Skip to main content

Physiology of Actinorhizal Nodules

  • Chapter
  • First Online:
Prokaryotic Symbionts in Plants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 8))

Abstract

Some plants live in symbiosis with N2-fixing bacteria. Frankia, a genus of soil actinomycetes, can infect roots and induce root nodules on so-called actinorhizal plants. These are about 200 species of essentially woody angiosperms belonging to eight families. The root nodule is a unique organ where the plant anatomy and metabolism has adapted to facilitate the hosting of Frankia. In exchange for carbon compounds Frankia provides plant-available nitrogen rendering the host independent of soil nitrogen. When free-living, Frankia is capable of fixing N2 for its own growth, and an important characteristic are specialized cells, so-called vesicles, where dinitrogenase can function in an aerobic environment. Among actinorhizal genera there is a broad range of anatomical and biochemical adaptations in Frankia and the host plant to enable both N2 fixation and aerobic metabolism in the root nodules. Plant and bacterial metabolism form a complex intertwined network with bacterial and plant metabolites shuttled across membranes. N2 fixation is energy costly and nodules represent strong carbon sinks. The plant provides the nodules with photosynthates mostly in the form of sucrose. Dicarboxylates are imported to Frankia to support bacterial development and N2 fixation. Ammonium is assumed to be exported from Frankia to the cytoplasm of the infected cells and converted to appropriate amino acids and amides for transport to the nitrogen sinks of the plant. The N2 fixation activity in Frankia is controlled by external factors such as the plant's photosynthetic activity, which affects the carbon supply to the nodule, and nitrogen availability in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkermans ADL, Roelofsen W, Blom J, Huss-Danell K, Harkink R (1983) Utilization of carbon and nitrogen compounds by Frankia in synthetic media and in root nodules of Alnus glutinosa, Hippophae rhamnoides, and Datisca cannabina. Can J Bot 61:2793–2800

    Article  CAS  Google Scholar 

  • Andreev IM, Dubrovo PN, Krylova VV, Izmailov SF (1999) Functional identification of ATP-driven Ca2+ pump in the peribacteroid membrane of broad bean root nodules. FEBS Lett 447:49–52

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, Sanford PJ, Dakora FD, Matthews I (1989) Nitrogen nutrition of nodules in relation to “N-hunger” in cowpea (Vigna unguiculata L. Walp). Plant Physiol 90:1644–1649

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Parsons R (1997) Rapid assimilation of recently fixed N2 in root nodules of Myrica gale. Physiol Plant 99:640–647

    Article  CAS  Google Scholar 

  • Batzli JM, Dawson JO (1999) Development of flood-induced lenticels in red alder nodules prior to the restoration of nitrogenase activity. Can J Bot 77:1373–1377

    Article  CAS  Google Scholar 

  • Benson DR, Arp DJ, Burris RH (1980) Hydrogenase in actinorhizal root nodules and root nodule homogenates. J Bacteriol 142:138–144

    PubMed  CAS  Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant symbioses. In: Triplett EW (ed) Prokaryotic nitrogen fixation: A model system for analysis of biological process. Horizon Scientific Press, Wymondham, UK, pp 207–224

    Google Scholar 

  • Benson DR, Eveleigh DE (1979) Ultrastructure of the nitrogen-fixing symbiont of Myrica pennsylvanica L. (Bayberry) root nodules. Bot Gaz 140:S15–S21

    Article  Google Scholar 

  • Benson DR, Schultz N (1990) Physiology and biochemistry of Frankia in culture. In: Schwintzer CR, Tjepkema JD (eds) The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, CA, pp 107–127

    Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    PubMed  CAS  Google Scholar 

  • Berg RH (1990) Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma 159:35–43

    Article  CAS  Google Scholar 

  • Berg RH, McDowell L (1987) Endophyte differentiation in Casuarina actinorhizae. Protoplasma 136:104–117

    Article  Google Scholar 

  • Berry AM, Harriottv OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091–6094

    Article  PubMed  CAS  Google Scholar 

  • Berry AM, Murphy TM, Okubara PA, Jacobsen KR, Swensen SM, Pawlowski K (2004) Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Plant Physiol 135:1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Berry AM, Rasmussen U, Bateman K, Huss-Danell K, Lindwall S, Bergman B (2002) Arabinogalactan proteins at the symbiotic interface in root nodules of Alnus spp. New Phytol 155:469–479

    Article  CAS  Google Scholar 

  • Berry AM, Sunell LA (1990) The infection process and nodule development. In: Schwintzer CR, Tjepkema JD (eds) The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, CA, pp 61–81

    Google Scholar 

  • Bethlenfalvay GJ, Phillips DA (1977) Effect of light intensity on efficiency of carbon dioxide and nitrogen reduction in Pisum sativum L. Plant Physiol 60:868–871

    Article  PubMed  CAS  Google Scholar 

  • Blom J, Roelofsen W, Akkermans ADL (1981) Assimilation of nitrogen in root nodules of alder (Alnus glutinosa). New Phytol 89:321–326

    Article  CAS  Google Scholar 

  • Bond G (1956) Some aspects of translocation in root nodule plants. J Exp Bot 7:387–394

    Article  CAS  Google Scholar 

  • Bryan JK (1990) Advances in the biochemistry of amino acid biosynthesis. In: Miflin BJ (ed) The Biochemistry of Plants, Vol. 16. Academic Press Inc, San Diego, CA, pp 161–195

    Google Scholar 

  • Day DA, Poole PS, Tyerman SD, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71

    Article  PubMed  CAS  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26: An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  PubMed  CAS  Google Scholar 

  • Feigenbaum S, Mengel K (1979) The effect of reduced light intensity and sub-optimal potassium supply on N2 fixation and N turnover in Rhizobium-infected lucerne. Physiol Plant 45:245–249

    Article  CAS  Google Scholar 

  • Fletcher WW (1955) The development and structure of the root nodules of Myrica gale L. with special reference to the nature of the endophyte. Ann Bot 19:501–513

    Google Scholar 

  • Forde BG, Day HM, Turton JF, Shen WJ, Cullimore JV, Oliver JE (1989) Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1:391–401

    Article  PubMed  CAS  Google Scholar 

  • Fortin MG, Morrison NA, Verma DPS (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucl Acids Res 15:813–824

    Article  PubMed  CAS  Google Scholar 

  • Fujikake H, Yamazaki A, Ohtake N, Sueyoshi K, Matsuhashi S, Ito T, Mizuniwa C, Kume T, Hashimoto S, Ishioka NS, Watanabe S, Osa A, Sekine T, Uchida H, Tsuji A, Ohyama T (2003) Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. J Exp Bot 54:1379–1388

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Masuda T, Ogata S (1988) Dinitrogen fixation, ureide concentration in xylem exudate and translocation of photosynthates in soybean as influenced by pod removal and defoliation. Soil Sci Plant Nutr 34:265–275

    CAS  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767

    Article  PubMed  CAS  Google Scholar 

  • Gardner IC, Leaf G (1960) Translocation of citrulline in Alnus glutinosa. Plant Physiol 35:948–950

    Article  PubMed  CAS  Google Scholar 

  • Gauthier D, Diem HG, Dommergues Y (1981) In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl Environ Microbiol 41:306–308

    PubMed  CAS  Google Scholar 

  • Gest H, Kamen MD, Bregoff HM (1950) Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J Biol Chem 182:153–170

    CAS  Google Scholar 

  • Van Ghelue M, Ribeiro A, Solheim B, Akkermans ADL, Bisseling T, Pawlowski K (1996) Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules. Mol Gen Genet 250:437–446

    Article  PubMed  Google Scholar 

  • Guan C, Ribeiro A, Akkermans ADL, Jing Y, Van Kammen A, Bisseling T, Pawlowski K (1996) Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase. Plant Mol Biol 32:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Hardy RWF, Havelka UD (1976) Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In: Nutman PS (ed) Symbiotic nitrogen fixation. Cambridge University Press, Cambridge, UK, pp 421–439

    Google Scholar 

  • Harper JE, Cowingan KA, Barbera AC, Abd-Alla MH (1997) Hypernodulation of soybean, mung bean and hyacinth bean is controlled by a common shoot signal. Crop Sci 37:1242–1246

    Article  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas-exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    Article  CAS  Google Scholar 

  • Huss-Danell K (1990) The physiology of actinorhizal nodules. In: Schwintzer CR, Tjepkema JD (eds) The Biology of Frankia and Actinorhizal Plants. Academic Press, Inc., New York, NY, pp 129–156

    Google Scholar 

  • Huss-Danell K (1991) Influence of host (Alnus and Myrica) genotype on infectivity, N2 fixation, spore formation and hydrogenase activity in Frankia. New Phytol 119:121–127

    Article  CAS  Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Huss-Danell K, Bergman B (1990) Nitrogenase in Frankia from root nodules of Alnus incana (L.) Moench: immunolocalization of the Fe- and MoFe-proteins during vesicle differentiation. New Phytol 116:443–455

    Article  Google Scholar 

  • Huss-Danell K, Gentili F, Valverde C, Wall L, Wiklund A (2002) Phosphorus is important in nodulation of actinorhizal plants and legumes. In: Finan T, O'Brian M, Layzell D, Vessey K, Newton WE (eds) Nitrogen fixation: global perspectives. CAB International, Wallingford, pp 163–166

    Google Scholar 

  • Huss-Danell K, Lundquist P-O, Ohlsson H (1992) Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Can J Bot 70:1545–1549

    Google Scholar 

  • Huss-Danell K, Sellstedt A (1985) Nitrogenase activity in response to darkening and defoliation of Alnus incana. J Exp Bot 36:1352–1358

    Article  CAS  Google Scholar 

  • Jeong J, Suh S, Guan C, Tsay Y-F, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978

    Article  PubMed  CAS  Google Scholar 

  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304

    Article  PubMed  CAS  Google Scholar 

  • Kleemann G, Alskog G, Berry AM, Huss-Danell K (1994) Lipid composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations. Protoplasma 183:107–115

    Article  CAS  Google Scholar 

  • Krusell L, Krause K, Ott T, Desbrosses G, Kraemer U, Sato S, Nakamura Y, Tabata S, James E, Sandal N, Stougaard J, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi M (2005) The sulfate transporter, SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1–12

    Article  CAS  Google Scholar 

  • Lalonde M, Knowles R (1975) Ultrastructure, composition, and biogenesis of the encapsulation material surrounding the endophyte in Alnus crispa var. mollis root nodules. Can J Bot 53:1951–1971

    Article  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bogusz D, Pawlowski K (2000) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant-Microbe Interact 13:113–117

    Article  PubMed  CAS  Google Scholar 

  • Layzell DB, Rainbird RM, Atkins CA, Pate JS (1979) Economy of photosynthate use in nitrogen-fixing legume nodules. Plant Physiol 64:888–891

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (1980) Transport and metabolism of asparagine and other nitrogen compounds within the plant. In: Miflin BJ (ed) The Biochemistry of Plants, Vol. 5. Academic Press, New York, NY, pp 569–608

    Google Scholar 

  • Leaf G, Gardner IC, Bond G (1959) Observations on the composition and metabolism of the nitrogen-fixing root nodules of Myrica. Biochem J 72:662–667

    PubMed  CAS  Google Scholar 

  • Lechevalier MP (1984) The taxonomy of the genus Frankia. Plant Soil 78:1–6

    Article  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, CA, pp 35–60

    Google Scholar 

  • Leul M, Mohapatra A, Sellstedt A (2005) Biodiversity of hydrogenases in Frankia. Curr Microbiol 50:17–23

    Article  PubMed  CAS  Google Scholar 

  • LeVier K, Day DA, Guerinot ML (1996) Iron uptake by symbiosomes from soybean root nodules. Plant Physiol 111:893–900

    PubMed  CAS  Google Scholar 

  • Liu Q, Berry AM (1991) Localization and characterization of pectic polysaccharides in roots and root nodules of Ceanothus spp. during intercellular infection by Frankia. Protoplasma 163:93–101

    Article  CAS  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdés A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the Rhizobium-legume symbiosis. Nature 422:722–726

    Article  PubMed  CAS  Google Scholar 

  • Lopez MF, Fontaine MS, Torrey JG (1984) Levels of trehalose and glycogen in Frankia sp. HFPArI3 (Actinomycetales). Can J Microbiol 30:746–752

    Article  CAS  Google Scholar 

  • Lopez MF, Whaling CS, Torrey JG (1983) The polar lipids and free sugars of Frankia in culture. Can J Bot 61:2834–2842

    Article  CAS  Google Scholar 

  • Lundberg P, Lundquist P-O (2004) Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Planta 219:661–672

    Article  PubMed  CAS  Google Scholar 

  • Lundquist P-O, Huss-Danell K (1991a) Nitrogenase activity and amounts of nitrogenase proteins in a FrankiaAlnus incana symbiosis subjected to darkness. Plant Physiol 95:808–813

    Article  PubMed  CAS  Google Scholar 

  • Lundquist P-O, Huss-Danell K (1991b) Response of nitrogenase to altered carbon supply in a Frankia–Alnus incana symbiosis. Physiol Plant 83:331–338

    Article  CAS  Google Scholar 

  • Lundquist P-O, Huss-Danell K (1992) Immunological studies of glutamine synthetase in Frankia–Alnus incana symbioses. FEMS Microbiol Lett 91:141–146

    Article  CAS  Google Scholar 

  • Lundquist P-O, Näsholm T, Huss-Danell K (2003) Nitrogenase activity and root nodule metabolism in response to O2 and short-term N2 deprivation in dark-treated Frankia–Alnus incana plants. Physiol Plant 119:244–252

    Article  CAS  Google Scholar 

  • Mazzucco C, Benson DR (1984) 14C-Methylammonium transport by Frankia sp. strain CpI1. J Bacteriol 160:636–641

    PubMed  CAS  Google Scholar 

  • McClure PR, Coker GT, Schubert KR (1983) CO2 fixation in roots and nodules of Alnus glutinosa: Role of PEP carboxylase and carbamyl phosphate synthetase in dark CO2 fixation, citrulline synthesis, and N2 fixation. Plant Physiol 71:652–657

    Article  PubMed  CAS  Google Scholar 

  • Meesters TM, VanVliet WM, Akkermans ADL (1987) Nitrogenase is restricted to the vesicles in Frankia strain EAN1pec. Physiol Plant 70:267–271

    Article  CAS  Google Scholar 

  • Mian S, Bond G (1978) The onset of nitrogen fixation in young alder plants and its relation to differentiation in the nodular endophyte. New Phytol 80:187–192

    Article  Google Scholar 

  • Miao GH, Hong Z, Verma DPS (1992) Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol 118:481–490

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Day DA, Puppo A (1998) Ferrous iron is transported across the peribacteroid membrane of soybean nodules. Planta 207:83–87

    Article  CAS  Google Scholar 

  • Moreau S, Meyer JM, Puppo A (1995) Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Lett 361:225–228

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746

    Article  PubMed  CAS  Google Scholar 

  • Murry MA, Fontaine MS, Tjepkema JD (1984) Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139:162–166

    Article  PubMed  CAS  Google Scholar 

  • Newcomb W, Wood SM (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int Rev Cytol 109:1–88

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    Article  PubMed  CAS  Google Scholar 

  • Noridge NA, Benson DR (1986) Isolation and nitrogen-fixing activity of Frankia sp. strain CpI1 vesicles. J Bacteriol 166:301–305

    PubMed  CAS  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2006) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  Google Scholar 

  • O'Gara F, Shanmugam KT (1976) Regulation of nitrogen fixation by rhizobia: export of fixed nitrogen as ammonium ion. Biochim Biophys Acta 437:313–321

    PubMed  Google Scholar 

  • Pate JS, Atkins CA, Hamel K, McNeil DL, Layzell DB (1979) Transport of organic solutes in phloem and xylem of a nodulated legume. Plant Physiol 63:1082–1088

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Atkins CA, Rainbird RM (1981) Theoretical and experimental costing of nitrogen fixation and related processes in nodules of legumes. In: Gibson AH, Newton WE (eds) Current Perspectives in Nitrogen Fixation. Aust Acad Sci, Canberra, Australia, pp 105–116

    Google Scholar 

  • Patrick JW (1990) Sieve element unloading: cellular pathway, mechanism and control. Physiol Plant 78:298–308

    Article  Google Scholar 

  • Pawlowski K (2002) Actinorhizal symbioses. In: Leigh GJ (ed) Nitrogen Fixation at the Millennium. Elsevier Science, Pergamon Press, Amsterdam, pp 167–189

    Chapter  Google Scholar 

  • Pawlowski K, Akkermans ADL, Van Kammen A, Bisseling T (1995) Expression of Frankia nif genes in nodules of Alnus glutinosa. Plant Soil 170:371–376

    Article  CAS  Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N, Denison RF, Klein M, Winzer T, Sirrenberg A, Guan C, Berry AM (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biol 9:776–785

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Ribeiro A, Guan C, Van Kammen A, Berry AM, Bisseling T (1996) Actinorhizal nodules from different plant families. In: Stacey G, Mullin BC, Gresshoff PM (eds) Biology of Plant–Microbe Interactions, Vol. 1. IS-MPMI, St. Paul, MN, pp 417–422

    Google Scholar 

  • Pawlowski K, Sprent JI (2008) Comparison between actinorhizal and legume Symbiosis. In: Pawlowski K, Newton WE (ed) Nitrogen-fixing Actinorhizal Symbioses. Springer, Dordrecht, The Netherlands, pp 261–288

    Chapter  Google Scholar 

  • Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trend Microbiol 14:161–168

    Article  CAS  Google Scholar 

  • Prin Y, Mallein-Garin F, Simonet P (1993) Identification and localization of Frankia strains in Alnus nodules by in situ hybridization of nifH mRNA with strain-specific oligonucleotide probes. J Exp Bot 44:815–820

    Article  Google Scholar 

  • Rasche ME, Arp DJ (1989) Hydrogen inhibition of nitrogen reduction by nitrogenase in isolated soybean nodule bacteroids. Plant Physiol 91:663–668

    Article  PubMed  CAS  Google Scholar 

  • Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    Article  PubMed  CAS  Google Scholar 

  • Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH4 +, K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiol 128:370–378

    Article  PubMed  CAS  Google Scholar 

  • Robson R (2001) Biodiversity of hydrogenases. In: Cammack R, Frey F, Robson R (eds) Hydrogen as Fuel: Learning from Nature. Taylor and Francis Inc, New York, NY, pp 9–32

    Google Scholar 

  • Russo RO (2005) Nitrogen-fixing trees with actinorhiza in forestry and agroforestry. In: Werner D, Newton WE (eds) Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment. Springer, Dordrecht, The Netherlands, pp 143–171

    Chapter  Google Scholar 

  • Safo-Sampah S, Torrey JG (1988) Polysaccharide-hydrolyzing enzymes of Frankia (Actinomycetales). Plant Soil 112:89–97

    Article  CAS  Google Scholar 

  • Sasakawa H, Hiyoshi T, Sugiyama T (1988) Immunogold localization of nitrogenase in root nodules of Elaeagnus pungens Thunb. Plant Cell Physiol 29:1147–1152

    CAS  Google Scholar 

  • Schortemeyer J, Atkin OK, McFarlane N, Evans JR (1999) The impact of elevated atmospheric CO2 and nitrate supply on growth, biomass allocation, nitrogen partitioning and N2 fixation of Acacia melanoxylon. Aust J Plant Physiol 26:737–747

    Article  CAS  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Schwintzer CR, Tjepkema JD (eds) (1990) The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, USA

    Google Scholar 

  • Sellstedt A (1989) Occurrence and activity of hydrogenase in symbiotic Frankia from field-collected Alnus incana. Physiol Plant 75:304–308

    Article  CAS  Google Scholar 

  • Sellstedt A, Atkins CA (1991) Composition of amino compounds transported in xylem of Casuarina sp. J Exp Bot 42:1493–1497

    Article  CAS  Google Scholar 

  • Sellstedt A, Huss-Danell K (1984) Growth, nitrogen fixation and relative efficiency of nitrogenise in Alnus incana grown in different cultivation systems. Plant Soil 78:147–158

    Article  CAS  Google Scholar 

  • Silvester WB, Harris SL (1989) Nodule structure and nitrogenase activity of Coriaria arborea in response to varying oxygen partial pressure. Plant Soil 118:97–110

    Article  CAS  Google Scholar 

  • Silvester WB, Harris SL, Tjepkema JD (1990) Oxygen regulation and hemoglobin. In: Schwintzer CR, Tjepkema JD (ed) The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego, CA, pp 157–176

    Google Scholar 

  • Soussana JF, Hartwig UA (1996) The effect of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    Article  CAS  Google Scholar 

  • Stowers MD, Kulkarni RK, Steele DB (1986) Intermediary carbon metabolism in Frankia. Arch Microbiol 143:78–84

    Article  Google Scholar 

  • Temple SJ, Heard J, Ganter G, Dunn K, Sengupta-Gopalan C (1995) Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization, and transcript analysis. Mol Plant-Microbe Interact 8:218–227

    Article  PubMed  CAS  Google Scholar 

  • Tisa L, McBride M, Ensign JC (1983) Studies of growth of Frankia isolates in relation to infectivity and nitrogen fixation (acetylene reduction). Can J Bot 61:2768–2773

    Article  CAS  Google Scholar 

  • Tjepkema JD (1983) Oxygen concentration within the nitrogen-fixing root nodules of Myrica gale L. Am J Bot 70:59–63

    Article  Google Scholar 

  • Tjepkema JD, Asa DJ (1987) Total and CO-reactive heme content of actinorhizal nodules and the roots of some non-nodulated plants. Plant Soil 100:225–236

    Article  CAS  Google Scholar 

  • Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined nutrient media. Nature 287:633–635

    Article  CAS  Google Scholar 

  • Torrey JG (1976) Initiation and development of root nodules of Casuarina (Casuarinaceae). Am J Bot 63:335–344

    Article  Google Scholar 

  • Tricot F, Crozat Y, Pellerin S (1997) Root growth and nodule establishment on pea (Pisum sativum L.). J Exp Bot 48:1935–1941

    CAS  Google Scholar 

  • Tyerman SD, Whitehead LF, Day DA (1995) A channel-like transporter for NH4 + on the symbiotic interface of N2-fixing plants. Nature 378:629–632

    Article  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Lister DL, Day DA (1991) ATPase activity and anion transport across the peribacteroid membrane of isolated soybean symbiosomes. Arch Microbiol 156:362–366

    Article  CAS  Google Scholar 

  • Udvardi MK, Price GD, Gresshoff PM, Day DA (1988) A dicarboxylate transporter on the peribacteroid membrane of soybean nodules. FEBS Lett 231:36–40

    Article  CAS  Google Scholar 

  • Valverde C (2000) Regulación de la nodulación radicular en la simbiosis Discaria trinervis–Frankia. PhD Thesis, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

    Google Scholar 

  • Valverde C, Huss-Danell K (2008) Carbon and Nitrogen Metabolism in Actinorhizal Nodules. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing Actinorhizal Symbioses. Springer, Dordrecht, The Netherlands, pp 167–198

    Chapter  Google Scholar 

  • Valverde C, Wall LG (2003a) Ammonium assimilation in Discaria trinervis root nodules. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant Soil 254:139–153

    Article  CAS  Google Scholar 

  • Valverde C, Wall LG (2003b) The regulation of nodulation, nitrogen fixation and assimilation under a carbohydrate shortage stress in the Discaria trinervis –Frankia symbiosis. Plant Soil 254:155–165

    Article  CAS  Google Scholar 

  • Vikman P-Å (1992) The symbiotic vesicle is a major site for respiration in Frankia from Alnus incana root nodules. Can J Microbiol 38:779–784

    Article  CAS  Google Scholar 

  • Vikman P-Å, Lundquist P-O, Huss-Danell K (1990) Respiratory capacity, nitrogenase activity and structural changes of Frankia, in symbiosis with Alnus incana, in response to prolonged darkness. Planta 182:617–625

    Article  CAS  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbioses. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing Actinorhizal Symbioses. Springer, Dordrecht, The Netherlands, pp 147–166

    Chapter  Google Scholar 

  • Wall LG, Huss-Danell K (1997) Regulation of nodulation in Alnus–Frankia symbiosis. Physiol Plant 99:594–600

    Article  CAS  Google Scholar 

  • Walsh KB, Thorpe MR, Minchin PEH (1998) Photoassimilate partitioning in nodulated soybean III. The effect of changes in nodule activity shows that carbon supply to the nodule is not linked to nodule nitrogen metabolism. J Exp Bot 49:1827–1834

    Article  CAS  Google Scholar 

  • Weaver CD, Shomer NH, Louis CF, Roberts DM (1994) Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem 269:17858–17862

    PubMed  CAS  Google Scholar 

  • Wheeler CT, Bond G (1970) The amino acids of non-legume root nodules. Phytochem 9:705–708

    Article  CAS  Google Scholar 

  • Zhang X, Benson DR (1992) Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Persson .

Editor information

Katharina Pawlowski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Persson, T., Huss-Danell, K. (2008). Physiology of Actinorhizal Nodules. In: Pawlowski, K. (eds) Prokaryotic Symbionts in Plants. Microbiology Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2008_122

Download citation

Publish with us

Policies and ethics