Skip to main content

Green Synthesized Iron Nanoparticles for Environmental Management: Minimizing Material and Energy Inputs

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 117))

  • 391 Accesses

Abstract

Current development in nanotechnology has provided us with novel nanomaterials. This advancement in nanomaterial synthesis has resulted in their manipulation at the atomic level to achieve desired catalytic properties. The green routes used in synthesis of nanomaterials grab more attention as they are of low cost and environmental friendly, thereby reducing the risk of harmful effects of toxic chemicals and derivative compounds. Iron nanoparticles have essential properties which are due to their multivalent oxidation states, abundant polymorphism and are also used as sensors, catalysts, medicinal uses, and remediation technology. Reducing the size increases the surface area of nanoparticles and hence the ratio of surface to bulk iron atoms. Consequently, both the rate of reaction and the fraction of iron atoms available for the reaction increase. As the iron nanoparticles are more reactive for water pollutants, they are used in water remediation technology. Iron nanoparticles are successfully used because of their exclusive properties, like very small size, high surface-area-to-volume ratio, surface modifiability, better magnetic properties, and great biocompatibility. This review describes the different applications of iron nanoparticles in environmental remediation. It also highlights the advanced routes for their synthesis by green resources. This review article concludes that green synthesized iron nanoparticles are highly efficient for the removal of different pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Environmental Protection Agency (2007) Chapter 2: environmental benefits of nanotechnology. EPA 100/B-07/001. Office of the Science Advisor Science Policy Council, Washington, DC. https://www.epa.gov/sites/production/files/2015-01/documents/nanotechnology_whitepaper.pdf

    Google Scholar 

  2. Feynman RP (2012) There’s plenty of room at the bottom: an invitation to enter a new field of physics. In: Handbook of nanoscience, engineering, and technology3rd edn. CRC Press, Boca Raton, pp 26–35

    Google Scholar 

  3. Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Proc Imp 15(1):63–77

    CAS  Google Scholar 

  4. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, pp 29–56

    Google Scholar 

  5. Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269

    Article  CAS  Google Scholar 

  6. Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242

    Article  CAS  Google Scholar 

  7. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Nanoscience and plant–soil systems. Springer, Cham, pp 455–479

    Chapter  Google Scholar 

  8. Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  Google Scholar 

  9. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634

    Article  CAS  Google Scholar 

  10. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim

    Book  Google Scholar 

  11. Chan HB, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC (2004) Carbon-encapsulated radioactive 99mTc nanoparticles. Adv Mater 16(2):144–149

    Article  CAS  Google Scholar 

  12. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2(1):23

    Article  Google Scholar 

  13. Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155

    Article  CAS  Google Scholar 

  14. Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19(3):1095–1100

    Article  CAS  Google Scholar 

  15. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346

    Article  CAS  Google Scholar 

  16. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  17. Bachheti RK, Konwarh R, Gupta V, Husen A, Joshi A (2019) Green synthesis of iron oxide nanoparticles: cutting edge technology and multifaceted applications. In: Nanomaterials and plant potential. Springer, Cham, pp 239–259. https://www.springer.com/gp/book/9783030055684

    Chapter  Google Scholar 

  18. McHenry ME, Laughlin DE (2000) Nano-scale materials development for future magnetic applications. Acta Mater 48(1):223–238

    Article  CAS  Google Scholar 

  19. Afkhami A, Saber-Tehrani M, Bagheri H (2010) Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination 263(1-3):240–248

    Article  CAS  Google Scholar 

  20. Pan B, Qiu H, Pan B, Nie G, Xiao L, Lv L, Zhang W, Zhang Q, Zheng S (2010) Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe (III) oxides: behavior and XPS study. Water Res 44(3):815–824

    Article  CAS  Google Scholar 

  21. Luborsky FE (1961) Development of elongated particle magnets. J Appl Phys 32(3):S171–S183

    Article  Google Scholar 

  22. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading

    Google Scholar 

  23. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  24. Fahmy HM, Mohamed FM, Marzouq MH, Mustafa ABED, Alsoudi AM, Ali OA, Mohamed MA, Mahmoud FA (2018) Review of green methods of iron nanoparticles synthesis and applications. BioNanoScience 8(2):491–503

    Article  Google Scholar 

  25. Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins JC, Allan G, Hens Z (2007) Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem Mater 19(25):6101–6106

    Article  CAS  Google Scholar 

  26. Yokoyama A, Komiyama H, Inoue H, Masumoto T, Kimura HM (1981) The hydrogenation of carbon monoxide by amorphous ribbons. J Catal 68(2):355–361

    Article  CAS  Google Scholar 

  27. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  Google Scholar 

  28. Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem 8(6):516–518

    Article  CAS  Google Scholar 

  29. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  Google Scholar 

  30. Rai M, Yadav A, Gade A (2008) CRC 675 – current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  CAS  Google Scholar 

  31. Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7(12):2582–2587

    Article  CAS  Google Scholar 

  32. Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol Mol Biol 11:1–16

    CAS  Google Scholar 

  33. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  34. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804

    Article  CAS  Google Scholar 

  35. Ahmmad B, Leonard K, Islam MS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol 24(1):160–167

    Article  CAS  Google Scholar 

  36. Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D (2011) Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4(1):251–260

    Article  Google Scholar 

  37. Awwad AM, Salem NM (2012) A green and facile approach for synthesis of magnetite nanoparticles. J Nanosci Nanotechnol 2(6):208–213

    Article  Google Scholar 

  38. Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process 111(4):1187–1193

    Article  CAS  Google Scholar 

  39. Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  40. Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Phys B Condens Matter 457:30–35

    Article  CAS  Google Scholar 

  41. Balamurughan MG, Mohanraj S, Kodhaiyolii S, Pugalenthi V (2014) Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies. J Chem Pharm Sci 4:201–204

    Google Scholar 

  42. Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18(4):364–369

    Article  Google Scholar 

  43. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    Article  Google Scholar 

  44. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    Article  CAS  Google Scholar 

  45. Savasari M, Emadi M, Bahmanyar MA, Biparva P (2015) Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. J Ind Eng Chem 21:1403–1409

    Article  CAS  Google Scholar 

  46. Sreeja V, Jayaprabha KN, Joy PA (2014) Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in mri. Appl Nanosci 5:435–441

    Article  Google Scholar 

  47. Siskova KM, Straska J, Krizek M, Tucek J, Machala L, Zboril R (2013) Formation of zero-valent iron nanoparticles mediated by amino acids. Procedia Environ Sci 18:809–817

    Article  CAS  Google Scholar 

  48. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  Google Scholar 

  49. Rani PU, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1-3):188–194

    Article  Google Scholar 

  50. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nano 6(11):209

    Google Scholar 

  51. Rotello VM (2004) Nanoparticles: building blocks for nanotechnology. Springer, Boston

    Book  Google Scholar 

  52. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127(26):9326–9327

    Article  CAS  Google Scholar 

  53. Mahdavi M, Namvar F, Ahmad M, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Article  Google Scholar 

  54. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11 – a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869

    Article  CAS  Google Scholar 

  55. Valentin VM, Svetlana SM, Andrew JL, Olga VS, Anna OD (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988

    Article  Google Scholar 

  56. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):3940–13941

    Article  Google Scholar 

  57. Mervat FZ, EWael HE, Shabaka AA (2012) Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta A 98:423–428

    Article  Google Scholar 

  58. Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart 2014:302429

    Article  Google Scholar 

  59. Tandon PK, Shukla RC, Singh SB (2013) Removal of arsenic (III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor. Ind Eng Chem Res 52(30):10052–10058

    Article  CAS  Google Scholar 

  60. Babu SA, Prabu HG (2011) Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Mater 65(11):1675–1677

    CAS  Google Scholar 

  61. Wang J, Wan W (2008) Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. Int J Hydrog Energy 33(4):1215–1220

    Article  CAS  Google Scholar 

  62. Daniel SK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1319

    Article  Google Scholar 

  63. Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, Jyothi NVV (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys B Condens Matter 449:67–71

    Article  CAS  Google Scholar 

  64. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30(20):5982–5988

    Article  CAS  Google Scholar 

  65. Gross M (1999) The nanoworld, miniature machinery in nature and technology. Plenum Trade, New York, London, p 254

    Google Scholar 

  66. Kim D, El-Shall H, Dennis D, Morey T (2005) Interaction of PLGA nanoparticles with human blood constituents. Colloid Surf B 40(2):83–91

    Article  Google Scholar 

  67. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  CAS  Google Scholar 

  68. Nizamuddin S, Siddiqui MTH, Mubarak NM, Baloch HA, Abdullah EC, Mazari SA, Griffin GJ, Srinivasan MP, Tanksale A (2019) Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. In: Nanoscale materials in water purification. Elsevier, pp 447–472

    Chapter  Google Scholar 

  69. Dhakras PA (2011) Nanotechnology applications in water purification and waste water treatment: a review. In: International conference on nanoscience, engineering and technology (ICONSET 2011), pp 285–291

    Chapter  Google Scholar 

  70. Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  Google Scholar 

  71. Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1-3):38–49

    Article  CAS  Google Scholar 

  72. Mahdavian AR, Mirrahimi MAS (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1-3):264–271

    Article  CAS  Google Scholar 

  73. Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536

    Article  CAS  Google Scholar 

  74. Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J (2009) Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR–FTIR spectroscopy. Colloids Surf A Physicochem Eng Asp 346(1–3):106–113

    Article  CAS  Google Scholar 

  75. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@ SiO2 composite particles. J Environ Radioact 106:40–46

    Article  CAS  Google Scholar 

  76. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As (III), Cu (II), Cd (II), Ni (II), Pb (II) and Zn (II). J Hazard Mater 161(2-3):848–853

    Article  CAS  Google Scholar 

  77. Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345(2):234–240

    Article  CAS  Google Scholar 

  78. Akhavan O, Azimirad R (2009) Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A Gen 369(1-2):77–82

    Article  CAS  Google Scholar 

  79. Bandara J, Klehm U, Kiwi J (2007) Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Appl Catal 76(1-2):73–81

    Article  CAS  Google Scholar 

  80. Feng W, Nansheng D, Helin H (2000) Degradation mechanism of azo dye CI reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere 41(8):1233–1238

    Article  CAS  Google Scholar 

  81. Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1-2):131–137

    Article  CAS  Google Scholar 

  82. Wu Y, Zeng S, Wang F, Megharaj M, Naidu R, Chen Z (2015) Heterogeneous Fenton-like oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst. Sep Purif Technol 154:161–167

    Article  CAS  Google Scholar 

  83. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S (2018) Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl Phys A Mater 124(5):363

    Article  Google Scholar 

  84. Tharunya P, Subha V, Kirubanandan S, Sandhaya S, Renganathan S (2017) Green synthesis of superparamagnetic iron oxide nanoparticle from Ficus carica fruit extract, characterization studies and its application on dye degradation studies. Asian J Pharm Clin Res 10:125–128

    Article  CAS  Google Scholar 

  85. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  86. Shahwan T, Abu Sirriah S, Nairat M, Boyacı E, Eroglu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  87. Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain Chem Eng 1:1551–1554

    Article  CAS  Google Scholar 

  88. Luo F, Chen Z, Megharaj M, Naidu R (2014) Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Adv 4:53467–53474

    Article  CAS  Google Scholar 

  89. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir 27:264–271

    Article  CAS  Google Scholar 

  90. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2013) Synthesis of iron-based nanoparticles using Oolong tea extract for the degradation of malachite green. Spectrochim Acta A 117:801–804

    Article  Google Scholar 

  91. Huang L, Luo F, Chen Z, Megharaj M, Naidu R (2015) Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim Acta A 137:154–159

    Article  CAS  Google Scholar 

  92. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  Google Scholar 

  93. Wang Z, Fang C, Megharaj M (2014) Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustain Chem Eng 2:1022–1025

    Article  CAS  Google Scholar 

  94. Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV (2019) A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb (II) from aqueous environment. Arab J Chem 12(4):588–596

    Article  CAS  Google Scholar 

  95. Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS (2010) In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12(1):114–122

    Article  CAS  Google Scholar 

  96. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31

    Article  CAS  Google Scholar 

  97. López-Téllez G, Balderas-Hernández P, Barrera-Díaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium (VI) reduction. J Nanosci 13(3):2354–2361

    Google Scholar 

  98. Madhavi V, Prasad TN, Reddy AV, Ravindra Reddy B, Madhavi G (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A 116:17–25

    Article  CAS  Google Scholar 

  99. Mystrioti C, Xenidis A, Papassiopi N (2014) Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: column studies. Desalin Water Treat 56:1162–1170

    Article  Google Scholar 

  100. Xiao Z, Yuan M, Yang B, Liu Z, Huang J, Sun D (2016) Plant-mediated synthesis of highly active iron nanoparticles for Cr(VI) removal: investigation of the leading biomolecules. Chemosphere 150:357–364

    Article  CAS  Google Scholar 

  101. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  102. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng 13(1):84

    Article  Google Scholar 

  103. Lin J, Su B, Sun M, Chen B, Chen Z (2018) Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci Total Environ 627:314–321

    Article  CAS  Google Scholar 

  104. World Health Organization (1979) DDT and its derivatives (No. 12). World Health Organization, Geneva

    Google Scholar 

  105. Behrooz RD, Sari AE, Bahramifar N, Ghasempouri SM (2009) Organochlorine pesticide and polychlorinated biphenyl residues in human milk from the Southern Coast of Caspian Sea, Iran. Chemosphere 74(7):931–937

    Article  CAS  Google Scholar 

  106. Yang X, Wang S, Bian Y, Chen F, Yu G, Gu C, Jiang X (2008) Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu province, China. J Hazard Mater 150(1):92–98

    Article  CAS  Google Scholar 

  107. Tomlin C (2006) The pesticide manual. The British Crop Protection Council Publication, Farnham

    Google Scholar 

  108. Guo Y, Yu HY, Zeng EY (2009) Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China: a review. Environ Pollut 157(6):1753–1763

    Article  CAS  Google Scholar 

  109. Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158:1733–1740

    Article  CAS  Google Scholar 

  110. Smith E, Smith J, Naidu R, Juhasz AL (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151(1-4):71–86

    Article  CAS  Google Scholar 

  111. Lin C, Lin KS (2007) Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere 66(10):1872–1877

    Article  CAS  Google Scholar 

  112. Zinovyev SS, Shinkova NA, Perosa A, Tundo P (2005) Liquid phase hydrodechlorination of dieldrin and DDT over Pd/C and Raney-Ni. Appl Catal B Environ 55(1):39–48

    Article  CAS  Google Scholar 

  113. Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31(12):3448–3454

    Article  CAS  Google Scholar 

  114. Eggen T, Majcherczyk A (2006) Effects of zero-valent iron (Fe-0) and temperature on the transformation of DDT and its metabolites in lake sediment. Chemosphere 62:1116–1125

    Article  CAS  Google Scholar 

  115. Yang SC, Lei M, Chen TB, Li XY, Liang Q, Ma C (2010) Application of zerovalent iron (Fe0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere 79(7):727–732

    Article  CAS  Google Scholar 

  116. El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92(1):131–137

    Article  CAS  Google Scholar 

  117. Illman DL (2006) Water analysis in the developing world. J Am Chem Soc 78:5266–5272

    CAS  Google Scholar 

  118. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77(12):3807–3838

    Article  CAS  Google Scholar 

  119. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B Chem 122(2):659–671

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhateria, R., Mona, S., Sharma, Y. (2021). Green Synthesized Iron Nanoparticles for Environmental Management: Minimizing Material and Energy Inputs. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 117. Springer, Cham. https://doi.org/10.1007/698_2021_789

Download citation

Publish with us

Policies and ethics