebenow N, Hahn MG, Hartung I, Mais FJ, Mittendorf J, Schäfer M, Schirok H, Stasch JP, Stoll F, Straub A (2013) The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed Engl 52(36):9442–9462

    Article  CAS  PubMed  Google Scholar 

  151. Buys ES, Zimmer DP, Chickering J, Graul R, Chien YT, Profy A, Hadcock JR, Masferrer JL, Milne GT (2018) Discovery and development of next generation sGC stimulators with diverse multidimensional pharmacology and broad therapeutic potential. Nitric Oxide 78:72–80

    Article  CAS  PubMed  Google Scholar 

  152. Pan J, Zhang X, Yuan H, Xu Q, Zhang H, Zhou Y, Huang ZX, Tan X (2016) The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change. Biochim Biophys Acta 1864(5):488–500

    Article  CAS  PubMed  Google Scholar 

  153. Prasanna G, Ferrara L, Adams C, Ehara T, Li B, Yang L, Xiang C, Ng CTH, Kim S, Towler C, Topley T, McAllister C, Ghosh M, Newton R, Stacy R, Rice DS, Mogi M (2018) A novel selective soluble guanylate cyclase activator, MGV354, lowers intraocular pressure in preclinical models, following topical ocular dosing. Invest Ophthalmol Vis Sci 59(5):1704–1716

    Article  PubMed  Google Scholar 

  154. Zhao Y, Brandish PE, Di Valentin M, Schelvis JP, Babcock GT, Marletta MA (2000) Inhibition of soluble guanylate cyclase by ODQ. Biochemistry 39(35):10848–10854

    Article  CAS  PubMed  Google Scholar 

  155. Wang RF, Serle JB, Gagliuso DJ, Podos SM (2000) Comparison of the ocular hypotensive effect of brimonidine, dorzolamide, latanoprost, or artificial tears added to timolol in glaucomatous monkey eyes. J Glaucoma 9(6):458–462

    Article  CAS  PubMed  Google Scholar 

  156. Stacy R, Huttner K, Watts J, Peace J, Wirta D, Walters T, Sall K, Seaman J, Ni X, Prasanna G, Mogi M, Adams C, Yan JH, Wald M, He Y, Newton R, Kolega R, Grosskreutz C (2018) A randomized, controlled phase I/II study to evaluate the safety and efficacy of MGV354 for ocular hypertension or glaucoma. Am J Ophthalmol 192:113–123

    Article  CAS  PubMed  Google Scholar 

  157. Nakai T, Perl NR, Barden TC, Carvalho A, Fretzen A, Germano P, Im GY, Jin H, Kim C, Lee TW, Long K, Moore J, Rohde JM, Sarno R, Segal C, Solberg EO, Tobin J, Zimmer DP, Currie MG (2016) Discovery of IWP-051, a novel orally bioavailable sGC stimulator with once-daily dosing potential in humans. ACS Med Chem Lett 7(5):465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tsuboi K, Sugimoto Y, Ichikawa A (2002) Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat 68–69:535–556

    Article  PubMed  Google Scholar 

  159. Flach AJ, Eliason JA (1988) Topical prostaglandin E2 effects on normal human intraocular pressure. J Ocul Pharmacol 4(1):13–18

    Article  CAS  PubMed  Google Scholar 

  160. Woodward DF, Bogardus AM, Donello JE, Fairbairn CE, Gil DW, Kedzie KM, Burke JA, Kharlamb A, Runde E, Andrews SW, Pierce KL, Regan JW (1995) Molecular characterization and ocular hypotensive properties of the prostanoid EP2 receptor. J Ocul Pharmacol Ther 11(3):447–454

    Article  CAS  PubMed  Google Scholar 

  161. Nilsson S, Drecoll E, Lutjen-Drecoll E, Toris CB, Krauss AHP, Kharlamb A, Nieves A, Guerra T, Woodward DF (2006) The prostanoid EP2 receptor agonist butaprost increases uveoscleral outflow in the cynomolgus monkey. Invest Ophthalmol Vis Sci 47(9):40424049

    Article  Google Scholar 

  162. Jones JH, Holtz WJ, Bicking JB, Cragoe EJ Jr (1977) 11,12-secoprostaglandins. 4. 7-(N-alkylmethanesulfonamido) heptanoic acids. J Med Chem 20(10):1299–1304

    Article  CAS  PubMed  Google Scholar 

  163. Cameron KO, Lefker BA, Ke HZ, Li M, Zawistoski MP, Tjoa CM, Wright AS, DeNinno SL, Paralkar VM, Owen TA, Yu L, Thompson DD (2009) Discovery of CP-533536: an EP2 receptor selective prostaglandin E2 (PGE2) agonist that induces local bone formation. Bioorg Med Chem Lett 19(7):2075–2078

    Article  CAS  PubMed  Google Scholar 

  164. Prasanna G, Carreiro S, Anderson S, Gukasyan H, Sartnurak S, Younis H, Gale D, Xiang C, Wells P, Dinh D, Almaden C, Fortner J, Toris C, Niesman M, Lafontaine J, Krauss A (2011) Effect of PF-04217329 a prodrug of a selective prostaglandin EP(2) agonist on intraocular pressure in preclinical models of glaucoma. Exp Eye Res 93(3):256–264

    Article  CAS  PubMed  Google Scholar 

  165. Schachar RA, Raber S, Courtney R, Zhang M (2011) A phase 2, randomized, dose-response trial of taprenepag isopropyl (PF-04217329) versus latanoprost 0.005% in open-angle glaucoma and ocular hypertension. Curr Eye Res 36(9):809–817

    Article  CAS  PubMed  Google Scholar 

  166. Yanochko GM, Affolter T, Eighmy JJ, Evans MG, Khoh-Reiter S, Lee D, Miller PE, Shiue MH, Trajkovic D, Jessen BA (2014) Investigation of ocular events associated with taprenepag isopropyl, a topical EP2 agonist in development for treatment of glaucoma. J Ocul Pharmacol Ther 30(5):429–439

    Article  CAS  PubMed  Google Scholar 

  167. Iwamura R, Tanaka M, Okanari E, Kirihara T, Odani-Kawabata N, Shams N, Yoneda K (2018) Identification of a selective, non-prostanoid EP2 receptor agonist for the treatment of glaucoma: omidenepag and its prodrug omidenepag isopropyl. J Med Chem 61(15):6869–6891

    Article  CAS  PubMed  Google Scholar 

  168. Kirihara T, Taniguchi T, Yamamura K, Iwamura R, Yoneda K, Odani-Kawabata N, Shimazaki A, Matsugi T, Shams N, Zhang JZ (2018) Pharmacologic characterization of omidenepag isopropyl, a novel selective EP2 receptor agonist, as an ocular hypotensive agent. Invest Ophthalmol Vis Sci 59(1):145–153

    Article  CAS  PubMed  Google Scholar 

  169. Fuwa M, Toris CB, Fan S, Taniguchi T, Ichikawa M, Odani-Kawabata N, Iwamura R, Yoneda K, Matsugi T, Shams NK, Zhang JZ (2018) Effects of a novel selective EP2 receptor agonist, omidenepag isopropyl, on aqueous humor dynamics in laser-induced ocular hypertensive monkeys. J Ocul Pharmacol Ther 34(7):531–537

    Article  CAS  PubMed  Google Scholar 

  170. Ferro Desideri L, Cutolo CA, Barra F, Ferrero S, Traverso CE (2019) Omidenepag isopropyl for the treatment of glaucoma and ocular hypertension. Drugs Today (Barc) 55(6):377–384

    Article  CAS  Google Scholar 

  171. Duggan S (2018) Omidenepag isopropyl ophthalmic solution 0.002%: first global approval. Drugs 78(18):1925–1929

    Article  PubMed  Google Scholar 

  172. Aihara M, Lu F, Kawata H, Iwata A, Liu K, Odani-Kawabata N, Shams NK (2019) Phase 2, randomized, dose-finding studies of omidenepag isopropyl, a selective EP2 agonist, in patients with primary open-angle glaucoma or ocular hypertension. J Glaucoma 28(5):375–385

    Article  PubMed  Google Scholar 

  173. https://www.santenusa.com/pdfs/santen-intiates-DE-117-Phase-3-SPECTRUM.pdf. Accessed 21 July 2019

  174. Fleenor DL, Shepard AR, Helberg PE et al (2006) TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci 47:226–234

    Article  PubMed  Google Scholar 

  175. Robertson JV, Golesic E, Gauldie J, West-Mays JA (2010) Ocular gene transfer of active TGF-beta induces changes in anterior segment morphology and elevated IOP in rats. Invest Ophthalmol Vis Sci 51:308–318

    Article  PubMed  Google Scholar 

  176. Agarwal P, Daher AM, Agarwal R (2015) Aqueous humor TGF-β2 levels in patients with open-angle glaucoma: a meta-analysis. Mol Vis 21:612–620

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Gabelt BT, Hennes EA, Bendel MA, Constant CE, Okka M, Kaufman PL (2009) Prostaglandin subtype-selective and non-selective IOP-lowering comparison in monkeys. J Ocul Pharmacol Ther 25(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sugimoto I, Kambe T, Okino T, Obitsu T, Ohta N, Nishiyama T, Kinoshita A, Fujimoto T, Egashira H, Yamane S, Shuto S, Tani K, Maruyama T (2017) Discovery of novel seven-membered prostacyclin analogues as potent and selective prostaglandin FP and EP3 dual agonists. ACS Med Chem Lett 8(1):107–112

    Article  CAS  PubMed  Google Scholar 

  179. Yamane S, Karakawa T, Nakayama S, Nagai K, Moriyuki K, Neki S, Suto F, Kambe T, Hirota Y, Kawabata K (2015) IOP-lowering effect of ONO-9054, a novel dual agonist of prostanoid EP3 and FP receptors, in monkeys. Invest Ophthalmol Vis Sci 56(4):2547–2552

    Article  CAS  PubMed  Google Scholar 

  180. Suto F, Rowe-Rendleman CL, Ouchi T, Jamil A, Wood A, Ward CL (2015) A novel dual agonist of EP3 and FP receptors for OAG and OHT: safety, pharmacokinetics, and pharmacodynamics of ONO-9054 in healthy volunteers. Invest Ophthalmol Vis Sci 56(13):7963–7970

    Article  CAS  PubMed  Google Scholar 

  181. Harris A, Ward CL, Rowe-Rendleman CL, Ouchi T, Wood A, Fujii A, Serle JB (2016) Ocular hypotensive effect of ONO-9054, an EP3/FP receptor agonist: results of a randomized, placebo-controlled, dose escalation study. J Glaucoma 25(10):e826–e833

    Article  PubMed  Google Scholar 

  182. Berlin MS, Rowe-Rendleman C, Ahmed I, Ross DT, Fujii A, Ouchi T, Quach C, Wood A, Ward CL (2016) EP3/FP dual receptor agonist ONO-9054 administered morning or evening to patients with open-angle glaucoma or ocular hypertension: results of a randomised crossover study. Br J Ophthalmol 100(6):843–847

    Article  PubMed  Google Scholar 

  183. Miller Ellis E, Berlin MS, Ward CL, Sharpe JA, Jamil A, Harris A (2017) Ocular hypotensive effect of the novel EP3/FP agonist ONO-9054 versus xalatan: results of a 28-day, double-masked, randomised study. Br J Ophthalmol 101(6):796–800

    Article  PubMed  Google Scholar 

  184. May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther 306(1):301–309

    Article  CAS  PubMed  Google Scholar 

  185. May JA, Chen HH, Rusinko A, Lynch VM, Sharif NA, McLaughlin MA (2003) A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J Med Chem 46(19):4188–4195

    Article  CAS  PubMed  Google Scholar 

  186. May JA, Sharif NA, McLaughlin MA, Chen HH, Severns BS, Kelly CR, Holt WF, Young R, Glennon RA, Hellberg MR, Dean TR (2015) Ocular hypotensive response in nonhuman primates of (8R)-1-[(2S)-2-aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol a selective 5-HT2 receptor agonist. J Med Chem 58(22):8818–8833

    Article  CAS  PubMed  Google Scholar 

  187. Mastropasqua L, Costagliola C, Ciancaglini M, Carpineto P, Gallenga PE (1997) Ocular hypotensive effect of ketanserin in patients with primary open angle glaucoma. Acta Ophthalmol Scand Suppl 224:24–25

    Google Scholar 

  188. de Feo G, Piccinelli D, Putzolu S, Silverstrini B (1975) Effects of topically instilled drugs on intraocular pressure in rabbits. Arzneimittelforschung 25(5):806–809

    PubMed  Google Scholar 

  189. Takenaka H, Mano T, Maeno T (1995) The effect of ANPLAG®(sarpogrelate HCl), new selective 5-HT2antagonist on intraocular pressure in glaucoma patients. Invest Ophthalmol Vis Sci 36:S734

    Google Scholar 

  190. Furlotti G, Alisi MA, Cazzolla N, Ceccacci F, Garrone B, Gasperi T, La Bella A, Leonelli F, Loreto MA, Magark G, Mangano G, Bettolo RM, Masini E, Miceli M, Migneco LM, Vitiello M (2018) Targeting serotonin 2A and adrenergic a1 receptors for ocular antihypertensive agents: discovery of 3,4-dihydropyrazino[1,2-b]indazol-1(2H)-one derivatives. ChemMedChem 13:1597–1607

    Article  CAS  PubMed  Google Scholar 

  191. Spadoni G, Bedini A, Furiassi L, Mari M, Mor M, Scalvini L, Lodola A, Ghidini A, Lucini V, Dugnani S, Scaglione F, Piomelli D, Jung KM, Supuran CT, Lucarini L, Durante M, Sgambellone S, Masini E, Rivara S (2018) Identification of bivalent ligands with melatonin receptor agonist and fatty acid amide hydrolase (FAAH) inhibitory activity that exhibit ocular hypotensive effect in the rabbit. J Med Chem 61(17):7902–7916

    Article  CAS  PubMed  Google Scholar 

  192. Martínez-Águila A, Fonseca B, Pérez de Lara MJ, Pintor J (2016) Effect of melatonin and 5-methoxycarbonylamino-N-acetyltryptamine on the intraocular pressure of normal and glaucomatous mice. J Pharmacol Exp Ther 357(2):293–299

    Article  PubMed  CAS  Google Scholar 

  193. Crooke A, Colligris B, Pintor J (2012) Update in glaucoma medicinal chemistry: emerging evidence for the importance of melatonin analogues. Curr Med Chem 19(21):3508–3522

    Article  CAS  PubMed  Google Scholar 

  194. Serle JB, Wang RF, Peterson WM, Plourde R, Yerxa BR (2004) Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma 13(5):385–388

    Article  PubMed  Google Scholar 

  195. Martínez-Águila A, Fonseca B, Bergua A, Pintor J (2013) Melatonin analogue agomelatine reduces rabbit’s intraocular pressure in normotensive and hypertensive conditions. Eur J Pharmacol 701(1–3):213–217

    Article  PubMed  CAS  Google Scholar 

  196. Miller S, Leishman E, Hu SS, Elghouche A, Daily L, Murataeva N, Bradshaw H, Straiker A (2016) Harnessing the endocannabinoid 2-arachidonoylglycerol to lower intraocular pressure in a murine model. Invest Ophthalmol Vis Sci 57(7):3287–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Alapafuja SO, Malamas MS, Shukla V, Zvonoka A, Miller S, Daily L, Rajarshi G, Miyabe CY, Chandrashekhar H, Wood J, Tyukhtenko S, Straiker A, Makriyannis A (2019) Synthesis and evaluation of potent and selective MGL inhibitors as a glaucoma treatment. Bioorg Med Chem 27:55–64

    Article  CAS  PubMed  Google Scholar 

  198. Chowdhury UR, Bahler CK, Hann CR, Chang M, Resch ZT, Romero MF, Fautsch MP (2011) ATP-sensitive potassium (KATP) channel activation decreases intraocular pressure in the anterior chamber of the eye. Invest Ophthalmol Vis Sci 52(9):6435–6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Roy Chowdhury U, Bahler CK, Holman BH, Dosa PI, Fautsch MP (2015) Ocular hypotensive effects of the ATP-sensitive potassium channel opener cromakalim in human and murine experimental model systems. PLoS One 10(11):e0141783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Roy Chowdhury U, Viker KB, Stoltz KL, Holman BH, Fautsch MP, Dosa PI (2016) Analogs of the ATP-sensitive potassium (KATP) channel opener cromakalim with in vivo ocular hypotensive activity. J Med Chem 59(13):6221–6231

    Article  CAS  PubMed  Google Scholar 

  201. Roy Chowdhury U, Rinkoski TA, Bahler CK, Millar JC, Bertrand JA, Holman BH, Sherwood JM, Overby DR, Stoltz KL, Dosa PI, Fautsch MP (2017) Effect of cromakalim prodrug 1 (CKLP1) on aqueous humor dynamics and feasibility of combination therapy with existing ocular hypotensive agents. Invest Ophthalmol Vis Sci 58(13):5731–5742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Crosson CE (1992) Ocular hypotensive activity of the adenosine agonist (R)-phenylisopropyladenosine in rabbits. Curr Eye Res 11(5):453–458

    Article  CAS  PubMed  Google Scholar 

  203. Crosson CE (1995) Adenosine receptor activation modulates intraocular pressure in rabbits. J Pharmacol Exp Ther 273(1):320–326

    CAS  PubMed  Google Scholar 

  204. Tian B, Gabelt BT, Crosson CE, Kaufman PL (1997) Effects of adenosine agonists on intraocular pressure and aqueous humor dynamics in cynomolgus monkeys. Exp Eye Res 64(6):979–989

    Article  CAS  PubMed  Google Scholar 

  205. Avila MY, Stone RA, Civan MM (2001) A(1)-, A(2A)- and A(3)-subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol 134:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Crosson CE, Sloan CF, Yates PW (2005) Modulation of conventional outflow facility by the adenosine A1 agonist N6-cyclohexyladenosine. Invest Ophthalmol Vis Sci 46:3795–3799

    Article  PubMed  Google Scholar 

  207. Shearer TW, Crosson CE (2002) Adenosine A1 receptor modulation of MMP-2 secretion by trabecular meshwork cells. Invest Ophthalmol Vis Sci 43:3016–3020

    PubMed  Google Scholar 

  208. Kim N, Crosson C, Lam T, Christian B, Busse C, Cantone G, Baumgartner R, McCauley T, McVicar W (2010) INO-8875, an adenosine A1 agonist, lowers intraocular pressure through the conventional outflow pathway. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 51(13):3238

    Google Scholar 

  209. Li G, Torrejon KY, Unser AM, Ahmed F, Navarro ID, Baumgartner RA, Albers DS, Stamer WD (2018) Trabodenoson, an adenosine mimetic with A1 receptor selectivity lowers intraocular pressure by increasing conventional outflow facility in mice. Invest Ophthalmol Vis Sci 59(1):383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Laties A, Rich CC, Stoltz R, Humbert V, Brickman C, McVicar W, Baumgartner RA (2016) A randomized phase 1 dose escalation study to evaluate safety, tolerability, and pharmacokinetics of trabodenoson in healthy adult volunteers. J Ocul Pharmacol Ther 32(8):548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Myers JS, Sall KN, DuBiner H, Slomowitz N, McVicar W, Rich CC, Baumgartner RA (2016) A dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of 2 and 4 weeks of twice-daily ocular trabodenoson in adults with ocular hypertension or primary open-angle glaucoma. J Ocul Pharmacol Ther 32(8):555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. https://eyewire.news/articles/inotek-announces-top-line-results-for-matrx-1-first-phase-3-trial-of-trabodenoson-for-glaucoma/ or https://www.sec.gov/Archives/edgar/data/1281895/000119312517000341/d320382dex991.htm. Accessed 21 July 2019

  213. https://clinicaltrials.gov/ct2/show/results/NCT02829996?term=trabodenoson&rank=2. Accessed 7 July 2019

  214. Pintor J, Peláez T, Peral A (2004) Adenosine tetraphosphate, Ap4, a physiological regulator of intraocular pressure in normotensive rabbit eyes. J Pharmacol Exp Ther 308(2):468–473

    Article  CAS  PubMed  Google Scholar 

  215. Pintor J, Peral A, Peláez T, Martı́n S, Hoyle CH (2003) Presence of diadenosine polyphosphates in the aqueous humor: their effect on intraocular pressure. J Pharmacol Exp Ther 304(1):342–348

    Article  CAS  PubMed  Google Scholar 

  216. Soto D, Pintor J, Peral A, Gual A, Gasull X (2005) Effects of dinucleoside polyphosphates on trabecular meshwork cells and aqueous humor outflow facility. J Pharmacol Exp Ther 314(3):1042–1051

    Article  CAS  PubMed  Google Scholar 

  217. Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T, Koizumi S (2017) Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy. JCI Insight 2(19):93456

    Article  PubMed  Google Scholar 

  218. Jacob TF, Singh V, Dixit M, Ginsburg-Shmuel T, Fonseca B, Pintor J, Youdim MBH, Major DT, Weinreb O, Fischer B (2018) A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist. Purinergic Signal 14(3):271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Martínez T, González MV, Roehl I, Wright N, Pañeda C, Jiménez AI (2014) In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol Ther 22(1):81–91

    Article  PubMed  CAS  Google Scholar 

  220. Hasenbach K, Bergen TV, Vandewalle E, Groef LD, Van Hove I, Moons L, Stalmans I, Fettes P, Leo E, Wosikowski K, Janicot M (2016) Potent and selective antisense oligonucleotides targeting the transforming growth factor beta (TGF-β) isoforms in advanced glaucoma: a preclinical evaluation. J Model Ophthalmol 1(2):20–28

    Google Scholar 

  221. Moreno-Montañés J, Sádaba B, Ruz V, Gómez-Guiu A, Zarranz J, González MV, Pañeda C, Jimenez AI (2014) Phase I clinical trial of SYL040012, a small interfering RNA targeting β-adrenergic receptor 2, for lowering intraocular pressure. Mol Ther 22(1):226–232

    Article  PubMed  CAS  Google Scholar 

  222. Gonzalez V, Palumaa K, Turman K, Muñoz FJ, Jordan J, García J, Ussa F, Antón A, Gutierrez E, Moreno-Montanes J (2014) Phase 2 of bamosiran (SYL040012), a novel RNAi based compound for the treatment of increased intraocular pressure associated to glaucoma. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 55(13):564

    Google Scholar 

  223. Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18(4):305–319

    Article  CAS  PubMed  Google Scholar 

  224. Nikam RR, Gore KR (2018) Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther 28(4):209–224

    Article  CAS  PubMed  Google Scholar 

  225. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Barar J, Javadzadeh AR, Omidi Y (2008) Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 5:567–581

    Article  CAS  PubMed  Google Scholar 

  227. Gonzalez V, Moreno-Montanes J, Oll M, Sall KN, Palumaa K, Dubiner H, Turman K, Muñoz-Negrete F, Ruz V, Jimenez AI (2016) Results of phase IIB SYLTAG clinical trial with bamosiran in patients with glaucoma. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 57(12):3023

    Google Scholar 

  228. Cordeiro MF, Mead A, Ali RR, Alexander RA, Murray S, Chen C, York-Defalco C, Dean NM, Schultz GS, Khaw PT (2003) Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome. Gene Ther 10(1):59–71

    Article  CAS  PubMed  Google Scholar 

  229. Pfeiffer N, Voykov B, Renieri G, Bell K, Richter P, Weigel M, Thieme H, Wilhelm B, Lorenz K, Feindor M, Wosikowski K, Janicot M, Päckert D, Römmich R, Mala C, Fettes P, Leo E (2017) First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS One 12(11):e0188899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. DeVos SL, Miller TM (2013) Antisense oligonucleotides: treating neurodegeneration at the level of RNA. Neurotherapeutics 10(3):486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, Clark AF, Sheffield VC (2017) CRISPR-Cas9-based treatment of myocilin associated glaucoma. Proc Natl Acad Sci U S A 114(42):11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhu W, Gramlich OW, Laboissonniere L et al (2016) Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A 113:E3492–E3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH (2017) Restoration of aqueous humor outflow following transplantation of iPSC derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci 58(4):2054–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tamm ER (2002) Myocilin and glaucoma: facts and ideas. Prog Retin Eye Res 21(4):395–428

    Article  CAS  PubMed  Google Scholar 

  235. Lynch JM, Li B, Katoli P, Xiang C, Leehy B, Rangaswamy N, Saenz-Vash V, Wang YK, Lei H, Nicholson TB, Meredith E, Rice DS, Prasanna G, Chen A (2018) Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. J Biol Chem 293(52):20137–20156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713. discussion 829–30

    Article  PubMed  Google Scholar 

  237. Gerzon K, Krumkalns EV, Brindle RL, Marshall FJ, Root MA (1963) The adamantyl group in medicinal agents. I. Hypoglycemic N-arylsulfonyl-N′-adamantylureas. J Med Chem 6:760–763

    Google Scholar 

  238. Chen HS, Lipton SA (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Phisiol 499:27–46

    Article  CAS  Google Scholar 

  239. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37(24):3483–3493

    Article  CAS  PubMed  Google Scholar 

  240. Parsons CG, Danysz W, Bartmann A, Spielmanns P, Frankiewicz T, Hesselink M, Eilbacher B, Quack G (1999) Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology 38(1):85–108

    Article  CAS  PubMed  Google Scholar 

  241. Weinreb RN, Liebmann JM, Cioffi GA, Goldberg I, Brandt JD, Johnson CA, Zangwill LM, Schneider S, Badger H, Bejanian M (2018) Oral Memantine for the treatment of glaucoma: design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology 125(12):1874–1885

    Article  PubMed  Google Scholar 

  242. Hare W, WoldeMussie E, Lai R, Ton H, Ruiz G, Feldmann B, Wijono M, Chun T, Wheeler L (2001) Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv Ophthalmol 45(Suppl 3):S284–S289. discussion S295–6

    Article  PubMed  Google Scholar 

  243. WoldeMussie E, Yoles E, Schwartz M, Ruiz G, Wheeler LA (2002) Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 11(6):474–480

    Article  PubMed  Google Scholar 

  244. https://clinicaltrials.gov/ct2/show/record/NCT00141882 and https://clinicaltrials.gov/ct2/show/record/NCT00168350. Both Accessed 1 July 2019

  245. Quigley HA (2012) Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol 23(2):144–154

    Article  PubMed  Google Scholar 

  246. Rusciano D, Pezzino S, Mutolo MG, Giannotti R, Librando A, Pescosolido N (2017) Neuroprotection in glaucoma: old and new promising treatments. Adv Pharm Sci 2017:4320408

    Google Scholar 

  247. Nucci C, Martucci A, Giannini C, Morrone LA, Bagetta G, Mancino R (2018) Neuroprotective agents in the management of glaucoma. Eye (Lond) 32(5):938–945

    Article  CAS  Google Scholar 

  248. Gadek T, Lee D (2011) Topical drug delivery to the back of the eye. In: Kompella UB, Edelhauser HF (eds) Drug product development for the back of the eye. Springer, New York, pp 111–124

    Chapter  Google Scholar 

  249. Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A (2017) Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 57:134–185

    Article  PubMed  CAS  Google Scholar 

  250. Runkle EA, Antonetti DA (2011) The blood-retinal barrier: structure and functional significance. Methods Mol Biol 686:133

    Article  CAS  PubMed  Google Scholar 

  251. Cantor LB (2006) Brimonidine in the treatment of glaucoma and ocular hypertension. Ther Clin Risk Manag 2(4):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. WoldeMussie E, Ruiz G, Wijono M, Wheeler LA (2001) Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 42(12):2849–2855

    CAS  PubMed  Google Scholar 

  253. Lambert WS, Ruiz L, Crish SD, Wheeler LA, Calkins DJ (2011) Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener 6(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ma K, Xu L, Zhang H, Zhang S, Pu M, Jonas JB (2009) Effect of brimonidine on retinal ganglion cell survival in an optic nerve crush model. Am J Ophthalmol 147(2):326–331

    Article  CAS  PubMed  Google Scholar 

  255. Tamhane M, Robinson MR, Attar M (2016) Ocular pharmacokinetics of brimonidine drug delivery system in rabbits and monkeys and it’s application in selection of dosing frequency in human clinical trials. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 57(12):2154

    Google Scholar 

  256. https://clinicaltrials.gov/ct2/show/results/NCT00693485. Accessed 1 July 2019

  257. Kuppermann BD, Patel SS, Boyer DS, Augustin AJ, Freeman WR, Kim T, Kerr K, Lopez FJ, Schneider S (2017) Brimonidine drug delivery system (DDS) generation 1 in patients with geographic atrophy: post-hoc analysis of a phase 2 study. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 58(8):1924

    Google Scholar 

  258. http://www.neurotechusa.com/ect-platform.html. Accessed 11 July 2019

  259. Pease ME, Zack DJ, Berlinicke C, Bloom K, Cone F, Wang Y, Klein RL, Hauswirth WW, Quigley HA (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50(5):2194–2200

    Article  PubMed  Google Scholar 

  260. Johnson TV, Bull ND, Martin KR (2011) Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res 93(2):196–203

    Article  CAS  PubMed  Google Scholar 

  261. https://clinicaltrials.gov/ct2/show/NCT02862938. Accessed 1 July 2019

  262. Colafrancesco V, Coassin M, Rossi S, Aloe L (2011) Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita 47(3):284–289

    CAS  PubMed  Google Scholar 

  263. Wang H, Wang R, Thrimawithana T, Little PJ, Xu J, Feng ZP, Zheng W (2014) The nerve growth factor signaling and its potential as therapeutic target for glaucoma. Biomed Res Int 2014:759473

    PubMed  PubMed Central  Google Scholar 

  264. Popova L, Nuñez M, Nguyen BT, Groth SL, Dennis A, Li Z, Khavari T, Wang SY, Chang R, Fisher AC, Goldberg JL (2018) Recombinant human nerve growth factor (rhNGF) eye drops for glaucoma: interim results. ARVO annual meeting abstract. Invest Ophthalmol Vis Sci 59(9):1241

    Google Scholar 

  265. Thiel MA, Wild A, Schmid MK, Job O, Bochmann F, Loukopoulos V, Alcantara W, Schmidt A, Lichtlen P, Escher D (2013) Penetration of a topically administered anti–tumor necrosis factor alpha antibody fragment into the anterior chamber of the human eye. Ophthalmology 120(7):1403–1408

    Article  PubMed  Google Scholar 

  266. https://clinicaltrials.gov/ct2/show/NCT03488550. Accessed 11 July 2019

  267. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SW (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121(4):1429–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, Kaplan HJ (2010) Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci 51(10):5071–5082

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Ganesh Prasanna and Dennis Rice for helpful discussions related to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Adams .

Editor information

Editors and Affiliations

Ethics declarations

Funding:

There is no funding-related information for this chapter.

Conflict of Interest:

The authors are employed by Novartis Institutes for Biomedical Research Inc. and declare no other competing financial interest.

Ethical approval:

This manuscript is a review of previously published accounts, as such, no animal or human studies were performed.

Informed Consent:

No patients were studied in this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adams, C.M., Papillon, J.P.N. (2020). Recent Developments for the Treatment of Glaucoma. In: Cioffi, C.L. (eds) Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases. Topics in Medicinal Chemistry, vol 35. Springer, Cham. https://doi.org/10.1007/7355_2019_92

Download citation

Publish with us

Policies and ethics