Skip to main content

Plant Growth Dynamics: Analysis of Basic Spatial and Temporal Growth Patterns on the Background of Photosynthetic Energy Gain and Interactions with the Environment

  • Chapter
  • First Online:
Plant Growth Signaling

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 10))

  • 1331 Accesses

Abstract

Leaves and roots show dynamic growth patterns such as diel variations (occurring throughout 24 h) or base-tip gradients that can be investigated non-invasively using image sequence processing methods. These growth patterns are affected by a number of environmental parameters. Light plays a crucial role as it ultimately drives biomass production via photosynthetic energy gain and carbohydrate metabolism. The interaction of growth patterns of different species with light conditions and other environmental factors affecting photosynthesis and carbohydrate metabolism is discussed and put into the context of the physiological framework regulating plant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirrezabal LAN, Deleens E, Tardieu F (1994) Root elongation rate is accounted for by intercepted PPFD and source-sink relations in field and laboratory-grown sunflower. Plant Cell Environ 17:443–450

    Article  Google Scholar 

  • Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Noesberger J, Long SP (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant Cell Environ 26:705–714

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Walter A, Schurr U (2005) Glycine max leaflets lack a base-tip gradient in growth rate. J Plant Res 118:343–346

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142:135–147

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Nilsson A (1997) Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiol Plant 100:863–868

    Article  CAS  Google Scholar 

  • Avery GS (1933) Structure and development of tobacco leaves. Am J Bot 20:565–592

    Article  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, non-invasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    Article  PubMed  CAS  Google Scholar 

  • Barron-Gafford G, Martens D, Grieve K, Bil K, Kudeyarov V, McLain JET, Lipson D, Murthy R (2005) Growth of Eastern Cottonwoods (Populus deltoides) in elevated [CO2] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Global Change Biol 11:1220–1233

    Article  Google Scholar 

  • Bassani M, Neumann PM, Gepstein S (2004) Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Mol Biol 56:367–380

    Article  PubMed  CAS  Google Scholar 

  • Beemster GTS, Masle J, Williamson RE, Farquhar GD (1996) Effects of soil resistance to root penetration on leaf expansion in wheat (Triticum aestivum L.): kinematic analysis of leaf elongation. J Exp Bot 47:1663–1678

    Article  CAS  Google Scholar 

  • Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the develop-mental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Beemster GTS, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 138:734–743

    Article  PubMed  CAS  Google Scholar 

  • Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length. Analysis of the coordination between cell division and cell expansion. Plant Physiol 109:861–870

    PubMed  CAS  Google Scholar 

  • Bigün J, Granlund GH (1987) Optimal orientation detection of linear symmetry. Proc 1st Int Conf Computer Vision. ICCV, London, June 8–11, 1987

    Google Scholar 

  • Bingham IJ, Blackwood JM, Stevenson EA (1997) Site, scale and time-course for adjustments in lateral root initiation in wheat following changes in C and N supply. Annals Bot 80:97–106

    Article  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopaedia of Plant Physiology vol 12A. Physiological Plant Ecology I Responses to the Physical Environment. Springer, Berlin Heidelberg New York, pp 96–117

    Google Scholar 

  • Brumfield RT (1942) Cell growth and division in living root meristems. Am J Bot 29:533–543

    Article  Google Scholar 

  • Bünning E (1948) Entwicklungs- und Bewegungsphysiologie der Pflanze. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bünning E, Moser I (1966) Response-Kurven bei der circadianen Rhythmik von Phaseolus. Planta 69:101–110

    Article  Google Scholar 

  • Chavarría-Krauser A, Nagel KA, Palme K, Schurr U, Walter A, Scharr H (2008) Spatio-temporal quantification of differential growth processes in root growth zones based on a novel combination of image sequence processing and refined concepts describing curvature production. New Phytol 175:811–821

    Article  Google Scholar 

  • Chen S, Hajirezaei M, Peisker M, Tschiersch H, Sonnewald U, Börnke F (2005) Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta 221:479–492

    Article  PubMed  CAS  Google Scholar 

  • Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. The Plant J 37:853–863

    Article  CAS  Google Scholar 

  • Christ MM, Ainsworth EA, Nelson R Schurr U, Walter A (2006) Anticipated yield loss in field-grown soybean under elevated ozone can be avoided at the expense of leaf growth during early reproductive growth stages in favourable environmental conditions. J Exp Bot 57:2267–2275

    Article  PubMed  CAS  Google Scholar 

  • Christ RA (1978) The elongation rate of wheat leaves. I. The elongation rates during night and day. J Exp Bot 29:603–610

    Article  Google Scholar 

  • Coen E, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101:4728–4735

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Ann Rev Plant Physiol Plant Mol Biol 50:391–417

    Article  CAS  Google Scholar 

  • Darwin C (1880) The power of movements in plants. Murray, London

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras P, Landrieu I, Van der Schueren E, Maes S, Naudts M, Inze D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1667

    Article  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Develop Biol 215:407–419

    Article  PubMed  CAS  Google Scholar 

  • El-Lithy ME, Clerkx EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant. Plant Physiol 135:444–458

    Article  PubMed  CAS  Google Scholar 

  • Erickson RO, Sax KW (1956) Experimental growth rate of primary root of Zea mays. Proc Am Philosoph Soc 100:487–498

    Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Fan L, Neumann PM (2004) The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol 135:2291–2300

    Article  PubMed  CAS  Google Scholar 

  • Ferris R, Sabatti M, Miglietta F, Mills RF, Taylor G (2001) Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant Cell Environ 24:305–315

    Article  CAS  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, models of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Foster AS (1936) Leaf Differentiation in Angiosperms. The Botanical Rev 2:349–372

    Article  Google Scholar 

  • Frak E, Le Roux X, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, Vandame M, Variet-Grancher C (2002) Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. J Exp Bot 53:2207–2216

    Article  PubMed  CAS  Google Scholar 

  • Freixes S, Thibaud MC, Tardieu F, Muller B (2002) Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant Cell Environ 25:1357–1366

    Article  CAS  Google Scholar 

  • Geiger DR, Servaites JC, Fuchs MA (2000) Role of starch in carbon translocation and partitioning at the plant level. Aust J Plant Physiol 27:571–582

    CAS  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning and yield. Ann Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Goodwin RH, Stepka W (1945) Growth and differentiation in the root tip of Phleum pratense. Am J Bot 32:36–46

    Article  Google Scholar 

  • Gouws LM, Osmond CB, Schurr U, Walter A (2005) Distinctive diel growth cycles in leaves and cladodes of CAM plants: differences from C3-plants and putative interactions with substrate availability, turgor and cytoplasmic pH. Funct Plant Biol 32:421–428

    Article  CAS  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–625

    Article  PubMed  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    Article  PubMed  CAS  Google Scholar 

  • Hannam RV (1968) Leaf growth and development in the young tobacco plant. Aust J Biol Sci 21:855–870

    Google Scholar 

  • Haußecker H, Spies H (1999) Motion. In: Jähne B, Haußecker H, Geißler P (eds) Handbook of Computer Vision and Applications. Academic Press, San Diego CA, USA, pp 310–369

    Google Scholar 

  • Head GC (1965) Studies of diurnal changes in cherry root growth and nutational movements of apple root tips by time-lapse cinematography. Annals Bot 29:219–224

    Google Scholar 

  • Heckenberger U, Roggatz U, Schurr U (1998) Effect of drought stress on the cytological status in Ricinus communis. J Exp Bot 49:181–189

    Article  CAS  Google Scholar 

  • Hejnowicz Z, Erickson RO (1968) Growth inhibition and recovery in roots following temporary treatment with auxin. Physiol Plantarum 21:302–313

    Article  CAS  Google Scholar 

  • Hodge A, Paterson E, Thornton B, Millard P, Killham K (1997) Effects of photon flux density on carbon partitioning and rhizosphere carbon flow of Lolium perenne. J Exp Bot 48:1797–1805

    CAS  Google Scholar 

  • Hsiao TC, Acevedo E, Henderson DW (1970) Maize leaf elongation: Continuous measurements and close dependence on plant-water status. Science 168:590–591

    Article  PubMed  CAS  Google Scholar 

  • Iijima M, Oribe Y, Horibe Y, Kono Y (1998) Time lapse analysis of root elongation rates of rice and sorghum during the day and night. Annals Bot 81:603–607

    Article  Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kehr J, Hustiak F, Walz C, Willmitzer L, Fisahn J (1998) Transgenic plants changed in carbon allocation pattern display a shift in diurnal growth pattern. The Plant J 16:497–503

    Article  CAS  Google Scholar 

  • Kemp DR, Blacklow WM (1980) Diurnal extension rates of wheat leaves in relation to temperatures and carbohydrate concentrations of the extension zone. J Exp Bot 31:821–828

    Article  CAS  Google Scholar 

  • Kofler H, Häusler RE, Schulz B, Gröner F, Flügge UI, Weber A (2000) Molecular characterisation of a new mutant allele of the plastid phosphoglucomutase in Arabidopsis, and complementation of the mutant with the wild-type cDNA. Mol Gen Genet 263:978–986

    Article  PubMed  CAS  Google Scholar 

  • Kruger EL, Volin JC (2006) Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct Plant Biol 33:421–429

    Article  Google Scholar 

  • Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H (2003) Elevated pCO2 affects N-metabolism of young poplar plants (Populus tremolo XP. alba) differently at deficient and sufficient N-supply. New Phytol 157:65–81

    Article  CAS  Google Scholar 

  • Lai IL, Scharr H, Chavarria-Krauser A, Küsters R, Wu JT, Chou CH, Schurr U, Walter A (2005) Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant Cell Environ 28:1496–1505

    Article  Google Scholar 

  • Lambers H, Posthumus F (1980) The effect of light intensity and relative humidity on growth rate and root respiration of Plantago lanceolota and Zea mays. J Exp Bot 31:1621–1630

    Article  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F (1999) Large-scale evaluation of plant growth in Arabidopsis thaliana in non-invasive image analysis. Plant Physiol Biochem 37:671–678

    Article  CAS  Google Scholar 

  • Lesser VM, Rawlings JO, Spruill SE, Somerville MC (1990) Ozone effects on agricultural crops: Statistical methodologies and estimated dose-response relationships. Crop Sci 30:148–155

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: Plants face the future. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science 312:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Lorenzini G, Saitanis C (2003) Ozone: a novel plant pathogen. In: Sanita di Toppi L, Pawlik-Skowronska B (eds) Abiotic stresses in plants. Kluwer Academic Press, Dordrecht, The Netherlands, pp 205–229

    Google Scholar 

  • Lüttge U (2003) Circadian rhythmicity: Is the biological clock hardware or software? Prog Bot 64:277–319

    Google Scholar 

  • Matsubara S, Hurry V, Druart N, Benedict C, Janzik I, Chavarría-Krauser A, Walter A, Schurr U (2006) Nocturnal changes in leaf growth of Populus deltoides are controlled by cytoplasmic growth. Planta 223:1315–1328

    Article  PubMed  CAS  Google Scholar 

  • Matsubara S, Walter A (2006) In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Living in day-night cycles—Specific diel leaf growth patterns and the circadian control of photomorphogenesis. Progress in Botany 68. Springer, Berlin Heidelberg New York, pp 288–314

    Google Scholar 

  • Matt P, Schurr U, Klein D, Krapp A, Stitt M (1998) Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity and inhibition of amino acid synthesis. Planta 207:27–41

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162

    Article  PubMed  CAS  Google Scholar 

  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Miller A, Tsai CH, Hemphill D, Endres M, Rodermel S, Spalding M (1997) Elevated CO2 effects during leaf ontogeny (A new perspective on acclimation). Plant Physiol 115:1195–1200

    PubMed  CAS  Google Scholar 

  • Morgan PB, Bernacchi DJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  PubMed  Google Scholar 

  • Mühling KH, Plieth C, Hansen UP, Sattelmacher B (1995) Apoplastic pH of intact leaves of Vicia faba as influenced by light. J Exp Bot 46:377–382

    Article  Google Scholar 

  • Murphy JJ, Delucchi MA, McCubbin DR, Kim HJ (1999) The cost of crop damage caused by ozone air pollution from motor vehicles. J Environ Manage 55:273–289

    Article  Google Scholar 

  • Murthy R, Barron-Gafford G, Dougherty PM, Engel VC, Grieve K, Handley L, Klimas C, Potosnak MJ, Zarnoch SJ, Zhang J (2005) Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.) and underlies a switch from canopy light-limited CO2 influx in well-watered treatments to individual leaf, stomatally-limited influx under water stress. Global Change Biol 11:716–731

    Article  Google Scholar 

  • Nagel KA, Schurr U, Walter A (2006) Dynamics of root growth stimulation in Nicotiana tabacum in increasing light intensity. Plant Cell Environ 29:1936–1945

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004a) Within canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    Article  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Beyschlag W (2004b) Spatial and age-dependent modifications of photosynthetic capacity in four Mediterranean oak species. Funct Plant Biol 31:1179–1193

    Article  Google Scholar 

  • Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytol 143:19–31

    Article  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Ann Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  PubMed  CAS  Google Scholar 

  • Pahlavanian AM, Silk WK (1988) Effect of temperature on spatial and temporal aspects of growth in the primary maize root. Plant Physiol 87:529–532

    PubMed  CAS  Google Scholar 

  • Pearson M, Brooks GL (1995) The influence of elevated CO2 on growth and age-related-changes in leaf gas-exchange. J Exp Bot 46:1651–1659

    Article  CAS  Google Scholar 

  • Perrin RM, Young LS, Murthy N, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Annals Bot 96:737–743

    Article  CAS  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  Google Scholar 

  • Poorter H, Van Berkel Y, Baxter R, Den Hertog J, Dijkstra P, Gifford RM, Griffin KL, Roumet C, Roy J, Wong SC (1997) The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C-3 species. Plant Cell Environ 20:472–482

    Article  CAS  Google Scholar 

  • Pritchard SG, Amthor JS (2005) Crops and environmental change. An introduction to effects of global warming, increasing atmospheric CO2 and O3 concentrations, and soil salinization on crop physiology and yield. Food Products Press, New York, pp 1–37

    Google Scholar 

  • Prusinkiewicz P (2004) Modeling plant growth and development. Curr Opin Plant Biol 7:79–83

    Article  PubMed  CAS  Google Scholar 

  • Reid CD, Fiscus EL (1998) Effects of elevated [CO2] and/or ozone on limitations to CO2 assimilation in soybean (Glycine max). J Exp Bot 49:885–895

    Article  CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu X-G, Delucia EH, Ort DR, Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27:449–458

    Article  CAS  Google Scholar 

  • Roggatz U, McDonald AJS, Stadenberg I, Schurr U (1999) Effect of nitrogen deprivation on cell division and expansion of Ricinus communis L. Plant Cell Environ 22:81–90

    Article  Google Scholar 

  • Sachs J (1887) Vorlesung über Pflanzen-Physiologie. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Scharr H (2004) Optimal filters for extended optical flow. Int Workshop on Complex Motion. Springer, Heidelberg, Günzberg, Germany

    Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Schmundt D, Stitt M, Jähne B, Schurr U (1998) Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. The Plant J 16:505–514

    Article  Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328

    Article  PubMed  CAS  Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant Cell Environ 29:340–352

    Article  PubMed  CAS  Google Scholar 

  • Seneweera SP, Basra AS, Barlow EW, Conroy JP (1995) Diurnal regulation of leaf blade elongation in rice by CO2. Plant Physiol 108:1471–1477

    PubMed  CAS  Google Scholar 

  • Shipley B (2006) Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct Ecol 20:565–574

    Article  Google Scholar 

  • Silk WK, Erickson RO (1979) Kinematics of plant growth. J Theor Biol 76:481–501

    Article  PubMed  CAS  Google Scholar 

  • Silk WK (1984) Quantitative descriptions of development. Ann Rev Plant Physiol 35:479–518

    Google Scholar 

  • Silk WK, Lord EM, Eckard KJ (1989) Growth patterns inferred from anatomical records. Plant Physiol 90:708–713

    Article  PubMed  CAS  Google Scholar 

  • Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121:9–19

    Article  PubMed  CAS  Google Scholar 

  • Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214:334–344

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1991) Rising carbon dioxide levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Taylor G, Tricker PJ, Zhang FZ, Alston VJ, Miglietta F, Kuzminsky E (2003) Spatial and temporal effects of free-air CO2 enrichment (POPFACE) on leaf growth, cell expansion, and cell production in a closed canopy of poplar. Plant Physiol 131:177–185

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Article  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  PubMed  CAS  Google Scholar 

  • Thrower SL (1962) Translocation of labeled assimilates in the soybean. II. The pattern of translocation in intact and defoliated plants. Aust J Biol Sci 15:629–649

    Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2004) Differential expression of genes in apical and basal tissues of expanding tobacco leaves. Plant Sci 167:679–686

    Article  CAS  Google Scholar 

  • Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant Cell Environ 25:1729–1737

    Article  CAS  Google Scholar 

  • van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan K, Baskin TI (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Van Volkenburgh E (1987) Regulation of dicotyledonous leaf growth. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. Am Soc Plant Physiol, 193–201

    Google Scholar 

  • Van Volkenburgh E, Taylor G (1996) Leaf growth physiology. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus. NRC Research Press, Ottawa, pp 283–299

    Google Scholar 

  • Vincent CD, Gregory PJ (1989) Effects of temperature on the development and growth of winter wheat roots. I. Controlled glasshouse studies of temperature, nitrogen and irradiance. Plant Soil 119:87–97

    Article  Google Scholar 

  • Wait DA, Jones CG, Wynn J, Woodward FI (1999) The fraction of expanding to expanded leaves determines the biomass response of Populus to elevated CO2. Oecologia 121:193–200

    Article  Google Scholar 

  • Walter A, Schurr U (1999) The modular character of growth in Nicotiana tabacum plants under steady-state nutrition. J Exp Bot 50:1169–1177

    Article  CAS  Google Scholar 

  • Walter A, Feil R, Schurr U (2002a) Restriction of nyctinastic movements and application of tensile forces to leaves affects diurnal patterns of expansion growth. Function Plant Biol 29:1247–1258

    Article  Google Scholar 

  • Walter A, Spies H, Terjung S, Kuesters R, Kirchgeßner N, Schurr U (2002b) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot 53:689–698

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Feil R, Schurr U (2003a) Expansion dynamics, metabolite composition and substance transfer of the primary root growth zone of Zea mays L. grown in different external nutrient availabilities. Plant Cell Environ 26:1451–1466

    Article  CAS  Google Scholar 

  • Walter A, Roggatz U, Schurr U (2003b) Expansion kinematics are an intrinsic property of leaf development and are scaled from cell to leaf level at different nutrient availability. Plant Biol 5:642–650

    Article  CAS  Google Scholar 

  • Walter A, Lambrecht SC (2004) Biosphere 2 Center as a unique tool for environmental studies. J Environ Monitor 6:267–277

    Article  CAS  Google Scholar 

  • Walter A, Rascher U, Osmond B (2004) Transitions in photosynthetic parameters of midvein and interveinal regions of leaves and their importance during leaf growth and development. Plant Biol 6:184–191

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Schurr U (2005) Dynamics of leaf and root growth— endogenous control versus environmental impact. Annals Bot 95:891–900

    Article  Google Scholar 

  • Walter A, Christ MM, Barron-Gafford GA, Grieve KA, Murthy R, Rascher U (2005) The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides. Global Change Biol 11:1207–1219

    Article  Google Scholar 

  • Walter A, Nagel KA (2006) Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings. Plant Signal Behav 1:225–226

    PubMed  Google Scholar 

  • Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, Wiese A, Virnich O, Christ MM, Uhlig B, Jünger S, Schurr U (2007) The dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN – a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol 174:447–455

    Article  PubMed  Google Scholar 

  • Watts WR (1974) Leaf extension in Zea mays. J Exp Bot 25:1085–1096

    Article  Google Scholar 

  • Watts WR (1974) Leaf extension in Zea mays. J Exp Bot 25:1085–1096

    Article  Google Scholar 

  • Webb DP (1976) Root growth in acer saccharum marsh. Seedlings: Effects of light intensity and photoperiod on root elongation rates. Bot Gaz 137:211–217

    Article  Google Scholar 

  • Wiese A, Christ MM, Virnich O, Schurr U, Walter A (2007) Spatio-temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of the diel leaf growth cycle. New Phytol 174:752–761

    Article  PubMed  CAS  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Walter .

Editor information

László Bögre Gerrit Beemster

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, A. (2008). Plant Growth Dynamics: Analysis of Basic Spatial and Temporal Growth Patterns on the Background of Photosynthetic Energy Gain and Interactions with the Environment. In: Bögre, L., Beemster, G. (eds) Plant Growth Signaling. Plant Cell Monographs, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_157

Download citation

Publish with us

Policies and ethics