Skip to main content

Analytical Methods for Volatile Methylsiloxanes Quantification: Current Trends and Challenges

  • Chapter
  • First Online:
Volatile Methylsiloxanes in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 89))

Abstract

Silicon materials are widespread in our daily life and in numerous industrial applications, and this started raising concerns in the scientific community a couple of decades ago regarding the potential negative effects these chemicals could have in the environment and human health. Naturally, analytical methodologies were required to assess their presence around us. In particular, volatile methylsiloxanes (VMSs) have been the focus of research in this field, and their presence has been determined in many environmental matrices. However, this extended presence tends to provoke problems of external contamination during sampling and analysis, as, for instance, personal care products or chromatograph parts have VMSs in their formulations. Also, the volatility of these compounds advises against a large number of sample handling steps. This chapter reviews the analytical choices for the analysis of VMSs in water, air, sediments, soil and sewage sludge reported so far in literature, giving an overview of the sampling and sample processing precautions and the strategies employed for the extraction/clean-up (or lack thereof) before the typical analysis by gas chromatography coupled with mass spectrometry detection (GC-MS), which in some cases presented different injection options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rucker C, Kummerer K (2015) Environmental chemistry of organosiloxanes. Chem Rev 115:466–524

    Google Scholar 

  2. Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55:701–710

    CAS  Google Scholar 

  3. Lu Y, Yuan T, Wang W, Kannan K (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 159:3522–3528

    CAS  Google Scholar 

  4. Dudzina T, von Goetz N, Bogdal C, Biesterbos JW, Hungerbuhler K (2014) Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: prerequisite for human and environmental exposure assessment. Environ Int 62:86–94

    CAS  Google Scholar 

  5. Lassen C, Hansen CL, Mikkelsen SH, Maag J (2005) Siloxanes – consumption, toxicity and alternatives. Danish Environmental Protection Agency, Odense

    Google Scholar 

  6. Capela D, Ratola N, Alves A, Homem V (2017) Volatile methylsiloxanes through wastewater treatment plants – a review of levels and implications. Environ Int 102:9–29

    CAS  Google Scholar 

  7. Li B, Li WL, Sun SJ, Qi H, Ma WL, Liu LY, Zhang ZF, Zhu NZ, Li YF (2016) The occurrence and fate of siloxanes in wastewater treatment plant in Harbin, China. Environ Sci Pollut Res Int 23:13200–13209

    CAS  Google Scholar 

  8. Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832

    CAS  Google Scholar 

  9. Sanchis J, Martinez E, Ginebreda A, Farre M, Barcelo D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538

    CAS  Google Scholar 

  10. Liu N, Shi Y, Li W, Xu L, Cai Y (2014) Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China. Sci Total Environ 476-477:65–72

    CAS  Google Scholar 

  11. Lee S, Moon HB, Song GJ, Ra K, Lee WC, Kannan K (2014) A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Sci Total Environ 497-498:106–112

    CAS  Google Scholar 

  12. Mojsiewicz-Pienkowska K, Krenczkowska D (2018) Evolution of consciousness of exposure to siloxanes-review of publications. Chemosphere 191:204–217

    CAS  Google Scholar 

  13. Sparham C, van Egmond R, Hastie C, O’Connor S, Gore D, Chowdhury N (2011) Determination of decamethylcyclopentasiloxane in river and estuarine sediments in the UK. J Chromatogr A 1218:817–823

    CAS  Google Scholar 

  14. Zhang Z, Qi H, Ren N, Li Y, Gao D, Kannan K (2011) Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, Northeastern China. Arch Environ Contam Toxicol 60:204–211

    CAS  Google Scholar 

  15. Sanchis J, Cabrerizo A, Galban-Malagon C, Barcelo D, Farre M, Dachs J (2015) Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49:4415–4424

    CAS  Google Scholar 

  16. Ratola N, Ramos S, Homem V, Silva JA, Jimenez-Guerrero P, Amigo JM, Santos L, Alves A (2016) Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environ Sci Pollut Res Int 23:3273–3284

    CAS  Google Scholar 

  17. Borga K, Fjeld E, Kierkegaard A, McLachlan MS (2012) Food web accumulation of cyclic siloxanes in Lake Mjosa, Norway. Environ Sci Technol 46:6347–6354

    Google Scholar 

  18. Wang DG, de Solla SR, Lebeuf M, Bisbicos T, Barrett GC, Alaee M (2017) Determination of linear and cyclic volatile methylsiloxanes in blood of turtles, cormorants, and seals from Canada. Sci Total Environ 574:1254–1260

    CAS  Google Scholar 

  19. Kierkegaard A, Bignert A, McLachlan MS (2013) Cyclic volatile methylsiloxanes in fish from the Baltic Sea. Chemosphere 93:774–778

    CAS  Google Scholar 

  20. Sanchis J, Llorca M, Pico Y, Farre M, Barcelo D (2016) Volatile dimethylsiloxanes in market seafood and freshwater fish from the Xuquer River, Spain. Sci Total Environ 545-546:236–243

    CAS  Google Scholar 

  21. Ahrens L, Harner T, Shoeib M (2014) Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers. Environ Sci Technol 48:9374–9381

    CAS  Google Scholar 

  22. Yucuis RA, Stanier CO, Hornbuckle KC (2013) Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92:905–910

    CAS  Google Scholar 

  23. Pieri F, Katsoyiannis A, Martellini T, Hughes D, Jones KC, Cincinelli A (2013) Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization. Environ Int 59:363–371

    CAS  Google Scholar 

  24. Krogseth IS, Kierkegaard A, McLachlan MS, Breivik K, Hansen KM, Schlabach M (2013) Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Environ Sci Technol 47:502–509

    CAS  Google Scholar 

  25. Kierkegaard A, McLachlan MS (2013) Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmos Environ 80:322–329

    CAS  Google Scholar 

  26. Arespacochaga N, Valderrama C, Raich-Montiu J, Crest M, Mehta S, Cortina JL (2015) Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas – a review. Renew Sust Energ Rev 52:366–381

    Google Scholar 

  27. Velicogna J, Ritchie E, Princz J, Lessard ME, Scroggins R (2012) Ecotoxicity of siloxane D5 in soil. Chemosphere 87:77–83

    CAS  Google Scholar 

  28. McKim JM, Wilga PC, Kolesar GB, Choudhuri S, Madan A, Dochterman LW, Breen JG, Parkinson A, Mast RW, Meeks RG (1998) Evaluation of octamethylcyclotetrasiloxane(D4) as an inducer of rat hepatic microsomal cyto-chrome P450, UDP-glucuronosyl transferase, and epoxide hydrolase: a 28-day inhalation study. Toxicol Sci 41:29–41

    CAS  Google Scholar 

  29. Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: Octamethylcyclotetrasiloxane. Environment Agency of England and Wales, Bristol

    Google Scholar 

  30. U.S.E.P. Agency (2012) Quality assurance, quality control, and quality assessment measures, in: water: monitoring & assessment. United States Environmental Protection Agency, Washington, D.C

    Google Scholar 

  31. Chainet F, Lienemann C-P, Courtiade M, Ponthus J, Xavier Donard OF (2011) Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: a review. J Anal At Spectrom 26:30–51

    CAS  Google Scholar 

  32. Capela D, Alves A, Homem V, Santos L (2016) From the shop to the drain – volatile methylsiloxanes in cosmetics and personal care products. Environ Int 92-93:50–62

    CAS  Google Scholar 

  33. Varaprath S, Stutts DH, Kozerski GE (2006) A primer on the analytical aspects of silicones at trace levels-challenges and artifacts – a review. Silicon Chem 3:79–102

    CAS  Google Scholar 

  34. Warner NA, Evenset A, Christensen G, Gabrielsen GW, Borga K, Leknes H (2010) Volatile siloxanes in the European Arctic: assessment of sources and spatial distribution. Environ Sci Technol 44:7705–7710

    CAS  Google Scholar 

  35. Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724

    CAS  Google Scholar 

  36. Xu L, Shi Y, Wang T, Dong Z, Su W, Cai Y (2012) Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population. Environ Sci Technol 46:11718–11726

    CAS  Google Scholar 

  37. Liu N, Xu L, Cai Y (2018) Methyl siloxanes in barbershops and residence indoor dust and the implication for human exposures. Sci Total Environ 618:1324–1330

    CAS  Google Scholar 

  38. Wang DG, Steer H, Tait T, Williams Z, Pacepavicius G, Young T, Ng T, Smyth SA, Kinsman L, Alaee M (2013) Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere 93:766–773

    CAS  Google Scholar 

  39. Krogseth IS, Whelan MJ, Christensen GN, Breivik K, Evenset A, Warner NA (2017) Understanding of cyclic volatile methyl siloxane fate in a high latitude Lake is constrained by uncertainty in organic carbon-water partitioning. Environ Sci Technol 51:401–409

    CAS  Google Scholar 

  40. Companioni-Damas EY, Santos FJ, Galceran MT (2012) Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography-mass spectrometry. Talanta 89:63–69

    CAS  Google Scholar 

  41. Companioni-Damas EY, Santos FJ, Galceran MT (2012) Analysis of linear and cyclic methylsiloxanes in sewage sludges and urban soils by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. J Chromatogr A 1268:150–156

    CAS  Google Scholar 

  42. Ramos S, Silva JA, Homem V, Cincinelli A, Santos L, Alves A, Ratola N (2016) Solvent-saving approaches for the extraction of siloxanes from pine needles, soils and passive air samplers. Anal Methods 8:5378–5387

    CAS  Google Scholar 

  43. Companioni-Damas EY (2017) Problemas en el análisis de metilsiloxanos volátiles (VMS): origen y soluciones. Química Nova 40:192–199

    CAS  Google Scholar 

  44. Varaprath S, Seaton M, McNett D, Cao L, Plotzke KP (2000) Quantitative determination of Octamethylcyclotetrasiloxane (D4) in extracts of biological matrices by gas chromatography-mass spectrometry. Int J Environ Anal Chem 77:203–219

    CAS  Google Scholar 

  45. Companioni-Damas EY, Santos FJ, Galceran MT (2014) Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Talanta 118:245–252

    CAS  Google Scholar 

  46. Zeeuw JD (2005) How to minimize septum problems in GC. Am Lab 37:18–19

    Google Scholar 

  47. Cortada C, dos Reis LC, Vidal L, Llorca J, Canals A (2014) Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Talanta 120:191–197

    CAS  Google Scholar 

  48. Horii Y, Minomo K, Ohtsuka N, Motegi M, Nojiri K, Kannan K (2017) Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: analysis of surface waters by purge and trap method. Sci Total Environ 586:56–65

    CAS  Google Scholar 

  49. Knoerr SM, Durham JA, McNett DA (2017) Development of collection, storage and analysis procedures for the quantification of cyclic volatile methylsiloxanes in wastewater treatment plant effluent and influent. Chemosphere 182:114–121

    CAS  Google Scholar 

  50. Warner NA, Kozerski G, Durham J, Koerner M, Gerhards R, Campbell R, McNett DA (2013) Positive vs. false detection: a comparison of analytical methods and performance for analysis of cyclic volatile methylsiloxanes (cVMS) in environmental samples from remote regions. Chemosphere 93:749–756

    CAS  Google Scholar 

  51. Powell DE, Woodburn KB (2009) Trophic Dilution of Cyclic Volatile Methylsiloxanes (cVMS) materials in a temperate freshwater lake. Health and Environmental Sciences/Dow Corning Corporation, Auburn, pp 1–61

    Google Scholar 

  52. Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber estuary. Environ Sci Technol 45:5936–5942

    CAS  Google Scholar 

  53. Chambers DM, McElprang DO, Mauldin JP, Hughes TM, Blount BC (2005) Identification and elimination of polysiloxane curing agent interference encountered in the quantification of low-picogram per milliliter methyl tert-butyl ether in blood by solid-phase microextraction headspace analysis. Anal Chem 77:2912–2919

    CAS  Google Scholar 

  54. Wang YX (2006) How pierced PTFE/silicone septa affect GC-MS experiments. Am Lab 38:10–12

    CAS  Google Scholar 

  55. Sparham C, Van Egmond R, O’Connor S, Hastie C, Whelan M, Kanda R, Franklin O (2008) Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry. J Chromatogr A 1212:124–129

    CAS  Google Scholar 

  56. Hong WJ, Jia H, Liu C, Zhang Z, Sun Y, Li YF (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181

    CAS  Google Scholar 

  57. Tran TM, Kannan K (2015) Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Sci Total Environ 511:138–144

    CAS  Google Scholar 

  58. Tran TM, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani TA, Malarvannan G, Minh TB, Moon HB, Nakata H, Sinha RK, Kannan K (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44

    CAS  Google Scholar 

  59. Lee SY, Lee S, Choi M, Kannan K, Moon HB (2018) An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea. Environ Pollut 236:111–118

    CAS  Google Scholar 

  60. Kierkegaard A, McLachlan MS (2010) Determination of decamethylcyclopentasiloxane in air using commercial solid phase extraction cartridges. J Chromatogr A 1217:3557–3560

    CAS  Google Scholar 

  61. Shi Y, Xu S, Xu L, Cai Y (2015) Distribution, elimination, and rearrangement of cyclic volatile Methylsiloxanes in oil-contaminated soil of the Shengli oilfield, China. Environ Sci Technol 49:11527–11535

    CAS  Google Scholar 

  62. Krogseth IS, Zhang X, Lei YD, Wania F, Breivik K (2013) Calibration and application of a passive air sampler (XAD-PAS) for volatile methyl siloxanes. Environ Sci Technol 47:4463–4470

    CAS  Google Scholar 

  63. Zhang Y, Shen M, Tian Y, Zeng G (2018) Cyclic volatile methylsiloxanes in sediment, soil, and surface water from Dongting Lake, China. J Soils Sediments 18:2063–2071

    CAS  Google Scholar 

  64. Gallego E, Perales JF, Roca FJ, Guardino X, Gadea E (2017) Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas. Atmos Environ 155:108–118

    CAS  Google Scholar 

  65. Cheng Y, Shoeib M, Ahrens L, Harner T, Ma J (2011) Wastewater treatment plants and landfills emit volatile methyl siloxanes (VMSs) to the atmosphere: investigations using a new passive air sampler. Environ Pollut 159:2380–2386

    CAS  Google Scholar 

  66. Wang DG, Du J, Pei W, Liu Y, Guo M (2015) Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors. Sci Total Environ 512–513:472–479

    Google Scholar 

  67. Warner NA, Nost TH, Andrade H, Christensen G (2014) Allometric relationships to liver tissue concentrations of cyclic volatile methyl siloxanes in Atlantic cod. Environ Pollut 190:109–114

    CAS  Google Scholar 

  68. Zhi L, Xu L, He X, Zhang C, Cai Y (2019) Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea. J Environ Sci (China) 76:199–207

    Google Scholar 

  69. Bakke T, Boitsov S, Brevik EM, Gabrielsen GW, Green N, Helgason LB, Klungsøyr J, Leknes H, Miljeteig C, Måge A, Rolfsnes BE, Savonova T, Schlabach M, Skaage BB, Valdersnes S (2008) Mapping selected organic contaminants in the Barents Sea 2007. SPFO-report 1021/2008, TA-2400/2008. Norwegian Pollution Control Authority, Oslo

    Google Scholar 

  70. Powell DE, Schoyen M, Oxnevad S, Gerhards R, Bohmer T, Koerner M, Durham J, Huff DW (2018) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway. Sci Total Environ 622–623:127–139

    Google Scholar 

  71. Powell DE, Suganuma N, Kobayashi K, Nakamura T, Ninomiya K, Matsumura K, Omura N, Ushioka S (2017) Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan. Sci Total Environ 578:366–382

    CAS  Google Scholar 

  72. Nusz JB, Fairbrother A, Daley J, Burton GA (2018) Use of multiple lines of evidence to provide a realistic toxic substances control act ecological risk evaluation based on monitoring data: D4 case study. Sci Total Environ 636:1382–1395

    CAS  Google Scholar 

  73. Moeckel CH, Harner T, Nizzetto L, Strandberg B, Lindroth A, Jones KC (2009) Use of depuration compounds in passive air samplers: results from active sampling supported field deployment, potential uses, and recommendations. Environ Sci Technol 43:3227–3232

    CAS  Google Scholar 

  74. Holt E, Bohlin-Nizzetto P, Boruvkova J, Harner T, Kalina J, Melymuk L, Klanova J (2017) Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations. Environ Pollut 220:1100–1111

    CAS  Google Scholar 

  75. Tran TM, Le HT, Vu ND, Minh Dang GH, Minh TB, Kannan K (2017) Cyclic and linear siloxanes in indoor air from several northern cities in Vietnam: levels, spatial distribution and human exposure. Chemosphere 184:1117–1124

    CAS  Google Scholar 

  76. Tran TM, Tu MB, Vu ND (2018) Cyclic siloxanes in indoor environments from hair salons in Hanoi, Vietnam: emission sources, spatial distribution, and implications for human exposure. Chemosphere 212:330–336

    CAS  Google Scholar 

  77. Pellizzari ED, Bunch JE, Berkley RE, McRae J (1976) Determination of trace hazardous organic vapor pollutants in ambient atmospheres by gas chromatography/mass spectrometry/computer. Anal Chem 48:803–807

    CAS  Google Scholar 

  78. Shoeib M, Schuster J, Rauert C, Su K, Smyth SA, Harner T (2016) Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants. Environ Pollut 218:595–604

    CAS  Google Scholar 

  79. Rauert C, Shoieb M, Schuster JK, Eng A, Harner T (2018) Atmospheric concentrations and trends of poly- and Perfluoroalkyl Substances (PFAS) and Volatile Methyl Siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut 238:94–102

    CAS  Google Scholar 

  80. Shields HC, Fleischer DM, Weschler CJ (1996) Comparisons among VOCs measured in three types of U.S. commercial buildings with different occupant densities. Indoor Air 6:2–17

    CAS  Google Scholar 

  81. Coggon MM, McDonald B, Vlasenko A, Veres P, Bernard F, Koss AR, Yuan B, Gilman JB, Peischl J, Aikin KC, DuRant J, Warneke C, Li S-M, de Gouw JA (2018) Diurnal variability and emission pattern of decamethylcyclopentasiloxane (D5) from the application of personal care products in two North American cities. Environ Sci Technol 52:5610

    CAS  Google Scholar 

  82. Badjagbo K, Furtos A, Alaee M, Moore S, Sauvé S (2009) Direct analysis of volatile methylsiloxanes in gaseous matrixes using atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Chem 81:7288–7293

    CAS  Google Scholar 

  83. Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2015) Siloxanes are the Most abundant volatile organic compound emitted from engineering students in a classroom. Environ Sci Technol Lett 2:303–307

    CAS  Google Scholar 

  84. Lu Y, Yuan T, Yun SH, Wang W, Wu Q, Kannan K (2010) Occurrence of cyclic and linear siloxanes in indoor dust from China and implications for human exposures. Environ Sci Technol 44:6081–6087

    CAS  Google Scholar 

  85. Ribeiro C, Ribeiro AR, Maia AS, Goncalves VM, Tiritan ME (2014) New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 44:142–185

    CAS  Google Scholar 

  86. Parker WJ, Shi J, Fendinger NJ, Monteith HD, Chandra G (1999) Pilot plant study to assess the fate of two volatile Methylsiloxane compounds during municipal wastewater treatment. Environ Toxicol Chem 18:172–181

    CAS  Google Scholar 

  87. Wang DG, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217

    CAS  Google Scholar 

  88. Wang DG, Alaee M, Steer H, Tait T, Williams Z, Brimble S, Svoboda L, Barresi E, Dejong M, Schachtschneider J, Kaminski E, Norwood W, Sverko E (2013) Determination of cyclic volatile methylsiloxanes in water, sediment, soil, biota, and biosolid using large-volume injection-gas chromatography-mass spectrometry. Chemosphere 93:741–748

    CAS  Google Scholar 

  89. Kaj L, Andersson J, Cousins AP, Remberger M, Brorström-Lundén E, Cato I (2004) Results from the Swedish national screening program - subreport 4: siloxanes. Swedish Environmental Research Institute, Stockholm

    Google Scholar 

  90. Kaj L, Schlabach M, Andersson J, Cousins AP, Schmidbauer N, Brorström-Lundén E (2005) Siloxanes in the Nordic environment. TemaNord/Nordic Council of Ministers, Copenhagen

    Google Scholar 

  91. Schlabach M, Andersen MS, Green N, Schøyen M, Kaj L (2007) Siloxanes in the environment of the inner Oslofjord. Norsk institutt for luftforskning (NILU), Kjeller

    Google Scholar 

  92. Souza Silva EA, Risticevic S, Pawliszyn J (2013) Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trend Anal Chem 43:24–36

    CAS  Google Scholar 

  93. van Egmond R, Sparham C, Hastie C, Gore D, Chowdhury N (2013) Monitoring and modelling of siloxanes in a sewage treatment plant in the UK. Chemosphere 93:757–765

    Google Scholar 

  94. Oshita K, Omori K, Takaoka M, Mizuno T (2014) Removal of siloxanes in sewage sludge by thermal treatment with gas stripping. Energ Convers and Manage 81:290–297

    CAS  Google Scholar 

  95. Dewil R, Appels L, Baeyens J, Buczynska A, Van Vaeck L (2007) The analysis of volatile siloxanes in waste activated sludge. Talanta 74:14–19

    CAS  Google Scholar 

  96. Tavazzi S, Locoro G, Comero S, Sobiecka E, Loos R, Gans O, Ghiani M, Umlauf G, Suurkuusk G, Paracchini B, Cristache C, Fissiaux I, Riuz AA, Gawlik BM (2012) Occurrence and levels of selected compounds in European sewage sludge samples - results of a pan-European screening exercise (FATE SEES). J.R.C.o.t.E. Commission, Luxembourg

    Google Scholar 

  97. Evenset A, Leknes H, Christensen GN, Warner N, Remberger M, Gabrielsen GW (2009) Screening of new contaminants in samples from Norwegian Arctic - silver, platinum, sucralose, bisphenol A, Tetrabrombisphenol A, siloxanes, Phtalates (DEHP) and Phosphororganic flame retardants. Akvaplan-niva, Tromsø

    Google Scholar 

  98. Sanchez-Brunete C, Miguel E, Albero B, Tadeo JL (2010) Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry. J Chromatogr A 1217:7024–7030

    CAS  Google Scholar 

  99. Meng F, Wu H (2015) Indoor air pollution by Methylsiloxane in household and automobile settings. PLoS One 10:e0135509

    Google Scholar 

  100. Genualdi S, Harner T, Cheng Y, Macleod M, Hansen KM, van Egmond R, Shoeib M, Lee SC (2011) Global distribution of linear and cyclic volatile methyl siloxanes in air. Environ Sci Technol 45:3349–3354

    CAS  Google Scholar 

  101. Wang XM, Lee SC, Sheng GY, Chan LY, Fu JM, Li XD, Min YS, Chan CY (2001) Cyclic organosilicon compounds in ambient air in Guangzhou, Macau and Nanhai, Pearl River Delta. J Appl Geochem 16:1447–1454

    CAS  Google Scholar 

  102. McLachlan MS, Kierkegaard A, Hansen KM, Egmond RV, Christensen JH, SkØth CA (2010) Concentrations and fate of Decamethylcyclopentasiloxane (D5) in the atmosphere. Environ Sci Technol 44:5365–5370

    CAS  Google Scholar 

  103. Buser AM, Kierkegaard A, Bogdal C, MacLeod M, Scheringer M, Hungerbuhler K (2013) Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland. Environ Sci Technol 47:7045–7051

    CAS  Google Scholar 

  104. Hodgson AT, Faulkner D, Sullivan DP, DiBartolomeo DL, Russell ML, Fisk WJ (2003) Effect of outside air ventilation rate on volatile organic compound concentrations in a call center. Atmos Environ 37:5517–5527

    CAS  Google Scholar 

  105. Katsoyiannis A, Anda EE, Cincinelli A, Martellini T, Leva P, Goetsch A, Sandanger TM, Huber S (2014) Indoor air characterization of various microenvironments in the Arctic. The case of Tromso, Norway. Environ Res 134:1–7

    CAS  Google Scholar 

  106. Cincinelli A, Martellini T, Amore A, Dei L, Marrazza G, Carretti E, Belosi F, Ravegnani F, Leva P (2016) Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy). Sci Total Environ 572:333–339

    CAS  Google Scholar 

  107. de Hoffmann E, Stroobant V (2007) Mass spectrometry. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

This work was also financially supported by (1) Project UID/EQU/00511/2019 ‘Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE’ funded by national funds through FCT/MCTES (PIDDAC); (2) Projects POCI-01-0145-FEDER-029425 ‘AGRONAUT - Agronomic impact of sludge amendment using a comprehensive exposure viewpoint’ and POCI-01-0145-FEDER-032084 ‘LANSILOT - LAunching New SILOxane Treatments: assessing effluent, sludge and air quality and improving biogas production in WWTPs’, funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; (3) Project ‘LEPABE-2-ECO-INNOVATION – NORTE-01-0145-FEDER-000005’, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). V. Homem acknowledges the Assistant Researcher contract (Individual Scientific Employment Stimulus 2017 - CEECIND/00676/2017) funded by Fundação para a Ciência e Tecnologia (FCT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vera Homem or Nuno Ratola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Homem, V., Ratola, N. (2020). Analytical Methods for Volatile Methylsiloxanes Quantification: Current Trends and Challenges. In: Homem, V., Ratola, N. (eds) Volatile Methylsiloxanes in the Environment. The Handbook of Environmental Chemistry, vol 89. Springer, Cham. https://doi.org/10.1007/698_2020_469

Download citation

Publish with us

Policies and ethics