Skip to main content

Abiotic and Biological Technologies for the Remediation of Phenylurea Herbicides in Soils

  • Chapter
  • First Online:
Pesticides in Soils

Abstract

Phenylurea herbicides (PUHs) are reported to be amongst the most extensively used herbicides in agriculture for pre- and post-emergence control of weeds and mosses in a wide variety of crops. Most of the PUHs have been forbidden in some European countries due to their presence in water and soil, which leads to serious environmental and public health problems in a wide variety of organisms, including humans. This review gives an overview of abiotic and biological technologies used for the remediation of soils contaminated by PUHs, including their limitations and advantages. PUHs present from low to moderate adsorption to soils, the organic matter content being the main influencing factor. For this reason, the majority of the remediation studies in soils are based on the most hydrophobic PUHs, diuron and linuron. The degradation of PUHs in the environment is primarily considered to be due to microbial transformation, and most of the techniques developed for soils are based on bioremediation, which can be enhanced through biostimulation and bioaugmentation processes, and also by the addition of solubilizing agents to increase PUHs bioavailability. But also, abiotic processes have to be considered, remarkable are those that are based on advanced oxidation processes (AOPs), widely used in the decontamination of PUHs in water, but which can be considered as emerging technologies for soils tested only at lab scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ccanccapa A, Masiá A, Navarro-Ortega A, Picó Y, Barceló D (2016) Pesticides in the Ebro River basin: occurrence and risk assessment. Environ Pollut 211:414–424. https://doi.org/10.1016/j.envpol.2015.12.059

    Article  CAS  Google Scholar 

  2. Shao Y, Chen Z, Hollert H, Zhou S, Deutschmann B, Seiler T (2019) Toxicity of 10 organic micropollutants and their mixture: implications for aquatic risk assessment. Sci Tot Environ 666:1273–1282. https://doi.org/10.1016/j.scitotenv.2019.02.047

    Article  CAS  Google Scholar 

  3. Giaccomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032. https://doi.org/10.1016/j.chemosphere.2004.04.061

    Article  CAS  Google Scholar 

  4. Fenoll J, Sabatera P, Navarro G, Pérez-Lucas G, Navarro S (2013) Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: intermediates and degradation pathways. J Hazard Mat 244–245:370–379. https://doi.org/10.1016/j.jhazmat.2012.11.055

    Article  CAS  Google Scholar 

  5. Hussain S, Arshad M, Springael D, Sørensen SR, Bending GD, Devers-Lamrani M, Maqbool Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45(18):1947–1998. https://doi.org/10.1080/10643389.2014.1001141

    Article  CAS  Google Scholar 

  6. ElGouzi S, Mingorance MD, Draoui K, Chtoun EH, Peña A (2012) Assessment of phenylurea herbicides sorption on various Mediterranean soils affected by irrigation with wastewater. Chemosphere 89:334–339. https://doi.org/10.1016/j.chemosphere.2012.04.051

    Article  CAS  Google Scholar 

  7. Langeron J, Sayen S, Couderchet M, Guillon E (2014) Leaching potential of phenylurea herbicides in a calcareous soil: comparison of column elution and batch studies. Environ Sci Pollut Res 21:4906–4913. https://doi.org/10.1007/s11356-012-1244-y

    Article  CAS  Google Scholar 

  8. Burant A, Selbig W, Furlong ET, Higgins CP (2018) Trace organic contaminants in urban runoff: associations with urban land-use. Environ Pollut 242:2068–2077. https://doi.org/10.1016/j.envpol.2018.06.066

    Article  CAS  Google Scholar 

  9. Morillo E, Undabeytia T, Cabrera A, Villaverde J, Maqueda C (2004) Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. J Agric Food Chem 52:884–890. https://doi.org/10.1021/jf035026z

    Article  CAS  Google Scholar 

  10. Maqueda C, Undabeytia T, Villaverde J, Morillo E (2017) Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci Tot Environ 593–594:787–795. https://doi.org/10.1016/j.scitotenv.2017.03.202

    Article  CAS  Google Scholar 

  11. Ahangar AE, Smernik RJ, Kookama RS, Chittleborough DJ (2008) Clear effects of soil organic matter chemistry as determined by NMR spectroscopy and the sorption of diuron. Chemosphere 70:1156–1160. https://doi.org/10.1016/j.chemosphere.2007.08.054

    Article  CAS  Google Scholar 

  12. Kasozi GN, Nkedi-Kizza P, Agyin-Birikorang S, Zimmerman AR (2010) Characterization of adsorption and degradation of diuron in carbonatic and noncarbocatic soils. J Agric Food Chem 58:1055–1061. https://doi.org/10.1021/jf902792p

    Article  CAS  Google Scholar 

  13. Smernik RJ, Kookana RS (2015) The effects of organic matter–mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. Chemosphere 119:99–104. https://doi.org/10.1016/j.chemosphere.2014.05.066

    Article  CAS  Google Scholar 

  14. Inoue MH, Oliveira RS, Regitano JB, Tormena CA, Constantin J, Tornisielo VL (2006) Sorption–desorption of atrazine and diuron in soils from southern Brazil. J Environ Sci Health Part B 41:605–621. https://doi.org/10.1080/03601230600701767

    Article  CAS  Google Scholar 

  15. Carbo L, Martins EL, Dores EFGC, Spadotto CA, Weber OLS, De-Lamonica-Freire EM (2007) Acetamiprid, carbendazim, diuron and thiamethoxam sorption in two Brazilian tropical soils. J Environ Sci Health Part B 42:499–507. https://doi.org/10.1080/03601230701389439

    Article  CAS  Google Scholar 

  16. Rubio-Bellido M, Morillo E, Villaverde J (2016) Effect of addition of HPBCD on diuron adsorption–desorption, transport and mineralization in soils with different properties. Geoderma 265:196–203. https://doi.org/10.1016/j.geoderma.2015.11.022

    Article  CAS  Google Scholar 

  17. Agbaogun BK, Fischer K (2020) Adsorption of phenylurea herbicides by tropical soils. Environ Monit Asses 192:212. https://doi.org/10.1007/s10661-020-8160-2

    Article  CAS  Google Scholar 

  18. Ghafoor A, Jarvis NJ, Stenstrom J (2012) Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pest Manag Sci 69:919–929. https://doi.org/10.1002/ps.3453

    Article  CAS  Google Scholar 

  19. Blondel A, Langeron J, Sayen S, Hénon E, Couderchet M, Guillon E (2013) Molecular properties affecting adsorption coefficient of of phenylurea herbicides. Environ Sci Pollut Res 20:6266–6281. https://doi.org/10.1007/s11356-013-1654-5

    Article  CAS  Google Scholar 

  20. Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E, Sánchez-González S, Andrades MS, Sánchez-Martín MJ (2017) Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Tot Environ 609:161–171. https://doi.org/10.1016/j.scitotenv.2017.07.113

    Article  CAS  Google Scholar 

  21. Papadakis EN, Tsaboula A, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2018) Pesticides in the rivers and streams of two river basins in northern Greece. Sci Tot Environ 624:732–743. https://doi.org/10.1016/j.scitotenv.2017.12.074

    Article  CAS  Google Scholar 

  22. Boscolo CNP, Pereira TSB, Batalhão IG, Dourado PLR, Schlenk D, de Almeida EA (2018) Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus). Chemosphere 191:832–838. https://doi.org/10.1016/j.chemosphere.2017.10.009

    Article  CAS  Google Scholar 

  23. Tasca AL, Fletcher A (2018) State of the art of the environmental behaviour and removal techniques of the endocrine disruptor 3,4-dichloroaniline. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 53:260–270. https://doi.org/10.1080/10934529.2017.1394701

    Article  CAS  Google Scholar 

  24. Marlatt VL, Martyniuk CJ (2017) Biological responses to phenylurea herbicides in fish and amphibians: new directions for characterizing mechanisms of toxicity. Comp Biochem Physiol Part C Toxicol Pharmacol 194:9–21. https://doi.org/10.1016/j.cbpc.2017.01.002

    Article  CAS  Google Scholar 

  25. Sepp K, Molnár Z, László AM, Alapi T, Tóth L, Serester A, Valkusz Z, Gálfi M, Radács M (2019) Study of the potential endocrine-disrupting effects of phenylurea compounds on neurohypophysis cells in vitro. Int J Endocrinol 2019:1546131. https://doi.org/10.1155/2019/1546131

    Article  CAS  Google Scholar 

  26. Pereira TSB, Boscolo CNP, da Silva DGH, Batlouni SR, Schlenk D, de Almeida EA (2015) Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquat Toxicol 164:10–15. https://doi.org/10.1016/j.aquatox.2015.04.013

    Article  CAS  Google Scholar 

  27. USEPA (2015) EDSP: Weight of evidence analysis of potential interaction with the estro-gen androgen or thyroid pathways, Chemical: Linuron. Office of Pesticide Programs, Office of Science Coordination and Policy

    Google Scholar 

  28. Huovinen M, Loikkanen J, Naarala J, Vähäkangas K (2015) Toxicity of diuron in human cancer cells. Toxicol Vitr 29:1577–1586. https://doi.org/10.1016/j.tiv.2015.06.013

    Article  CAS  Google Scholar 

  29. Mohammed AM, Huovinen M, Vähäkangas KH (2020) Toxicity of diuron metabolites in human cells. Environ Toxicol Pharmacol 78:103409. https://doi.org/10.1016/j.etap.2020.103409

    Article  CAS  Google Scholar 

  30. PPDB (2018) The pesticide properties database (PPDB) developed by the Agriculture and Environment Research Unit (AERU). University of Hertfordshire, Hatfield. https://sitem.herts.ac.uk/aeru/iupac/. Accessed 31 Apr 2021

  31. European Commission, Water Framework Directive. Priority substances and certain other pollutants according to annex II of directive 2008/105/EC. List of priority substances in the field of water policy. Accessed 30 Jan 2021

    Google Scholar 

  32. Acero JL, Real FJ, Benitez FJ, Gonzalez M (2007) Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. J Chem Technol Biotechnol 82:214–222. https://doi.org/10.1002/jctb.1660

    Article  CAS  Google Scholar 

  33. Vicente F, Santos A, Romero A, Rodriguez S (2011) Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chem Eng J 170:127–135. https://doi.org/10.1016/j.cej.2011.03.042

    Article  CAS  Google Scholar 

  34. Chusaksri S, Sutthivaiyakit S, Sedlak DL, Sutthivaiyakit P (2012) Reactions of phenylurea compounds with aqueous chlorine: implications for herbicide transformation during drinking water disinfection. J Hazard Mat 209-210:484–491. https://doi.org/10.1016/j.jhazmat.2012.01.063

    Article  CAS  Google Scholar 

  35. Xiang H, Shao Y, Gao N, Lu X, An N, Tan C, Zheng Z (2018) Degradation of diuron by chlorination and UV/chlorine process: degradation kinetics and the formation of disinfection by-products. Sep Purif Technol 202:365–372. https://doi.org/10.1016/j.seppur.2018.03.073

    Article  CAS  Google Scholar 

  36. Loccufier E, Deventer K, Manhaeghe D, Van Hulle SWH, D’Hooge DR, De Buysser K, De Clerck K (2020) Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chem Eng J 387:124143. https://doi.org/10.1016/j.cej.2020.124143

    Article  CAS  Google Scholar 

  37. Tian FX, Xu B, Zhang TY, Gao NY (2014) Degradation of phenylurea herbicides by chlorine dioxide and formation of disinfection by-products during subsequent chlor(am)ination. Chem Eng J 258:210–217. https://doi.org/10.1016/j.cej.2014.07.094

    Article  CAS  Google Scholar 

  38. Chen WH, Young TM (2008) NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environ Sci Technol 42:1072–1077. https://doi.org/10.1021/es072044e

    Article  CAS  Google Scholar 

  39. Benitez FJ, Real FJ, Acero JL, Garcia C (2007) Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: rate constants and model predictions. Water Res 41:4073–4084. https://doi.org/10.1016/j.watres.2007.05.041

    Article  CAS  Google Scholar 

  40. Solis RR, Rivas FJ, Martínez-Piernas A, Agüera A (2016) Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chem Eng J 292:72e81. https://doi.org/10.1016/j.cej.2016.02.005

    Article  CAS  Google Scholar 

  41. Wang W, Yang P, Guo Y, Ji H, Liang F (2021) Phenylurea herbicide degradation and N-nitrosodimethylamine formation under various oxidation conditions: relationships and transformation pathways. Environ Pollut 269:116122. https://doi.org/10.1016/j.envpol.2020.116122

    Article  CAS  Google Scholar 

  42. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598. https://doi.org/10.1016/j.cej.2015.09.001

    Article  CAS  Google Scholar 

  43. Mile V, Harsányi I, Kovács K, Földes T, Takács E, Wojnárovits L (2017) Hydroxyl radical induced transformation of phenylurea herbicides: a theoretical study. Radiat Phys Chem 132:16–21. https://doi.org/10.1016/j.radphyschem.2016.11.003

    Article  CAS  Google Scholar 

  44. Diaw PA, Oturan N, Seye MDG, Coly A, Tine A, Aaron JJ, Oturan MA (2017) Oxidative degradation and mineralization of the phenylurea herbicide fluometuron in aqueous media by the electro-Fenton process. Sep Purif Technol 186:197–206. https://doi.org/10.1016/j.seppur.2017.06.005

    Article  CAS  Google Scholar 

  45. Ren X, Liu R, Zhang S, Zhang J (2020) The theoretical investigation of OH-induced degradation mechanisms of isoproturon. J Mol Mod 26:232. https://doi.org/10.1007/s00894-020-04503-4

    Article  CAS  Google Scholar 

  46. López-Munoz MJ, Revilla A, Aguado J (2013) Heterogeneous photocatalytic degradation of isoproturon in aqueous solution: experimental design and intermediate products analysis. Catal Today 209:99–107. https://doi.org/10.1016/j.cattod.2012.11.017

    Article  CAS  Google Scholar 

  47. Eissa F, El-Hoda Zidan N, Sakugawa H (2015) Photodegradation of the herbicide Diuron in water under simulated sunlight. Geochem J 49:309–318. https://doi.org/10.2343/geochemj.2.0358

    Article  CAS  Google Scholar 

  48. Zeng J, Yang H, Deng J, Liu H, Yi X, Yang L, Yi B (2015) Common characteristic assessments of transformation mechanism for substituted phenylurea herbicides by reactive oxygen species (ROSs) during photocatalytic process. Chem Eng J 273:519–526. https://doi.org/10.1016/j.cej.2015.03.027

    Article  CAS  Google Scholar 

  49. López MC, Fernández MI, Rodríguez S, Santaballa JA, Steenken S, Vulliet E (2005) Mechanisms of direct and TiO2-photocatalysed UV degradation of phenylurea herbicides. ChemPhysChem 6:2064–2074. https://doi.org/10.1002/cphc.200500004

    Article  CAS  Google Scholar 

  50. Sharma MVP, Durgakumari V, Subrahmanyam M (2008) Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems. J Hazard Mater 160:568–575. https://doi.org/10.1016/j.jhazmat.2008.03.042

    Article  CAS  Google Scholar 

  51. Katsumata H, Sada M, Nakaoka Y, Kaneco S, Suzuki T, Ohta K (2009) Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J Hazard Mater 171:1081–1087. https://doi.org/10.1016/j.jhazmat.2009.06.110

    Article  CAS  Google Scholar 

  52. Reddy PAK, Srinivas B, Kala P, Kumari VD, Subrahmanyam M (2011) Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Mater Res Bull 46:1766–1771. https://doi.org/10.1016/j.materresbull.2011.08.006

    Article  CAS  Google Scholar 

  53. Reddy PAK, Srinivas B, Durgakumari V, Subrahmanyam M (2012) Solar photocatalytic degradation of the herbicide isoproturon on a Bi-TiO2/zeolite photocatalyst. Toxicol Environ Chem 94:512–524. https://doi.org/10.1080/02772248.2011.654120

    Article  CAS  Google Scholar 

  54. Ruggieri F, Antonio D’Archivio A, Fanelli M, Santucci S (2011) Photocatalytic degradation of linuron in aqueous suspensions of TiO2. RSC Adv 1:611–618. https://doi.org/10.1039/c1ra00133g

    Article  CAS  Google Scholar 

  55. Revilla A, Aguado J, López-Muñoz MJ (2013) Heterogeneous photocatalytic degradation of isoproturon in aqueous solution: experimental design and intermediate products analysis. Catal Today 209:99–107. https://doi.org/10.1016/j.cattod.2012.11.017

    Article  CAS  Google Scholar 

  56. Verma A, Prakash NT, Toor AP (2014) An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: durability studies. Chemosphere 109:7–13. https://doi.org/10.1016/j.chemosphere.2014.02.051

    Article  CAS  Google Scholar 

  57. García-Muñoz P, Carbajo J, Faraldos M, Bahamonde A (2014) Photocatalytic degradation of phenol and isoproturon: effect of adding an activated carbon to titania catalyst. J Photochem Photobiol A Chem 287:8–18. https://doi.org/10.1016/j.jphotochem.2014.05.002

    Article  CAS  Google Scholar 

  58. Espino-Estévez MR, Fernández-Rodríguez C, González-Díaz OM, Araña J, Espinós JP, Ortega-Méndez JA, Doña-Rodríguez JM (2016) Effect of TiO2-Pd and TiO2-Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem Eng J 298:82–95. https://doi.org/10.1016/j.cej.2016.04.016

    Article  CAS  Google Scholar 

  59. Boucheloukh H, Remache W, Parrino F, Sehili T, Mechakra H (2017) The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study. Photochem Photobiol Sci 16:759–765. https://doi.org/10.1039/c6pp00441e

    Article  CAS  Google Scholar 

  60. Fabbri D, Minella M, Maurino V, Minero C, Vione D (2015) Photochemical transformation of phenylurea herbicides in surface waters: a model assessment of persistence, and implications for the possible generation of hazardous intermediates. Chemosphere 119:601–607. https://doi.org/10.1016/j.chemosphere.2014.07.034

    Article  CAS  Google Scholar 

  61. Remucal CK (2014) The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environ Sci Process Impacts 16:628–653. https://doi.org/10.1039/c3em00549f

    Article  CAS  Google Scholar 

  62. Benitez FJ, Real FJ, Acero JL, Garcia C, Llanos EM (2007) Kinetics of phenylurea herbicides oxidation by Fenton and photo-Fenton processes. J Chem Technol Biotechnol 82:65–73. https://doi.org/10.1002/jctb.1638

    Article  CAS  Google Scholar 

  63. Mechakra H, Sehili T, Kribeche MA, Ayachi AA, Rossignol S, George C (2016) Use of natural iron oxide as heterogeneous catalyst in photo-Fenton-like oxidation of chlorophenylurea herbicide in aqueous solution: reaction monitoring and degradation pathways. J Photochem Photobiol A Chem 317:140–150. https://doi.org/10.1016/j.jphotochem.2015.11.019

    Article  CAS  Google Scholar 

  64. Diaw PA, Oturan N, Gaye Seye MD, Mbaye OMA, Mbaye M, Coly A, Aaron JJ, Oturan MA (2020) Removal of the herbicide monolinuron from waters by the electro-Fenton treatment. J Electroanalyt Chem 864:114087. https://doi.org/10.1016/j.jelechem.2020.114087

    Article  CAS  Google Scholar 

  65. Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135. https://doi.org/10.1016/j.cej.2011.03.072

    Article  CAS  Google Scholar 

  66. Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide contaminated soils. Sci Total Environ 586:576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020

    Article  CAS  Google Scholar 

  67. Edelahi M, Oturan N, Oturan M, Padellec Y, Bermond A, El-Kacemi K (2003) Degradation of diuron by the electro-Fenton process. Environ Chem Lett 1:233–236. https://doi.org/10.1007/s10311-003-0052-5

    Article  CAS  Google Scholar 

  68. Oturan N, Trajkovska S, Oturan MA, Couderchet M, Aaron JJ (2008) Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”. Chemosphere 73:1550–1556. https://doi.org/10.1016/j.chemosphere.2008.07.082

    Article  CAS  Google Scholar 

  69. Oturan MA, Edelahi MC, Oturan N, El-Kacemi K, Aaron JJ (2010) Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process. Appl Catal B Environ 97:82–89. https://doi.org/10.1016/j.apcatb.2010.03.026

    Article  CAS  Google Scholar 

  70. Ghalwa NA, Hamada M, Abu Shawish HM, Shubair O (2016) Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arab J Chem 9:S821–S828. https://doi.org/10.1016/j.arabjc.2011.08.006

    Article  CAS  Google Scholar 

  71. Navarro S, Fenoll J, Vela N, Ruiz E, Navarro G (2011) Removal of ten pesticides from leaching water at pilot plant scale by photo-Fenton treatment. Chem Eng J 167:42–49. https://doi.org/10.1016/j.cej.2010.11.105

    Article  CAS  Google Scholar 

  72. Paterlini WC, Nogueira RF (2005) Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D. Chemosphere 58:1107–1116. https://doi.org/10.1016/j.chemosphere.2004.09.068

    Article  CAS  Google Scholar 

  73. Maldonado-Rubio MIM, Gernjak W, Alberola O, Galvez JB, Fernandez-Ibanez P, Rodriguez S (2006) Photo-Fenton degradation of alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol at solar pilot plant. Int J Environ Pollut 27:135–146. https://doi.org/10.1504/ijep.2006.010459

    Article  Google Scholar 

  74. Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobiko Y (2005) Degradation of linuron in aqueous solution by the photo-Fenton reaction. Chem Eng J 108:269–276. https://doi.org/10.1016/j.cej.2005.02.029

    Article  CAS  Google Scholar 

  75. Katsumata H, Kobayashi T, Kaneco S, Suzuki T, Ohta K (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chem Eng J 166:468–473. https://doi.org/10.1016/j.cej.2010.10.073

    Article  CAS  Google Scholar 

  76. Rao YF, Chu W (2009) A new approach to quantify the degradation kinetics of linuron with UV, ozonation and UV/O3 processes. Chemosphere 74:1444–1449. https://doi.org/10.1016/j.chemosphere.2008.12.012

    Article  CAS  Google Scholar 

  77. Rao YF, Chu W (2010) Degradation of linuron by UV, ozonation, and UV/O3 processes. Effect of anions and reaction mechanism. J Hazard Mater 180:514–523. https://doi.org/10.1016/j.jhazmat.2010.04.063

    Article  CAS  Google Scholar 

  78. Rosal R, Gonzalo MS, Rodriguez A, Perdigon-Melon JA, Garcia-Calvo E (2010) Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chem Eng J 165:806–812. https://doi.org/10.1016/j.cej.2010.10.020

    Article  CAS  Google Scholar 

  79. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  Google Scholar 

  80. Xiong XM, Sun B, Zhang J, Gao NY, Shen JM, Li JL, Guan XH (2014) Activating persulfate by Fe-0 coupling with weak magnetic field: performance and mechanism. Water Res 62:53–62. https://doi.org/10.1016/j.watres.2014.05.042

    Article  CAS  Google Scholar 

  81. Djebbar KE, Zertal A, Debbache N, Sehili T (2008) Comparison of Diuron degradation by direct UV photolysis and advanced oxidation processes. J Environ Manag 88:1505–1512. https://doi.org/10.1016/j.jenvman.2007.07.034

    Article  CAS  Google Scholar 

  82. Benitez J, Garcia C, Acero JL, Real FJ (2009) Removal of phenylurea herbicides from waters by using chemical oxidation treatments. World Acad Sci Eng Technol 58:673–680. https://doi.org/10.5281/zenodo.1078350

    Article  Google Scholar 

  83. Kovács K, Farkasa J, Veréb G, Aranya E, Simona G, Schrantz K, Dombi A, Hernádi K, Alapia T (2016) Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides. J Environ Sci Health Part B 51:205–214. https://doi.org/10.1080/03601234.2015.1120597

    Article  CAS  Google Scholar 

  84. Farkas J, Náfrádi M, Hlogyik T, Pravda BC, Schrantz K, Hernádi K, Alapi T (2018) Comparison of advanced oxidation processes in the decomposition of diuron and monuron. Efficiency, intermediates, electrical energy per order and the effect of various matrices. Environ Sci Water Res Technol 4:1345–1360. https://doi.org/10.1039/c8ew00202a

    Article  CAS  Google Scholar 

  85. Díaz-López M, García C, Garrido I, Navarro S, Vela N, Nicolás E, Fenoll J, Bastida F (2019) Solarization-based pesticide degradation results in decreased activity and biomass of the soil microbial community. Geoderma 354:113893. https://doi.org/10.1016/j.geoderma.2019.113893

    Article  CAS  Google Scholar 

  86. Navarro S, Bermejo S, Vela N, Hernández J (2009) Rate of loss of simazine, terbuthylazine, isoproturon, and methabenzthiazuron during soil solarization. J Agric Food Chem 57:6375–6382. https://doi.org/10.1021/jf901102b

    Article  CAS  Google Scholar 

  87. Fenoll J, Hellín P, Flores P, Lacasa A, Navarro S (2014) Solarization and biosolarization using organic wastes for the bioremediation of soil polluted with terbuthylazine and linuron residues. J Environ Manag 143:106–112. https://doi.org/10.1016/j.jenvman.2014.05.007

    Article  CAS  Google Scholar 

  88. Trubetskaya OE, Reznikova OI, Trubetskoi OA (2006) Humic substances as natural photoinducers degrading pesticides in the environment. Dokl Biol Sci 406:94–96. https://doi.org/10.1134/S0012496606010273

    Article  CAS  Google Scholar 

  89. Salvestrini S, Coppola E, Capasso S (2004) Determination of the microscopic rate constants for the hydrolysis of diuron in soil/water mixture. Chemosphere 55:333–337. https://doi.org/10.1016/j.chemosphere.2003.11.004

    Article  CAS  Google Scholar 

  90. Salvestrini S, Capasso S, Iovino P (2008) Catalytic effect of dissolved humic acids on the chemical degradation of phenylurea herbicides. Pest Manag Sci 64:768–774. https://doi.org/10.1002/ps.1556

    Article  CAS  Google Scholar 

  91. Salvestrini S (2013) Diuron herbicide degradation catalyzed by low molecular weight humic acid-like compounds. Environ Chem Lett 11:359–363. https://doi.org/10.1007/s10311-013-0415-5

    Article  CAS  Google Scholar 

  92. Rodrigo MA, Oturan MA, Oturan N (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114:8720–8745. https://doi.org/10.1021/cr500077e

    Article  CAS  Google Scholar 

  93. Higarashi MM, Jardim WF (2002) Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catal Today 76:201–207. https://doi.org/10.1016/S0920-5861(02)00219-5

    Article  CAS  Google Scholar 

  94. Liu Z, Gao Z, Lu X (2020) An integrated approach to remove PAHs from highly contaminated soil: electro-Fenton process and bioslurry treatment. Water Air Soil Pollut 231:314. https://doi.org/10.1007/s11270-020-04696-7

    Article  CAS  Google Scholar 

  95. Romero A, Santos A, Cordero T, Rodríguez-Mirasol J, Rosas JM, Vicente F (2011) Soil remediation by Fenton-like process: phenol removal and soil organic matter modification. Chem Eng J 170:36–43. https://doi.org/10.1016/j.cej.2011.03.022

    Article  CAS  Google Scholar 

  96. Cao M, Wang L, Wang L, Chen J, Lu X (2013) Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron. Chemosphere 90:2303–2308. https://doi.org/10.1016/j.chemosphere.2012.09.098

    Article  CAS  Google Scholar 

  97. Vicente F, Santos A, Sagüillo EG, Martínez-Villacorta ÁM, Rosas JM, Romero A (2012) Diuron abatement in contaminated soil using Fenton-like process. Chem Eng J 183:357–364. https://doi.org/10.1016/j.cej.2012.01.010

    Article  CAS  Google Scholar 

  98. Rosas JM, Vicente F, Saguillo EG, Santos A, Romero A (2014) Remediation of soil polluted with herbicides by Fenton-like reaction: kinetic model of diuron degradation. Appl Catal B Environ 144:252–260. https://doi.org/10.1016/j.apcatb.2013.07.011

    Article  CAS  Google Scholar 

  99. Liu Y, Lang J, Wang T, Jawad A, Wang H, Khan A, Chen Z, Chen Z (2018) Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: different reactive species comparing with activation by homogenous Fe(II). Environ Sci Pollut Res 25:26394–26404. https://doi.org/10.1007/s11356-018-2637-3

    Article  CAS  Google Scholar 

  100. Chen T, Yavuz BM, Delgado AG, Montoya G, Winkle DV, Zuo Y, Kamath R, Westerhoff P, Krajmalnik-Brown R, Rittmann BE (2018) Impacts of moisture content during ozonation of soils containing residual petroleum. J Hazard Mat 344:1101–1108. https://doi.org/10.1016/j.jhazmat.2017.11.060

    Article  CAS  Google Scholar 

  101. Tamadoni A, Qaderi F (2019) Optimization of soil remediation by ozonation for PAHs contaminated soils. Ozone Sci Eng 41:454–472. https://doi.org/10.1080/01919512.2019.1615865

    Article  CAS  Google Scholar 

  102. Li R, Dörfler U, Munch JC, Schroll R (2017) Enhanced degradation of isoproturon in an agricultural soil by a Sphingomonas sp. strain and a microbial consortium. Chemosphere 168:1169–1176. https://doi.org/10.1016/j.chemosphere.2016.10.084

    Article  CAS  Google Scholar 

  103. Villaverde J, Rubio-Bellido M, Merchán F, Morillo E (2017) Bioremediation of Diuron contaminated soils by a novel degrading microbial consortium. J Environ Manag 188:379–386. https://doi.org/10.1016/j.jenvman.2016.12.020

    Article  CAS  Google Scholar 

  104. Muendo BM, Shikuku VO, Lalah JO, Getenga JM, Wandiga SO, Rothballer M (2021) Enhanced degradation of diuron by two Bacillus species isolated from diuron contaminated sugarcane and pineapple-cultivated soils in Kenya. Appl Soil Ecol 157:103721. https://doi.org/10.1016/j.apsoil.2020.103721

    Article  Google Scholar 

  105. Chung N, Alexander M (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32(7):855–860. https://doi.org/10.1021/es970740g

    Article  CAS  Google Scholar 

  106. ElGouzi S, Draoui K, Chtounb EH, Mingorance MD, Peña A (2015) Changes in the persistence of two phenylurea herbicides in two Mediterranean soils under irrigation with low- and high-quality water: a laboratory approach. Sci Total Environ 538:16–22. https://doi.org/10.1016/j.scitotenv.2015.07.146

    Article  CAS  Google Scholar 

  107. Zhu X, Schroll R, Dörfler U, Chen B (2018) Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of “real non-extractable” Isoproturon residues. Ecotoxicol Environ Safe 149:182–189. https://doi.org/10.1016/j.ecoenv.2017.11.037

    Article  CAS  Google Scholar 

  108. Rubio-Bellido M, Madrid F, Morillo E, Villaverde J (2015) Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments. Sci Total Environ 502:699–705. https://doi.org/10.1016/j.scitotenv.2014.09.052

    Article  CAS  Google Scholar 

  109. Castillo-Diaz JM, Delgado-Moreno L, Núñez R, Nogales R, Romero E (2016) Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresour Technol 214:234–241. https://doi.org/10.1016/j.biortech.2016.04.105

    Article  CAS  Google Scholar 

  110. Vieublé Gonod L, El Arfaoui A, Benoit P (2016) Impact of spatial distribution of exogenous organic matter on mineralization and isoproturon fate in soil. Soil Biol Biochem 95:180–188. https://doi.org/10.1016/j.soilbio.2015.11.02

    Article  Google Scholar 

  111. Marín-Benito JM, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS (2019) Previous degradation study of two herbicides to simulate their fate in a sandy loam soil: effect of the temperature and the organic amendments. Sci Total Environ 653:1301–1310. https://doi.org/10.1016/j.scitotenv.2018.11.015

    Article  CAS  Google Scholar 

  112. Villaverde J, Posada-Baquero R, Rubio-Bellido M, Laiz L, Saiz-Jimenez C, Sánchez-Trujillo MA, Morillo E (2012) Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology. J Agric Food Chem 60(40):9941–9947. https://doi.org/10.1021/jf3021909

    Article  CAS  Google Scholar 

  113. Villaverde J, Rubio-Bellido M, Posada-Baquero R, Madrid F, Morillo E (2013) Hydroxypropyl-β-cyclodextrin-based extraction for diuron bioaccessibility in an artificially contaminated soil. Int J Environ Anal Chem 93:1620–1627. https://doi.org/10.1080/03067319.2013.814120

    Article  CAS  Google Scholar 

  114. Rubio-Bellido M, Morillo E, Villaverde J (2018) Assessment of soil diuron bioavailability to plants and microorganisms through non-exhaustive chemical extractions of the herbicide. Geoderma 312:130–138. https://doi.org/10.1016/j.geoderma.2017.09.031

    Article  CAS  Google Scholar 

  115. Sørensen SR, Ronen Z, Aamand J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67(12):5403–5409. https://doi.org/10.1128/AEM.67.12.5403-5409

    Article  Google Scholar 

  116. Sørensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74(8):2332–2340. https://doi.org/10.1128/AEM.02687-07

    Article  CAS  Google Scholar 

  117. Bending GD, Lincoln SD, Sørensen SR, Morgan JAW, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69(2):827–834. https://doi.org/10.1128/AEM.69.2.827-834.2003

    Article  CAS  Google Scholar 

  118. Dwivedi S, Singha BR, Al-Khedhairya AA, Musarrat J (2011) Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance. J Hazard Mater 185(2–3):938–944. https://doi.org/10.1016/j.jhazmat.2010.09.110

    Article  CAS  Google Scholar 

  119. Hussain S, Devers-Lamrani M, El Azhari N, Martin-Laurent F (2011) Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 22:637–650. https://doi.org/10.1007/s10532-010-9437-x

    Article  CAS  Google Scholar 

  120. Abbas N, Bhatti SH, Shahzad T, Mahmood F, Azeem F, Abbas F, Hussain S (2019) Spatial distribution of isoproturon dissipation in varying agricultural lands and characterization of an isoproturon degrading bacterial strain S29 from genus Sphingobium. Intl J Agric Biol 21:689–702. https://doi.org/10.17957/IJAB/15.0946

    Article  CAS  Google Scholar 

  121. Silambarasan S, Logeswari P, Ruiz A, Cornejo P, Kannan VR (2020) Influence of plant beneficial Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and improvement of Lactuca sativa growth. Environ Sci Pollut Res 27:35195–35207. https://doi.org/10.1007/s11356-020-09722-z

    Article  CAS  Google Scholar 

  122. Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12:e0182556. https://doi.org/10.1371/journal.pone.0182556

    Article  CAS  Google Scholar 

  123. Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686. https://doi.org/10.1016/S0038-0717(98)00156-4

    Article  CAS  Google Scholar 

  124. Villaverde J, Rubio-Bellido M, Lara-Moreno A, Merchan F, Morillo E (2018) Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere 193:118–125. https://doi.org/10.1016/j.chemosphere.2017.10.172

    Article  CAS  Google Scholar 

  125. Dellamatrice PM, Rosim Monteiro RT (2004) Isolation of diuron-degrading bacteria from treated soil. Braz Arch Biol Technol 47:999–1003. https://doi.org/10.1590/S1516-89132004000600020

    Article  Google Scholar 

  126. Liu J, Yang M, Wang Y, Qu L, Zhong G (2019) Enhanced diuron remediation by microorganism-immobilized silkworm excrement composites and their impact on soil microbial communities. J Hazard Mater 376:29–36. https://doi.org/10.1016/j.jhazmat.2019.05.014

    Article  CAS  Google Scholar 

  127. Locke MA, Zablotowicz RM, Steinriede RW, Kingery WL (2007) Degradation and sorption of fluometuron and metabolites in conservation tillage soils. J Agric Food Chem 55:844–851. https://doi.org/10.1021/jf062070g

    Article  CAS  Google Scholar 

  128. Morillo E, Maqueda C, Reinoso R, Undabeytia T (2002) Effect of two organic amendments on norflurazon retention and release by soils of different characteristics. Environ Sci Technol 36:4319–4325. https://doi.org/10.1021/es0200443

    Article  CAS  Google Scholar 

  129. Undabeytia T, Sánchez-Verdejo T, Morillo E, Maqueda C (2004) Effect of organic amendments on the retention and mobility of imazaquin in soils. J Agric Food Chem 52:4493–4500. https://doi.org/10.1021/jf0496043

    Article  CAS  Google Scholar 

  130. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375. https://doi.org/10.1016/j.envint.2011.06.003

    Article  CAS  Google Scholar 

  131. Romero E, Fernández-Bayo J, Castillo Díaz JM, Nogales R (2010) Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Appl Soil Ecol 44:198–204. https://doi.org/10.1016/j.apsoil.2009.12.006

    Article  Google Scholar 

  132. Fernández-Bayo JD, Nogales R, Romero E (2009) Effect of vermicompost from waste of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. J Agric Food Chem 57:5435–5442. https://doi.org/10.1021/jf900303j

    Article  CAS  Google Scholar 

  133. Marín-Benito JM, Herrero-Hernández E, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS (2014) Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci Total Environ 476–477:611–621. https://doi.org/10.1016/j.scitotenv.2014.01.052

    Article  CAS  Google Scholar 

  134. Grenni P, Caracciolo AB, Rodríguez-Cruz MS, Sánchez-Martín MJ (2009) Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Appl Soil Ecol 41:2–7. https://doi.org/10.1016/j.apsoil.2008.07.006

    Article  Google Scholar 

  135. Morillo E, Madrid F, Lara-Moreno A, Villaverde J (2020) Soil bioremediation by cyclodextrins. A review. Int J Pharm 591:119943. https://doi.org/10.1016/j.ijpharm.2020.119943

    Article  CAS  Google Scholar 

  136. Fenyvesi E, Gruiz K, Verstichel S, DeWilde B, Leitgib L, Csabai K (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60:1001–1008. https://doi.org/10.1016/j.chemosphere.2005.01.026

    Article  CAS  Google Scholar 

  137. Morillo E, Sánchez-Trujillo MA, Villaverde J, Madrid F, Undabeytia T (2014) Effect of contact time and the use of hydroxypropyl-β-cyclodextrin in the removal of fluorene and fluoranthene from contaminated soils. Sci Total Environ 496:144–154

    Article  CAS  Google Scholar 

  138. Ginés JM, Pérez-Martinez JI, Arias MJ, Moyano JR, Morillo E, Ruiz-Conde A, Sánchez-Soto PJ (1996) Inclusion of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) with β-cyclodextrin by different processing methods. Chemosphere 33:321–334. https://doi.org/10.1016/0045-6535(96)00175-0

    Article  Google Scholar 

  139. Villaverde J, Maqueda C, Morillo E (2005) Improvement of the desorption of the herbicide norflurazon from soils via complexation with β-cyclodextrin. J Agric Food Chem 53:5366–5372. https://doi.org/10.1021/jf0502449

    Article  CAS  Google Scholar 

  140. Villaverde J, Maqueda C, Morillo E (2006) Effect of the simultaneous addition of β-cyclodextrin and the herbicide norflurazon on its adsorption and movement in soils. J Agric Food Chem 54:4766–4772. https://doi.org/10.1021/jf060548a

    Article  CAS  Google Scholar 

  141. Yáñez C, Cañete-Rosales P, Castillo JP, Catalán N, Undabeytia T, Morillo E (2012) Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: exploring better formulations. PLoS One 7(8):e41072. https://doi.org/10.1371/journal.pone.0041072

    Article  CAS  Google Scholar 

  142. Flaherty RJ, Nshime B, DeLaMarre M, DeJong S, Scott P, Lantz AW (2013) Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere 91:912–920. https://doi.org/10.1016/j.chemosphere.2013.02.005

    Article  CAS  Google Scholar 

  143. Geng Q, Li T, Wang X, Chu W, Cai M, Xie J, Ni H (2019) The mechanism of bensulfuron-methyl complexation with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and effect on soil adsorption and bio-activity. Sci Rep 9:1882. https://doi.org/10.1038/s41598-018-38234-7

    Article  CAS  Google Scholar 

  144. Pérez-Martínez JI, Ginés JM, Morillo E, González-Rodríguez ML, Moyano Méndez JR (2000) Improvement of the desorption of the pesticide 2,4-D via complexation with HP-β-cyclodextrin. Pest Manag Sci 56:425–430. https://doi.org/10.1002/(SICI)1526-4998

    Article  Google Scholar 

  145. Villaverde J, Maqueda C, Undabeytia T, Morillo E (2007) Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components. Chemosphere 69:575–584. https://doi.org/10.1016/j.chemosphere.2007.03.022

    Article  CAS  Google Scholar 

  146. Villaverde J, Posada-Baquero R, Rubio-Bellido M, Morillo E (2013) Effect of hydroxypropyl-β-cyclodextrin on diuron desorption and mineralisation in soils. J Soils Sedim 13:1075–1083. https://doi.org/10.1007/s11368-013-0677-3

    Article  CAS  Google Scholar 

  147. Gao H, Gao X, Cao Y, Xu L, Jia L (2015) Influence of hydroxypropyl-β-cyclodextrin on the extraction and biodegradation of p,p'-DDT, o,p'-DDT, p,p'-DDD, and p,p'-DDE in soils. Water Air Soil Pollut 226:208–213. https://doi.org/10.1007/s11270-015-2472-9

    Article  CAS  Google Scholar 

  148. Báez ME, Espinoza J, Silva R, Fuentes E (2017) Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils. Environ Sci Pollut Res 24:20908–20921. https://doi.org/10.1007/s11356-017-9652-7

    Article  CAS  Google Scholar 

  149. Smith VJ, Bogdan D, Caira MR, Bogdan M, Bourne SA, Fărcaş SI (2010) Cyclodextrin inclusion of four phenylurea herbicides: determination of complex stoichiometries and stability constants using solution 1H NMR spectroscopy. Supramol Chem 22(3):172–177. https://doi.org/10.1080/10610270902980655

    Article  CAS  Google Scholar 

  150. Sakina H, Abdelaziz B, Leila N, Imene D, Fatiha M, Eddine KD (2012) Molecular docking study on b-cyclodextrin interactions of metobromuron and [3-(p-bromophenyl)-1-methoxy-1-methylurea]. J Incl Phenom Macrocycl Chem 74:191–200. https://doi.org/10.1007/s10847-011-0100-x

    Article  CAS  Google Scholar 

  151. Batisson I, Pesce S, Besse-Hoggan P, Sancelme M, Bohatier J (2007) Isolation and characterization of Diuron-degrading bacteria from lotic surface water. Microbiol Ecol 54:761–770. https://doi.org/10.1007/s00248-007-9241-2

    Article  CAS  Google Scholar 

  152. Breugelmans P, D’Huys P-J, De Mot R, Springael D (2007) Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils. FEMS Microbiol Ecol 62:374–385. https://doi.org/10.1111/j.1574-6941.2007.00391.x

    Article  CAS  Google Scholar 

  153. Hangler M, Jensen B, Rønhede S, Sørensen SR (2007) Inducible hydroxylationand demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiol Lett 268:254–260. https://doi.org/10.1111/j.1574-6968.2006.00599

    Article  CAS  Google Scholar 

  154. Badawi N, Rønhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157:2806–2812. https://doi.org/10.1016/j.envpol.2009.04.019

    Article  CAS  Google Scholar 

  155. Hussain S, Sørensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a french agricultural soil. Chemosphere 77(8):1052–1059. https://doi.org/10.1016/j.chemosphere.2009.09.020

    Article  CAS  Google Scholar 

  156. Ngigi A, Getenga Z, Boga H, Ndalut P (2011) Biodegradation of phenylurea herbicide diuron by microorganisms from long-term-treated sugarcane-cultivated soils in Kenya. Toxicol Environ Chem 93(8):1623–1635. https://doi.org/10.1080/02772248.2011.595718

    Article  CAS  Google Scholar 

  157. Sørensen SR, Rasmussen J, Jacobsen CS, Jacobsen OS, Juhler RK, Aamand J (2005) Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation. Appl Environ Microbiol 71(7):4144–4148. https://doi.org/10.1128/AEM.71.7.4144-4148.2005

    Article  CAS  Google Scholar 

  158. Zhang L, Hu Q, Chen X-L, Zhou X-Y, Chen K, Jiang J-D (2018) Degradation of phenylurea herbicides by a novel bacterial consortium containing synergistically catabolic species and functionally complementary hydrolases. J Agric Food Chem 66:12479–12489. https://doi.org/10.1021/acs.jafc.8b03703

    Article  CAS  Google Scholar 

  159. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 24:765–774. https://doi.org/10.1007/s10532-013-9624-7

    Article  CAS  Google Scholar 

  160. Bending GD, Rodriguez-Cruz MS (2007) Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Chemosphere 66:664–671. https://doi.org/10.1016/j.chemosphere.2006.07.099

    Article  CAS  Google Scholar 

  161. Coleman JOD, Frova C, Schröder F, Tissut M (2002) Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environ Sci Pollut Res 9(1):18–28. https://doi.org/10.1065/esDr2001.09.084.5

    Article  CAS  Google Scholar 

  162. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168. https://doi.org/10.1289/ehp.01109s1163

    Article  CAS  Google Scholar 

  163. Didierjean L, Gondet L, Perkins R, Lau S-MC, Schaller H, O’Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189. https://doi.org/10.1104/pp.005801

    Article  CAS  Google Scholar 

  164. Dosnon-Olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P (2011) Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int J Phytoremediation 13(6):601–612. https://doi.org/10.1080/15226514.2010.525549

    Article  CAS  Google Scholar 

  165. Ohkawa H, Inui H (2014) Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants. Pest Manag Sci 71:824–828. https://doi.org/10.1002/ps.3871

    Article  CAS  Google Scholar 

  166. Jang J, Khanom S, Moon Y, Shin S, Lee OR (2020) PgCYP76B93 docks on phenylurea herbicides and its expression enhances chlorotoluron tolerance in Arabidopsis. Appl Biol Chem 63:14. https://doi.org/10.1186/s13765-020-00498-x

    Article  CAS  Google Scholar 

  167. Liang L, Lu YL, Yang H (2012) Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ Sci Pollut Res 19:2044–2054. https://doi.org/10.1007/s11356-011-0698-7

    Article  CAS  Google Scholar 

  168. Lu YC, Zhang S, Miao SS, Jiang C, Huang MT, Liu Y, Yang H (2015) Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. J Agric Food Chem 63:92–103. https://doi.org/10.1021/jf505117j

    Article  CAS  Google Scholar 

  169. Ferreira LC, Moreira BRA, Montagnolli RN, Prado EV, Viana RS, Tomaz RS, Cruz JM, Bidoia ED, Frias YA, Matos Lopes PR (2021) Green manure species for phytoremediation of soil with tebuthiuron and vinasse. Front Bioeng Biotechnol 8:613642. https://doi.org/10.3389/fbioe.2020.613642

    Article  Google Scholar 

  170. Yan X, Huang J, Xu X, Chen D, Xie X, Tao Q, He J, Jianga J (2018) Enhanced and complete removal of phenylurea herbicides by combinational transgenic plant-microbe remediation. Appl Environ Microbiol 84:e00273–e00218. https://doi.org/10.1128/AEM.00273-18

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Science, Innovation and Universities under the research project CTM2017-82472-C2-1-R (AEI/FEDER, UE). A. Lara-Moreno acknowledges the Spanish Ministry of Education, Culture and Sports for her FPU fellowship (FPU15/03740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmeralda Morillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara-Moreno, A., Villaverde, J., Rubio-Bellido, M., Madrid, F., Morillo, E. (2021). Abiotic and Biological Technologies for the Remediation of Phenylurea Herbicides in Soils. In: Rodríguez-Cruz, M.S., Sánchez-Martín, M.J. (eds) Pesticides in Soils. The Handbook of Environmental Chemistry, vol 113. Springer, Cham. https://doi.org/10.1007/698_2021_799

Download citation

Publish with us

Policies and ethics