Skip to main content

Cost-Effective Adsorbents for Reduction of Conventional and Emerging Pollutants in Modified Natural Wastewater Treatment

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 117))

  • 400 Accesses

Abstract

The adsorption process has drawn significant academic interest as an efficient treatment method for controlling water pollution and it has exhibited considerable potential for removing different aquatic pollutants. This chapter reviews the literature on different types of adsorption processes, adsorption mechanisms, various factors affecting adsorption, important operating parameters, desorption, and reactivation. The chapter provides a summary of adsorption models and scale-up considerations and represents an extensive list of cost-effective adsorbents along with their application in wastewater treatment. Finally, it ends with a list of recent researches of various modification methods applied to increasing the efficiency of adsorption processes and enhancing the capacity of adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fard MB, Hamidi D, Alavi J, Jamshidian R, Pendashteh A, Mirbagheri SA (2021) Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: kinetic study, process optimization, and modeling. Ind Crop Prod 163:113326

    Article  Google Scholar 

  2. Fard MB, Mirbagheri SA, Pendashteh A, Alavi J (2019) Biological treatment of slaughterhouse wastewater: kinetic modeling and prediction of effluent. J Environ Health Sci Eng 17(2):731–741

    Article  Google Scholar 

  3. Gholami M, Shomali A, Abbasi Souraki B, Pendashteh A (2020) Advanced numerical kinetic model for predicting COD removal and optimisation of pulp and paper wastewater treatment by Fenton process. Int J Environ Anal Chem 2020:1–24

    Google Scholar 

  4. Pronk W, Ding A, Morgenroth E, Derlon N, Desmond P, Burkhardt M et al (2019) Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Res 149:553–565

    Article  CAS  Google Scholar 

  5. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2018) Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. In: Green adsorbents for pollutant removal. Springer, pp 23–71

    Chapter  Google Scholar 

  6. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  Google Scholar 

  7. Tripathi A, Ranjan MR (2015) Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodegr 6(6):315

    Article  Google Scholar 

  8. Hu H, Xu K (2020) Physicochemical technologies for HRPs and risk control. High-risk pollutants in wastewater. Elsevier, pp 169–207

    Book  Google Scholar 

  9. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  10. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40

    Google Scholar 

  11. Sulyman M, Namiesnik J, Gierak A (2017) Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review. Pol J Environ Stud 26(2):479–510

    Article  CAS  Google Scholar 

  12. Volesky B (2003) Sorption and biosorption. BV Sorbex, St Lambert, p 326

    Google Scholar 

  13. Khan AM, Ahmad CS, Farooq U, Mahmood K, Sarfraz M, Balkhair KS et al (2015) Removal of metallic elements from industrial waste water through biomass and clay. Front Life Sci 8(3):223–230

    Article  CAS  Google Scholar 

  14. Witek-Krowiak A, Reddy DHK (2013) Removal of microelemental Cr (III) and cu (II) by using soybean meal waste–unusual isotherms and insights of binding mechanism. Bioresour Technol 127:350–357

    Article  CAS  Google Scholar 

  15. Zhang M, Li A, Zhou Q, Shuang C, Zhou W, Wang M (2014) Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Microporous Mesoporous Mater 184:105–111

    Article  CAS  Google Scholar 

  16. Tsezos M, Remoundaki E, Hatzikioseyian A (2006) Biosorption-principles and applications for metal immobilization from waste-water streams. In: Proceedings of EU-Asia workshop on clean production and nanotechnologies. Seoul, pp 23–33

    Google Scholar 

  17. Abdolali A, Guo W, Ngo H, Chen S, Nguyen N, Tung K (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66

    Article  CAS  Google Scholar 

  18. Escudero LB, Maniero MÁ, Agostini E, Smichowski PN (2016) Biological substrates: green alternatives in trace elemental preconcentration and speciation analysis. TrAC Trends Anal Chem 80:531–546

    Article  CAS  Google Scholar 

  19. Reddad Z, Gerente C, Andres Y, Cloirec PL (2003) Mechanisms of Cr (III) and Cr (VI) removal from aqueous solutions by sugar beet pulp. Environ Technol 24(2):257–264

    Article  CAS  Google Scholar 

  20. Al-Othman ZA, Ali R, Naushad M (2012) Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem Eng J 184:238–247

    Article  CAS  Google Scholar 

  21. Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259

    Article  CAS  Google Scholar 

  22. Suksabye P, Thiravetyan P (2012) Cr (VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J Environ Manag 102:1–8

    Article  CAS  Google Scholar 

  23. Beker U, Ganbold B, Dertli H, Gülbayir DD (2010) Adsorption of phenol by activated carbon: influence of activation methods and solution pH. Energy Convers Manag 51(2):235–240

    Article  CAS  Google Scholar 

  24. Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160(2–3):576–581. https://doi.org/10.1016/j.jhazmat.2008.03.028

    Article  CAS  Google Scholar 

  25. Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpää M (2018) Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review. Chemosphere 204:413–430

    Article  CAS  Google Scholar 

  26. Worch E (2021) Adsorption technology in water treatment. de Gruyter

    Book  Google Scholar 

  27. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:3039817

    Article  Google Scholar 

  28. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. solids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  29. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6(1):14–22

    Article  Google Scholar 

  30. Guo X, Wang J (2019) Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq 296:111850

    Article  CAS  Google Scholar 

  31. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  32. Heraldy E, Hidayat Y, Firdaus M (2016) The Langmuir isotherm adsorption equation: the monolayer approach. Mater Sci Eng Conf Ser 107:012067

    Article  Google Scholar 

  33. Al-Ghouti MA, Da'ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383

    Article  CAS  Google Scholar 

  34. Zeldowitsch J (1934) Adsorption site energy distribution. Acta Phys Chim URSS 1(1):961–973

    Google Scholar 

  35. Vadi M, Mansoorabad AO, Mohammadi M, Rostami N (2013) Investigation of Langmuir, Freundlich and Temkin adsorption isotherm of tramadol by multi-wall carbon nanotube. Asian J Chem 25(10):5467

    Article  CAS  Google Scholar 

  36. Araújo CS, Almeida IL, Rezende HC, Marcionilio SM, Léon JJ, de Matos TN (2018) Elucidation of mechanism involved in adsorption of pb (II) onto Lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J 137:348–354

    Article  Google Scholar 

  37. Brunauer S, Emmett P, Teller E (1938) BET equation. J Am Soc 60:809–815

    Google Scholar 

  38. Ocampo-Perez R, Leyva-Ramos R, Alonso-Davila P, Rivera-Utrilla J, Sanchez-Polo M (2010) Modeling adsorption rate of pyridine onto granular activated carbon. Chem Eng J 165(1):133–141

    Article  CAS  Google Scholar 

  39. Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  40. Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504

    Article  CAS  Google Scholar 

  41. Chen H, Dai G, Zhao J, Zhong A, Wu J, Yan H (2010) Removal of copper (II) ions by a biosorbent—Cinnamomum camphora leaves powder. J Hazard Mater 177(1–3):228–236

    Article  CAS  Google Scholar 

  42. Chen S, Qin C, Wang T, Chen F, Li X, Hou H et al (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74

    Article  CAS  Google Scholar 

  43. Worch E (2012) Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter

    Book  Google Scholar 

  44. Biswas S, Mishra U (2015) Continuous fixed-bed column study and adsorption modeling: removal of lead ion from aqueous solution by charcoal originated from chemical carbonization of rubber wood sawdust. J Chem 2015:907379

    Google Scholar 

  45. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9(3):45

    Article  Google Scholar 

  46. Hodaifa G, Alami SBD, Ochando-Pulido J, Víctor-Ortega M (2014) Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves. Ecol Eng 73:270–275

    Article  Google Scholar 

  47. Verduzco-Navarro IP, Rios-Donato N, Jasso-Gastinel CF, Martínez-Gómez ÁJ, Mendizábal E (2020) Removal of Cu (II) by fixed-bed columns using Alg-Ch and Alg-ChS hydrogel beads: effect of operating conditions on the mass transfer zone. Polymers 12(10):2345

    Article  CAS  Google Scholar 

  48. Dotto GL, Salau NPG, Piccin JS, Cadaval TRSA, de Pinto LAA (2017) Adsorption kinetics in liquid phase: modeling for discontinuous and continuous systems. In: Adsorption processes for water treatment and purification. Springer, pp 53–76

    Chapter  Google Scholar 

  49. Liu J, Yan Y, Zhang H (2011) Adsorption dynamics of toluene in composite bed with microfibrous entrapped activated carbon. Chem Eng J 173(2):456–462

    Article  CAS  Google Scholar 

  50. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2(1):239–259

    Article  CAS  Google Scholar 

  51. Liu S, Ding Y, Li P, Diao K, Tan X, Lei F et al (2014) Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N, N-dimethyl dehydroabietylamine oxide. Chem Eng J 248:135–144

    Article  CAS  Google Scholar 

  52. Feng N-c, Wei F, Zhu M-L, Guo X-Y (2018) Adsorption of Cd2+ in aqueous solutions using KMnO4-modified activated carbon derived from astragalus residue. Trans Nonferrous Metals Soc China 28(4):794–801

    Article  CAS  Google Scholar 

  53. An Q, Jiang Y-Q, Nan H-Y, Yu Y, Jiang J-N (2019) Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism. Chemosphere 214:846–854

    Article  CAS  Google Scholar 

  54. El-Sayed M, Nada AA (2017) Polyethylenimine− functionalized amorphous carbon fabricated from oil palm leaves as a novel adsorbent for Cr (VI) and Pb (II) from aqueous solution. J Water Process Eng 16:296–308

    Article  Google Scholar 

  55. Li B, Wang Q, Guo J-Z, Huan W-W, Liu L (2018) Sorption of methyl orange from aqueous solution by protonated amine modified hydrochar. Bioresour Technol 268:454–459

    Article  CAS  Google Scholar 

  56. Seliem MK, Mobarak M (2019) Cr (VI) uptake by a new adsorbent of CTAB–modified carbonized coal: experimental and advanced statistical physics studies. J Mol Liq 294:111676

    Article  CAS  Google Scholar 

  57. Reddy DHK, Seshaiah K, Reddy A, Lee S (2012) Optimization of Cd (II), Cu (II) and Ni (II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydr Polym 88(3):1077–1086

    Article  CAS  Google Scholar 

  58. Usha J (2015) Green sorption-an assessment of modified Michelia Champaca leaves in chromium removal from aqueous solutions. Int J ChemTech Res 8(2):501–507

    Google Scholar 

  59. Kamal MHMA, Azira WMKWK, Kasmawati M, Haslizaidi Z, Saime WNW (2010) Sequestration of toxic Pb (II) ions by chemically treated rubber (Hevea brasiliensis) leaf powder. J Environ Sci 22(2):248–256

    Article  CAS  Google Scholar 

  60. Xu Z, Yuan Z, Zhang D, Chen W, Huang Y, Zhang T et al (2018) Highly mesoporous activated carbon synthesized by pyrolysis of waste polyester textiles and MgCl2: physiochemical characteristics and pore-forming mechanism. J Clean Prod 192:453–461

    Article  CAS  Google Scholar 

  61. Novais SV, Zenero MDO, Tronto J, Conz RF, Cerri CEP (2018) Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. J Environ Manag 214:36–44

    Article  CAS  Google Scholar 

  62. Mirzaei N, Hadi M, Gholami M, Fard RF, Aminabad MS (2016) Sorption of acid dye by surfactant modificated natural zeolites. J Taiwan Inst Chem Eng 59:186–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Islamic Azad University Rasht branch, Iran, for their valuable guidance, encouragement, and tremendous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Alizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alizadeh, O., Hamidi, D. (2022). Cost-Effective Adsorbents for Reduction of Conventional and Emerging Pollutants in Modified Natural Wastewater Treatment. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 117. Springer, Cham. https://doi.org/10.1007/698_2022_865

Download citation

Publish with us

Policies and ethics