Skip to main content

Air–Sea Interaction: Heat and Fresh-Water Fluxes in the Aegean Sea

  • Chapter
  • First Online:
The Aegean Sea Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 127))

Abstract

The Aegean Sea is an intriguing sub-basin of the Mediterranean, due to (a) its capability to produce large amounts of very dense water, temporarily becoming the major producer of Eastern Mediterranean Bottom Water (recorded during the EMT period) and (b) due to its direct connection with the Black Sea that supplies the Aegean Sea with light, low-salinity waters which contribute buoyancy to the surface layers, and potentially control local convection processes. Thus, a similarity with the North Atlantic rises, in the sense of gradually increased stratification due to the addition of low-salinity surface waters, in an area capable to produce very dense waters, and thus possibly turning the North Aegean to a natural laboratory for studying such intriguing processes. The buoyancy exchanges with the atmosphere over the Aegean basin are partially controlled by the buoyancy gain and the subsequent formation of a shallow surface layer of the modified Black Sea waters. In this chapter, we examine the characteristics and variability of the heat and freshwater and the overall buoyancy fluxes with the exchanges with the atmosphere, focusing on the potential role of the interaction with the Black Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zodiatis G (1994) Advection of Black Sea water in the North Aegean Sea. Glob Atmos Ocean Syst 2:41–60

    Google Scholar 

  2. Zervakis V, Georgopoulos D (2002) Hydrology and circulation in the North Aegean (eastern Mediterranean) throughout 1997 and 1998. https://doi.org/10.12681/mms.254

  3. Beşiktepe ŞT (2003) Density currents in the two-layer flow: an example of Dardanelles outflow. Oceanol Acta 26:243–253. https://doi.org/10.1016/S0399-1784(03)00015-X

    Article  Google Scholar 

  4. Olson DB, Kourafalou VH, Johns WE et al (2007) Aegean surface circulation from a satellite-tracked drifter array. J Phys Oceanogr 37:1898–1917. https://doi.org/10.1175/JPO3028.1

    Article  Google Scholar 

  5. Skliris N, Mantziafou A, Sofianos S, Gkanasos A (2010) Satellite-derived variability of the Aegean Sea ecohydrodynamics. Cont Shelf Res 30:403–418. https://doi.org/10.1016/j.csr.2009.12.012

    Article  Google Scholar 

  6. Androulidakis YS, Krestenitis YN, Psarra S (2017) Coastal upwelling over the North Aegean Sea: observations and simulations. Cont Shelf Res 149:32–51. https://doi.org/10.1016/j.csr.2016.12.002

    Article  Google Scholar 

  7. Mamoutos I, Zervakis V, Tragou E et al (2017) The role of wind-forced coastal upwelling on the thermohaline functioning of the North Aegean Sea. Cont Shelf Res 149:52–68. https://doi.org/10.1016/j.csr.2017.05.009

    Article  Google Scholar 

  8. Poulos SE, Drakopoulos PG, Collins MB (1997) Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (eastern Mediterranean): an overview. J Mar Syst 13:225–244

    Article  Google Scholar 

  9. Bakun A, Agostini VN (2001) Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci Mar 65. https://doi.org/10.3989/scimar.2001.65n3243

  10. Papadopoulos A, Varlas G (2020) Weather systems affecting the meteorological conditions over the Aegean Sea. Springer, Berlin, pp 1–25

    Google Scholar 

  11. Anagnostopoulou C, Zanis P, Katragkou E et al (2014) Recent past and future patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42:1819–1836. https://doi.org/10.1007/s00382-013-1936-0

    Article  Google Scholar 

  12. Nielsen JN (1912) Hydrography of the Mediterranean and adjacent waters. In: Schmidt J (ed) Report of the Danish oceanographic expedition, 1908–1910 to the Mediterranean and adjacent waters, vol vol 1. Andr. Fred Høst & Søn, Copenhagen, pp 72–191

    Google Scholar 

  13. Theocharis A, Georgopoulos D, Lascaratos A, Nittis K (1993) Water masses and circulation in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean and Northwest Levantine, 1986-1987. Deep Res Part II 40:1121–1142. https://doi.org/10.1016/0967-0645(93)90064-T

    Article  Google Scholar 

  14. Malanotte-Rizzoli P, Manca BB, D’Alcalà MR et al (1997) A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-phase I. Prog Oceanogr 39:153–204. https://doi.org/10.1016/S0079-6611(97)00013-X

    Article  Google Scholar 

  15. Roether W, Klein B, Manca BB et al (2007) Transient eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog Oceanogr 74:540–571. https://doi.org/10.1016/j.pocean.2007.03.001

    Article  Google Scholar 

  16. Bunker AF, Charnock H, Goldsmith RA (1982) A note on the heat balance of the Mediterranean and Red Seas. J Mar Res 40:73–84

    Google Scholar 

  17. May RW (1983) Climatological flux estimated in the Mediterranean Sea, vol 2: air-sea fluxes. NORDA Rep. 58, Nav. Ocen. Res. Dev. Activ., NSTL Station, Mississipi

    Google Scholar 

  18. Garrett C, Outerbridge R, Thompson K (1993) Interannual variability in Mediterranean heat and buoyancy fluxes. J Clim 6:900–910

    Article  Google Scholar 

  19. Slutz RJ, Lubker SJ, Hiscox JD et al (1985) Comprehensive ocean-atmosphere data set; release 1

    Google Scholar 

  20. Vervatis VD, Sofianos SS, Skliris N et al (2013) Mechanisms controlling the thermohaline circulation pattern variability in the Aegean-Levantine region. A hindcast simulation (1960-2000) with an eddy resolving model. Deep Res Part I Oceanogr Res Pap 74:82–97. https://doi.org/10.1016/j.dsr.2012.12.011

    Article  Google Scholar 

  21. Petalas S, Mamoutos I, Tragou E, Zervakis V (2019) A 30-year hindcast of the interconnected eastern Mediterranean – Black Sea system: a first step towards climate projections for the Aegean Sea. Geophys Res Abstr 21:EGU2019-13821

    Google Scholar 

  22. Haidvogel DB, Arango HG, Hedstrom K et al (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Ocean 32:239–281. https://doi.org/10.1016/S0377-0265(00)00049-X

    Article  Google Scholar 

  23. Shchepetkin AF, Mcwilliams JC (1998) Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon Weather Rev 126:1541–1580. https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2

    Article  Google Scholar 

  24. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404. https://doi.org/10.1016/J.OCEMOD.2004.08.002

    Article  Google Scholar 

  25. Pinardi N, Allen I, Demirov E et al (2003) The Mediterranean ocean forecasting system: first phase of implementation (1998–2001). Ann Geophys 21:3–20. https://doi.org/10.5194/angeo-21-3-2003

    Article  Google Scholar 

  26. European Centre for Medium-Range Weather Forecast – ECMWF (2009) ERA-Interim project. In: Res. Data Arch. Natl. Cent. Atmos. Res. Comput. In-formation Syst. Lab. Boulder, Color. https://doi.org/10.5065/D6CR5RD9. Accessed 19 Jan 2018

  27. Donnelly C, Andersson JCM, Arheimer B (2016) Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol Sci J 61:255–273. https://doi.org/10.1080/02626667.2015.1027710

    Article  Google Scholar 

  28. Sevault F, Somot S, Alias A et al (2014) A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A Dyn Meteorol Oceanogr 66:23967. https://doi.org/10.3402/tellusa.v66.23967

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Vassilis Zervakis for his valuable comments on the manuscript. The numerical simulations were performed with computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility – ARIS – under project ID petalas-EMBS2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Tragou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tragou, E., Petalas, S., Mamoutos, I. (2022). Air–Sea Interaction: Heat and Fresh-Water Fluxes in the Aegean Sea. In: Anagnostou, C.L., Kostianoy, A.G., Mariolakos, I.D., Panayotidis, P., Soilemezidou, M., Tsaltas, G. (eds) The Aegean Sea Environment. The Handbook of Environmental Chemistry, vol 127. Springer, Cham. https://doi.org/10.1007/698_2021_841

Download citation

Publish with us

Policies and ethics