Skip to main content

Antibiotic Resistance and Sanitation in India: Current Situation and Future Perspectives

  • Chapter
  • First Online:
Antibiotic Resistance in the Environment

Abstract

Antimicrobial resistance (AMR) is a global threat as the existing health care may become ineffective. Antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) considered as emerging contaminants are the three major components of AMR. India is one of the largest consumers of antibiotics with defined daily dose (DDD) of 4,950 per 1,000 population in 2015. By 2030, therapeutic and nontherapeutic use of antibiotics in veterinary animals is projected to increase by 18%. Antibiotics, ARB, and ARGs in the solid and liquid waste generated enter the environment via different pathways. The major sources of antibiotics, ARB, and ARG include domestic, hospital, and pharmaceutical industry wastewater apart from the solid/liquid waste generated from veterinary and food animals. Existing conventional wastewater treatment technologies like activated sludge process (ASP) do not ensure complete removal of antibiotics, ARB, and ARGs from wastewater. Similarly, the sludge generated find its way to agriculture land and eventually spread resistance in the environment. Once introduced in the environment, elimination of these contaminants is difficult. India’s action plan on AMR in 2017 regulates antibiotic use for human and animal and addresses environment AMR spread from all possible sources and containment. In 2020, the Government of India introduced discharge standard for 121 antibiotics in the effluents of bulk drug manufacturing industries, formulation industries, and common effluent treatment plant (CETP) receiving pharmaceutical wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabhasankar VP et al (2016) Removal rates of antibiotics in four sewage treatment plants in South India. Environ Sci Pollut Res 23(9):8679–8685. https://doi.org/10.1007/s11356-015-5968-3

    Article  CAS  Google Scholar 

  2. Laxminarayan R et al (2013) Antibiotic resistance – the need for global solutions. Lancet Infect Dis 13(12):1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9

    Article  Google Scholar 

  3. The Center for Disease Dynamics Economics & Policy (2018) Resistance map: antibiotic resistance. https://resistancemap.cddep.org/. Accessed 14 Jun 2019

  4. Goossens H (2009) Antibiotic consumption and link to resistance. Clin Microbiol Infect 15:12–15. https://doi.org/10.1111/j.1469-0691.2009.02725.x

    Article  CAS  Google Scholar 

  5. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – part I. Chemosphere 75(4):417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  6. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  CAS  Google Scholar 

  7. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – part II. Chemosphere 75(4):435–441. https://doi.org/10.1016/j.chemosphere.2008.12.006

    Article  CAS  Google Scholar 

  8. Philip JM, Aravind UK, Aravindakumar CT (2018) Emerging contaminants in Indian environmental matrices – a review. Chemosphere 190:307–326. https://doi.org/10.1016/j.chemosphere.2017.09.120

    Article  CAS  Google Scholar 

  9. Peripi SB, Thadepalli VGR, Khagga M, Tripuraribhatla PK, Bharadwaj DK (2012) Profile of antibiotic consumption, sensitivity and resistance in an urban area of Andhra Pradesh, India. Singap Med J 53(4):268–272

    Google Scholar 

  10. Akiba M et al (2015) Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India. Ecotoxicol Environ Saf 115:203–208. https://doi.org/10.1016/j.ecoenv.2015.02.018

    Article  CAS  Google Scholar 

  11. Van Boeckel TP et al (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8):742–750. https://doi.org/10.1016/S1473-3099(14)70780-7

    Article  Google Scholar 

  12. Kumari Indira KS, Chandy SJ, Jeyaseelan L, Rashmi K, Saradha S (2008) Antimicrobial prescription patterns for common acute infections insome rural & urban health facilities of India. Indian J Med Res 128:165–171

    Google Scholar 

  13. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11(5):355–362. https://doi.org/10.1016/S1473-3099(11)70059-7

    Article  Google Scholar 

  14. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S (2011) Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis 11(9):692–701. https://doi.org/10.1016/S1473-3099(11)70054-8

    Article  Google Scholar 

  15. Kotwani A, Wattal C, Joshi PC, Holloway K (2012) Irrational use of antibiotics and role of the pharmacist: an insight from a qualitative study in New Delhi, India. J Clin Pharm Ther 37(3):308–312. https://doi.org/10.1111/j.1365-2710.2011.01293.x

    Article  CAS  Google Scholar 

  16. Kotwani A, Wattal C, Katewa S, Joshi PC, Holloway K (2010) Factors influencing primary care physicians to prescribe antibiotics in Delhi India. Fam Pract 27(6):684–690. https://doi.org/10.1093/fampra/cmq059

    Article  Google Scholar 

  17. Chandy SJ (2008) Consequences of irrational use of antibiotics. Indian J Med Ethics 5(4):174–175. https://doi.org/10.20529/IJME.2008.064

    Article  Google Scholar 

  18. Sivagnanam G, Mohanasundaram J, Thirumalaikolundusubramanian P, Raaj AA, Namasivayam K, Rajaram S (2004) A survey on current attitude of practicing physicians upon usage of antimicrobial agents in southern part of India. MedGenMed, 6(2). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395775/. Accessed 14 Jun 2019

  19. Kaur A et al (2018) A study of antibiotic prescription pattern in patients referred to tertiary care center in northern India. Ther Adv Infect Dis 5(4):63–68. https://doi.org/10.1177/2049936118773216

    Article  Google Scholar 

  20. You Y, Silbergeld EK (2014) Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00284

  21. Subedi B, Balakrishna K, Sinha RK, Yamashita N, Balasubramanian VG, Kannan K (2015) Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J Environ Chem Eng 3(4, Part A):2882–2891. https://doi.org/10.1016/j.jece.2015.09.031

    Article  CAS  Google Scholar 

  22. Boeckel TPV et al (2017) Reducing antimicrobial use in food animals. Science 357(6358):1350–1352. https://doi.org/10.1126/science.aao1495

    Article  CAS  Google Scholar 

  23. Van Boeckel TP et al (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 112(18):5649–5654. https://doi.org/10.1073/pnas.1503141112

    Article  CAS  Google Scholar 

  24. Annual Report (2017–2018) Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agricultureand Farmers Welfare. http://dadf.gov.in/sites/default/filess/annual_report_17-18.pdf. Accessed 17 Nov 2019

  25. Chauhan SL, Priyanka, Garg SR, Jadhav VJ (2019) Determination of tetracycline residues in milk by high performance liquid chromatography. Int J Curr Microbiol Appl Sci 8(2):2763–2771. https://doi.org/10.20546/ijcmas.2019.802.324

    Article  CAS  Google Scholar 

  26. Sahu R, Saxena P, Mathur HB, Agarwal HC (2014) Antibiotics in chicken meat. Center for Science and Environment. http://re.indiaenvironmentportal.org.in/files/file/Antibiotics%20in%20Chicken_Lab%20Report_Final%2029%20July.pdf. Accessed 27 Jun 2019

  27. Stockton B, Davies M, Meesaraganda R (2018) Zoetis and its antibiotics for growth in India. Vet Rec 183(14):432–433. https://doi.org/10.1136/vr.k4278

    Article  Google Scholar 

  28. Jayalakshmi K, Paramasivam M, Sasikala M, Tamilam T, Sumithra A (2017) Review on antibiotic residues in animal products and its impact on environments and human health. J Entomol Zool Stud 5(3):1446–14451

    Google Scholar 

  29. Massé DI, Saady NMC, Gilbert Y (2014) Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals 4(2):146–163. https://doi.org/10.3390/ani4020146

    Article  Google Scholar 

  30. Kibuye FA et al (2019) Fate of pharmaceuticals in a spray-irrigation system: from wastewater to groundwater. Sci Total Environ 654:197–208. https://doi.org/10.1016/j.scitotenv.2018.10.442

    Article  CAS  Google Scholar 

  31. Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014

    Article  CAS  Google Scholar 

  32. Saha S et al (2018) Assessing the suitability of sewage-sludge produced in Kolkata, India for their agricultural use. Proc Indian Natl Sci Acad 97. https://doi.org/10.16943/ptinsa/2018/49410

  33. Singh P, Mondal T, Sharma R, Mahalakshmi N, Gupta M (2018) Poultry waste management. Int J Curr Microbiol App Sci 7(8):694–700. https://doi.org/10.20546/ijcmas.2018.708.076

    Article  Google Scholar 

  34. Li X, Pletcher D, Walsh FC (2011) Electrodeposited lead dioxide coatings. Chem Soc Rev 40(7):3879–3894. https://doi.org/10.1039/C0CS00213E

    Article  CAS  Google Scholar 

  35. Ambesh P, Ambesh SP (2016) Open defecation in India: a major health hazard and hurdle in infection control. J Clin Diagn Res 10(7):IL01–IL02. https://doi.org/10.7860/JCDR/2016/20723.8098

    Article  Google Scholar 

  36. Kumar A, Pal D (2018) Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J Environ Chem Eng 6(1):52–58. https://doi.org/10.1016/j.jece.2017.11.059

    Article  CAS  Google Scholar 

  37. Marathe NP, Pal C, Gaikwad SS, Jonsson V, Kristiansson E, Larsson DGJ (2017) Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Res 124:388–397. https://doi.org/10.1016/j.watres.2017.07.060

    Article  CAS  Google Scholar 

  38. Dhawde R, Macaden R, Saranath D, Nilgiriwala K, Ghadge A, Birdi T (2018) Antibiotic resistance characterization of environmental E. coli isolated from river Mula-Mutha, Pune District, India. Int J Environ Res Public Health 15(6). https://doi.org/10.3390/ijerph15061247

  39. Diwan V, Tamhankar AJ, Aggarwal M, Sen S, Khandal RK, Lundborg CS (2009) Detection of antibiotics in hospital effluents in India. Curr Sci 97(12):4

    Google Scholar 

  40. Mutiyar PK, Mittal AK (2014) Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environ Monit Assess 186(1):541–557. https://doi.org/10.1007/s10661-013-3398-6

    Article  CAS  Google Scholar 

  41. Divya SP, Hatha AAM (2019) Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. Int J Hyg Environ Health 222(2):235–248. https://doi.org/10.1016/j.ijheh.2018.11.002

    Article  CAS  Google Scholar 

  42. Laroche E, Pawlak B, Berthe T, Skurnik D, Petit F (2009) Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (seine, France). FEMS Microbiol Ecol 68(1):118–130. https://doi.org/10.1111/j.1574-6941.2009.00655.x

    Article  CAS  Google Scholar 

  43. Dhawde R, Macaden R, Ghadge A, Birdi T (2018) Seasonal prevalence of antibiotic-resistant bacteria in the river Mula-Mutha, India. Environ Monit Assess 190(9):533. https://doi.org/10.1007/s10661-018-6911-0

    Article  CAS  Google Scholar 

  44. Diwan V et al (2010) Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10(1):414. https://doi.org/10.1186/1471-2458-10-414

    Article  CAS  Google Scholar 

  45. Mohapatra S, Huang C-H, Mukherji S, Padhye LP (2016) Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 159:526–535. https://doi.org/10.1016/j.chemosphere.2016.06.047

    Article  CAS  Google Scholar 

  46. Velpandian T et al (2018) Un-segregated waste disposal: an alarming threat of antimicrobials in surface and ground water sources in Delhi. Environ Sci Pollut Res 25(29):29518–29528. https://doi.org/10.1007/s11356-018-2927-9

    Article  Google Scholar 

  47. Gothwal R, Thatikonda S (2017) Role of environmental pollution in prevalence of antibiotic resistant bacteria in aquatic environment of river: case of Musi river, South India. Water Environ J 31(4):456–462. https://doi.org/10.1111/wej.12263

    Article  CAS  Google Scholar 

  48. Diwan V et al (2018) Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of escherichia coli isolates from water and sediments of the Kshipra River in Central India. Int J Environ Res Public Health 15(6):1281. https://doi.org/10.3390/ijerph15061281

    Article  CAS  Google Scholar 

  49. Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DGJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186(2):1586–1593. https://doi.org/10.1016/j.jhazmat.2010.12.037

    Article  CAS  Google Scholar 

  50. Gao J, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39(24):9509–9516. https://doi.org/10.1021/es050644c

    Article  CAS  Google Scholar 

  51. Devarajan N et al (2016) Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLoS One 11(2). https://doi.org/10.1371/journal.pone.0149211

  52. Li D et al (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 76(11):3444–3451. https://doi.org/10.1128/AEM.02964-09

    Article  CAS  Google Scholar 

  53. Diwan V, Chandran SP, Tamhankar AJ, Stålsby Lundborg C, Macaden R (2012) Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from Central India. J Antimicrob Chemother 67(4):857–859. https://doi.org/10.1093/jac/dkr564

    Article  CAS  Google Scholar 

  54. Kurasam J, Sihag P, Mandal PK, Sarkar S (2018) Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India. Chemosphere 211:817–825. https://doi.org/10.1016/j.chemosphere.2018.08.011

    Article  CAS  Google Scholar 

  55. Gullberg E et al (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLOS Pathogens 7(7):e1002158. https://doi.org/10.1371/journal.ppat.1002158

    Article  CAS  Google Scholar 

  56. Andersson DI, Hughes D (2012) Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat 15(3):162–172. https://doi.org/10.1016/j.drup.2012.03.005

    Article  CAS  Google Scholar 

  57. Rizzo L et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032

    Article  CAS  Google Scholar 

  58. Singh SK, Ekka R, Mishra M, Mohapatra H (2017) Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment. Environ Monit Assess 189(7):320. https://doi.org/10.1007/s10661-017-6005-4

    Article  CAS  Google Scholar 

  59. Burmeister AR (2015) Horizontal gene transfer. Evol Med Public Health 2015(1):193–194. https://doi.org/10.1093/emph/eov018

    Article  Google Scholar 

  60. Lamba M, Ahammad SZ (2017) Sewage treatment effluents in Delhi: a key contributor of β-lactam resistant bacteria and genes to the environment. Chemosphere 188:249–256. https://doi.org/10.1016/j.chemosphere.2017.08.133

    Article  CAS  Google Scholar 

  61. Lamba M, Gupta S, Shukla R, Graham DW, Sreekrishnan TR, Ahammad SZ (2018) Carbapenem resistance exposures via wastewaters across New Delhi. Environ Int 119:302–308. https://doi.org/10.1016/j.envint.2018.07.004

    Article  CAS  Google Scholar 

  62. Diwan V et al (2017) A three-year follow-up study of antibiotic and metal residues, antibiotic resistance and resistance genes, focusing on Kshipra – a river associated with holy religious mass-bathing in India: protocol paper. Int J Environ Res Public Health 14(6):574. https://doi.org/10.3390/ijerph14060574

    Article  CAS  Google Scholar 

  63. Gothwal R, Shashidhar T (2017) Proliferation of ciprofloxacin resistant Bacteria in polluted sediments of Musi River, India. Soil Sediment Contam Int J 26(5):501–509. https://doi.org/10.1080/15320383.2017.1355352

    Article  CAS  Google Scholar 

  64. Bajaj P, Singh NS, Kanaujia PK, Virdi JS (2015) Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 505:350–356. https://doi.org/10.1016/j.scitotenv.2014.09.084

    Article  CAS  Google Scholar 

  65. Siddiqui MT, Mondal AH, Sultan I, Ali A, Haq QMR (2018) Co-occurrence of ESBLs and silver resistance determinants among bacterial isolates inhabiting polluted stretch of river Yamuna, India. Int J Environ Sci Technol 16:5611. https://doi.org/10.1007/s13762-018-1939-9

    Article  CAS  Google Scholar 

  66. Mondal AH, Siddiqui MT, Sultan I, Haq QMR (2019) Prevalence and diversity of blaTEM, blaSHV and blaCTX-M variants among multidrug resistant Klebsiella spp. from an urban riverine environment in India. Int J Environ Health Res 29(2):117–129. https://doi.org/10.1080/09603123.2018.1515425

    Article  CAS  Google Scholar 

  67. Skariyachan S et al (2015) Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environ Monit Assess 187(5):279. https://doi.org/10.1007/s10661-015-4488-4

    Article  CAS  Google Scholar 

  68. Mathews EB et al (2018) Occurrence and antibiotic susceptibility testing of Vibrio cholerae from district Wayanad, Kerala, India. Proc Natl Acad Sci India Sect B Biol Sci 88(2):673–678. https://doi.org/10.1007/s40011-016-0799-7

    Article  CAS  Google Scholar 

  69. Purohit MR, Chandran S, Shah H, Diwan V, Tamhankar AJ, Stålsby Lundborg C (2017) Antibiotic resistance in an Indian rural community: a ‘one-health’ observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health 14(4):386. https://doi.org/10.3390/ijerph14040386

    Article  Google Scholar 

  70. Maloo A, Fulke AB, Mulani N, Sukumaran S, Ram A (2017) Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: a potential public health risk. Environ Sci Pollut Res 24(12):11504–11517. https://doi.org/10.1007/s11356-017-8760-8

    Article  CAS  Google Scholar 

  71. Sneha KG et al (2016) Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay. Reg Stud Mar Sci 3:242–250. https://doi.org/10.1016/j.rsma.2015.11.004

    Article  Google Scholar 

  72. Meena B et al (2015) Enterococcus species diversity and molecular characterization of biomarker genes in enterococcus faecalis in Port Blair Bay, Andaman and Nicobar Islands, India. Mar Pollut Bull 94(1):217–227. https://doi.org/10.1016/j.marpolbul.2015.02.027

    Article  CAS  Google Scholar 

  73. Kumar S, Tripathi VR, Vikram S, Kumar B, Garg SK (2018) Characterization of MAR and heavy metal-tolerant E. coli O157:H7 in water sources: a suggestion for behavioral intervention. Environ Dev Sustain 20(6):2447–2461. https://doi.org/10.1007/s10668-017-9998-5

    Article  Google Scholar 

  74. Mishra RK et al (2017) Bacterial diversity and antibiotic resistance in a wetland of Lakhimpur-Kheri, Uttar Pradesh, India. J Environ Biol 38(1):55–66. https://doi.org/10.22438/jeb/38/1/MS-117

    Article  Google Scholar 

  75. Tallur PN et al (2016) Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech 6(1):28. https://doi.org/10.1007/s13205-015-0332-3

    Article  Google Scholar 

  76. Kalaiselvi K, Mangayarkarasi V, Balakrishnan D, Chitraleka V (2016) Survival of antibacterial resistance microbes in hospital-generated recycled wastewater. J Water Health 14(6):942–949. https://doi.org/10.2166/wh.2016.154

    Article  Google Scholar 

  77. Lamba M, Graham DW, Ahammad SZ (2017) Hospital wastewater releases of Carbapenem-resistance pathogens and genes in urban India. Environ Sci Technol 51(23):13906–13912. https://doi.org/10.1021/acs.est.7b03380

    Article  CAS  Google Scholar 

  78. Chandran SP et al (2014) Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. J Appl Microbiol 117(4):984–995. https://doi.org/10.1111/jam.12591

    Article  CAS  Google Scholar 

  79. Kumar H et al (2014) Prevalence of multidrug-resistant, coagulase-positive Staphylococcus aureus in nasal carriage, food, wastewater and paper currency in Jalandhar city (north-western), an Indian state of Punjab. Environ Monit Assess 187(1):4134. https://doi.org/10.1007/s10661-014-4134-6

    Article  CAS  Google Scholar 

  80. Tibrewal MA, Rajesh N, Rajesh V (2018) Identification and characterization of the microbial communities found in electronic industrial effluent and their potential for bioremediation. Ecotoxicol Environ Saf 164:379–387. https://doi.org/10.1016/j.ecoenv.2018.08.018

    Article  CAS  Google Scholar 

  81. Sundaramanickam A, Suresh Kumar P, Kumaresan S, Balasubramanian T (2015) Isolation and molecular characterization of multidrug-resistant halophilic bacteria from shrimp farm effluents of Parangipettai coastal waters. Environ Sci Pollut Res 22(15):11700–11707. https://doi.org/10.1007/s11356-015-4427-5

    Article  CAS  Google Scholar 

  82. Saha S, Saha BN, Pati S, Pal B, Hazra GC (2018) Agricultural use of sewage sludge in India: benefits and potential risk of heavy metals contamination and possible remediation options – a review. Int J Environ Technol Manag 20(3/4):183–199. https://doi.org/10.1504/IJETM.2017.089645

    Article  Google Scholar 

  83. Mohamed Amanullah M, Sekar S, Muthukrishnan P (2010) Prospects and potential of poultry manure. Asian J Plant Sci 9(4):172–182. https://doi.org/10.3923/ajps.2010.172.182

    Article  Google Scholar 

  84. Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Bioresour Bioprocess 3(1):28. https://doi.org/10.1186/s40643-016-0105-9

    Article  Google Scholar 

  85. He Y et al (2020) Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water 3(1):1–11. https://doi.org/10.1038/s41545-020-0051-0

    Article  Google Scholar 

  86. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. https://doi.org/10.1038/nrmicro2312

    Article  CAS  Google Scholar 

  87. Bag S et al (2018) Molecular insights into antimicrobial resistance traits of commensal human gut microbiota. Microb Ecol 77:546. https://doi.org/10.1007/s00248-018-1228-7

    Article  CAS  Google Scholar 

  88. Lamba M, Ahammad SZ (2017) Performance comparison of secondary and tertiary treatment systems for treating antibiotic resistance. Water Res 127:172–182. https://doi.org/10.1016/j.watres.2017.10.025

    Article  CAS  Google Scholar 

  89. Zhang X-X, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82(3):397–414. https://doi.org/10.1007/s00253-008-1829-z

    Article  CAS  Google Scholar 

  90. Ahammad ZS, Sreekrishnan TR, Hands CL, Knapp CW, Graham DW (2014) Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ Sci Technol 48(5):3014–3020. https://doi.org/10.1021/es405348h

    Article  CAS  Google Scholar 

  91. Singh G, Vajpayee P, Rani N, Amoah ID, Stenström TA, Shanker R (2016) Exploring the potential reservoirs of non specific TEM beta lactamase (blaTEM) gene in the indo-Gangetic region: a risk assessment approach to predict health hazards. J Hazard Mater 314:121–128. https://doi.org/10.1016/j.jhazmat.2016.04.036

    Article  CAS  Google Scholar 

  92. Marathe NP et al (2013) A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLOS One 8(10):e77310. https://doi.org/10.1371/journal.pone.0077310

    Article  CAS  Google Scholar 

  93. Bailey JK, Pinyon JL, Anantham S, Hall RM (2010) Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 59(11):1331–1339. https://doi.org/10.1099/jmm.0.022475-0

    Article  CAS  Google Scholar 

  94. Bajaj P, Kanaujia PK, Singh NS, Sharma S, Kumar S, Virdi JS (2016) Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications. Environ Sci Pollut Res 23(2):1954–1959. https://doi.org/10.1007/s11356-015-5609-x

    Article  CAS  Google Scholar 

  95. National status of waste water generation & treatment:Inventorization of Sewage Treatment Plants,Central Pollution Control Board, Ministry of Environment and Forests. http://www.sulabhenvis.nic.in/Database/STST_wastewater_2090.aspx. Accessed 17 Nov 2019

  96. Sewage/Wastewater Treatment Technologies,National River Conservation Directorate Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Government of India. https://nrcd.nic.in/writereaddata/FileUpload/69307246Technologies.pdf. Accessed 5 Feb 2019

  97. Mutiyar PK, Mittal AK (2013) Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalin Water Treat 51(31–33):6158–6164. https://doi.org/10.1080/19443994.2013.770199

    Article  CAS  Google Scholar 

  98. WHO, United Nations’ Children’s Fund (2015) Water, sanitation and hygiene in health care facilities Status in low- and middle-income countries and way forward. https://apps.who.int/iris/bitstream/handle/10665/154588/9789241508476_eng.pdf;jsessionid=B43B935B4DE8DF4405CF21D08970F0E1?sequence=1. Accessed 17 Nov 2019

  99. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 9(12):1203–1214. https://doi.org/10.1111/j.1469-0691.2003.00739.x

    Article  Google Scholar 

  100. Praveenkumarreddy Y, Akiba M, Guruge KS, Balakrishna K, Vandana KE, Kumar V (2020) Occurrence of antimicrobial-resistant Escherichia coli in sewage treatment plants of South India. J Water Sanitation Hygiene Dev 10(1):48–55. https://doi.org/10.2166/washdev.2020.051

    Article  Google Scholar 

  101. Aggarwal A, Bhalla M, Fatima KH (2020) Detection of New Delhi metallo-beta-lactamase enzyme gene blaNDM-1 associated with the Int-1 gene in gram-negative bacteria collected from the effluent treatment plant of a tuberculosis care hospital in Delhi, India. Access Microbiol. https://doi.org/10.1099/acmi.0.000125

  102. Gandra S, Joshi J, Trett A, Sankhil Lamkang A, Laxminarayan R (2017) Scoping report on Antimicrobial Resistance in India. Center for Disease Dynamics, Economics & Policy, Washington. https://cddep.org/wp-content/uploads/2017/11/AMR-INDIA-SCOPING-REPORT.pdf

  103. Global Action Plan on Antimicrobial Resistance, 2014,World Health Organisation (2015). https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1. Accessed 27 Jun 2019

  104. National Policy for Containment of Antimicrobial Resistance in India.Ministry of Health and Family Welfare (2011). https://mohfw.gov.in/sites/default/files/3203490350abpolicy%20%281%29.pdf. Accessed 27 Jun 2019

  105. Jaipur Declaration on Antimicrobial Resistance (2011) Ministry of health and family welfare and WHO. http://www.searo.who.int/entity/antimicrobial_resistance/rev_jaipur_declaration_2014.pdf?ua=1. Accessed 27 Jun 2019

  106. Team C (2014) ‘Chennai declaration’: 5-year plan to tackle the challenge of anti-microbial resistance. Indian J Med Microbiol 32(3):221–228. https://doi.org/10.4103/0255-0857.129053

    Article  Google Scholar 

  107. Antimicrobial resistance and its containment in India (2016) Ministry of health and family welfare and WHO. http://www.searo.who.int/india/topics/antimicrobial_resistance/amr_containment.pdf. Accessed 27 Jun 2019

  108. National antimicrobial resistance research and surveillance network (AMRSN) (2015) Indian Council of Medical Research. http://pib.nic.in/newsite/PrintRelease.aspx?relid=133016. Accessed 27 Jun 2019

  109. National Treatment Guidelines for Antimicrobial Use in Infectious Diseases (2016) National Center for Disease Control, Directorate General of Health Services. Ministry of Health & Family Welfare. http://pbhealth.gov.in/AMR_guideline7001495889.pdf. Accessed 27 Jun 2019

  110. National Action Plan on Antimicrobial Resistance (NAP AMR 2017–2021) (2017) Ministry of Health and Family Welfare. http://www.searo.who.int/entity/antimicrobial_resistance/national-action-plans/en/. Accessed 27 Jun 2019

  111. Delhi Declaration on Antimicrobial Resistance (2017). http://www.searo.who.int/india/topics/antimicrobial_resistance/delhi_dec_amr.pdf. Accessed 27 Jun 2019

  112. Indian Network for Fishery and Animals Antimicrobial Resistance (INFAAR), FAO in India, Food and Agriculture Organization of the United Nations (2017). http://www.fao.org/india/news/detail-events/en/c/853974/. Accessed 27 Jun 2019

  113. Nafade V et al (2019) Over-the-counter antibiotic dispensing by pharmacies: a standardised patient study in Udupi district, India. BMJ Global Health 4(6):e001869. https://doi.org/10.1136/bmjgh-2019-001869

    Article  Google Scholar 

  114. Swachh Bharat Mission-Gramin, Department of Drinking Water and Sanitation, Ministry of Jal Shakti. https://sbm.gov.in/sbmReport/home.aspx. Accessed 3 May 2020

  115. Environment Protection Amendment Rules, Ministry of Environment, Forest and Climate Change. Authority (2020) https://assets.documentcloud.org/documents/6770398/The-following-draft-of-the-notification-which.pdf. Accessed 4 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indumathi M. Nambi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasikaladevi, R., Kiruthika Eswari, V., Nambi, I.M. (2020). Antibiotic Resistance and Sanitation in India: Current Situation and Future Perspectives. In: Manaia, C., Donner, E., Vaz-Moreira, I., Hong, P. (eds) Antibiotic Resistance in the Environment . The Handbook of Environmental Chemistry, vol 91. Springer, Cham. https://doi.org/10.1007/698_2020_608

Download citation

Publish with us

Policies and ethics