Skip to main content

Advertisement

Log in

Cyclic volatile methyl siloxanes (D4, D5, and D6) as the emerging pollutants in environment: environmental distribution, fate, and toxicological assessments

  • Innovative Strategies for Management of Polluted Aquatic Ecosystems: Wastewater Treatment and Resource Recovery
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cyclic volatile methyl siloxanes (cVMS) have now become a subject of environmental contamination and risk assessment due to their widespread use and occurrence in different environmental matrices. Due to their exceptional physio-chemical properties, these compounds are diversely used for formulations of consumer products and others implying their continuous and significant release to environmental compartments. This has captured the major attention of the concerned communities on the grounds of potential health hazards to human and biota. The present study aims at comprehensively reviewing its occurrence in air, water, soil, sediments, sludge, dusts, biogas, biosolids, and biota and their environmental behavior as well. Concentrations of cVMS in indoor air and biosolids were higher; however, no significant concentrations were observed in water, soil, and sediments except for wastewaters. No threat to the aquatic organisms has been identified as their concentrations do not exceed the NOEC (maximum no observed effect concentration) thresholds. Mammalian (rodents) toxicity hazards were not very evident except for the occurrence of uterine tumors in very rare cases under long-term chronic and repeated dose exposures in laboratory conditions. Human relevancy to rodents were also not strongly enough established. Therefore, more careful examinations are required to develop stringent weight of evidences in scientific domain and ease the policy making with respect to their production and use so as to combat any environmental consequences.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: Amec. Foster Wheeler Global Siloxane Council Survey, May 2015)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source: Xu et al., (2012)

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed.

Abbreviations

cVMS:

Cyclic volatile methyl siloxanes

OECD:

Organisation for Economic Co-operation and Development

USEPA:

United States Environmental Protection Agency

ECHA:

European Chemical Agency

GSC:

Global Silicone Council

D4:

Octamethylcyclotetrasiloxane

D5:

Decamethylcyclopentasiloxane

D6:

Dodecamethylcyclohexasiloxane

Kow :

Octonal-water partitioning coefficient

Koc :

Organic carbon partitioning coefficient

KAW :

Air-water partition coefficient

TDS:

Total dissolved solids

ECHC:

Environment Canada Health Canada

USD:

United States Dollar

HSDB:

Hazardous Substances Data Bank

PCPs:

Personal care products

AICIS:

Australian Industrial Chemicals Introduction Scheme

OH°:

Hydroxyl radical

kg/yr:

Kilogram per year

μg/g:

Microgram per year

mg/day:

Milligram per day

ng/m3 :

Nanogram per cubic meter

NYIEQ:

New York Indoor Environmental Quality Center

ng/L:

Nanogram per liter

WWTPs:

Wastewater treatment plants

REACH:

Registration, Evaluation, Authorisation and Restriction of Chemicals European Regulation

ng/g dw:

Nanogram per gram dry weight

μg/g dw:

Microgram per gram dry weight

ng/g ww:

Nanogram per gram wet weight

LOD:

Limit of detection

NOEC:

No observed effect concentration

TE:

Transfer efficiency

BeTR Model:

Biogeochemical transport and reactions model

DEHM:

Danish Eulerian Hemispheric Model

CMAQ Model:

Community Multiscale Air Quality Model

RH:

Relative humidity

BAF:

Bio-accumulation factor

BCF:

Bio-concentration factor

vB:

Very bioaccumulative

BSAF:

Biota-sediment accumulation factor

C organism tissue :

Concentration in organism’s tissue

Csediment :

Concentration in sediment

mg/kg:

Milligram per kilogram

BMF:

Bio-magnification factor

TMF:

Trophic magnification factor

LRT:

Long range transport

LOEC:

Lowest observed effective concentration

NOEL:

No observable effect level

EC:

Effective concentration

LC:

Lethal concentration

mg/kg bw:

Milligram per kilogram body weight

IRDC:

International Research and Development Corporation

SCCS:

Scientific Committee on Consumer Safety

CAR:

Constitutive androstane receptor

DCC:

Dow Corning Corporation

ESIS:

European chemical Substances Information System

LOEL:

Lowest observed effect level

MOS:

Margin of safety

PBPK:

Physiological-based pharmacokinetic modeling

GSPA:

Global Silicone Producers Association

NOEAL:

No observed adverse effect level

EA:

European Agency

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctane sulfonate

PBDEs:

Polybrominated diphenyl ethers

PDMS:

Polydimethyl siloxanes

References

  • Abe Y, Butler GB, Hogen-Esch TE (1981) Photolytic oxidative degradation of octamethylcyclotetrasiloxane related products. J Macromol Sci-Chem A16:461–471

    Article  CAS  Google Scholar 

  • AICIS (2020) Cyclic volatile methyl siloxanes: environment tier II assessment. https://www.nicnas.gov.au/_disabled20200701/chemical-information/imap-assessments/imap-assessments/tier-ii-environment-assessments/cvm (accessed 4 June 2021).

  • Andersen M, Reddy M, Plotzke K (2005) Cyclic siloxanes do not bioaccumulate with repeated, episodic exposures. The Toxicologist 84:172–92

    Google Scholar 

  • Baker S (2010) Technical report: potential for octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane to interact with activate the dopamine D2 receptor in rat striatal membranes. Study performed by Dept of Pharmacol Therapeutics of the University of Florida for Siloxanes Environmental, Hemdon, VA

  • Balducci C, Perilli M, Romagnoli P, Cecinato A (2012) New developments on emerging organic pollutants in the atmosphere. Environ Sci Pollut Res 19:1875–1884

    Article  CAS  Google Scholar 

  • Batelle (2004) Batelle, Toxicology northwest, technical report for Dow Corning Corporation - 24- month combined chronic toxicity oncogenicity whole body vapor inhalation study of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats. Report number 2004-I0000–54091, HES/DCC Study number 9106, Batelle Study number N003441A

  • Bernauer U, Bodin L, Celleno L, Chaudhry Q, Coenraads PJ, Dusinska M, Duus-Johansen J, Ezendam J, Gaffet E, Galli CL, Granum B (2016) SCCS opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_174.pdf. Accessed 5 August 2021

  • Beyer A, Mackay D, Matthies M, Wania F (2000) Assessing long-range transport potential of persistent organic pollutants. Environ Sc and Technol 34:699–703

    Article  CAS  Google Scholar 

  • Biesterbos JW, Beckmann G, van Wel L, Anzion RB, von Goetz N, Dudzina T, Roeleveld N, Ragas AM, Russel FG, Scheepers PT (2015) Aggregate dermal exposure to cyclic siloxanes in personal care products: implications for risk assessment. Environ Int 74:231–239

    Article  CAS  Google Scholar 

  • Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading fate of linear cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47(4):1824–1832. https://doi.org/10.1021/es304369b

    Article  CAS  Google Scholar 

  • Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2012a) Food web accumulation of cyclic siloxanes in lake Mjøsa. Norway Environ Sci Technol 46(11):6347–6354

    Article  Google Scholar 

  • Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2012b) Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway. Environ Sci Technol 46:6347–6354. https://doi.org/10.1021/es300875d

    Article  CAS  Google Scholar 

  • Borgå K, Fjeld E, Kierkegaard A, McLachlan MS (2013b) Consistency in trophic magnification factors of cyclic volatile methyl siloxanes in pelagic freshwater food webs leading to brown trout. Environ Sci Technol 47:14394–14402

    Article  Google Scholar 

  • Borgå K, Fjeld E, Kierkegaard A, Løvik JE, Rognerud S, Høgfeldt AS, Bæk K, McLachlan MS (2013a) Siloxanes in freshwater food webs – a study of three lakes in Norway, Miljødirektoratetrapport. ISBN NO: 978–82–577–6255–1. 93

  • Brooke DN, Crookes MJ, Gray D, Robertson S (2009a) Environmental risk assessment report: octamethylcyclotetrasiloxane. Environment Agency of Engl Wales, Bristol, UK, p. 201

  • Brooke DN, Crookes MJ, Gray D, Robertson S (2009b) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency of Engl Wales, Bristol, UK, p. 221

  • Brooke DN, Crookes MJ, Gray D, Robertson S (2009c) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency of Engl Wales, Bristol, UK, p. 98

  • Burns-Naas LA, Mast RW, Meeks RG, Mann PC, Thevenaz P (1998a) Inhalation toxicology of decamethylcyclopentasiloxane (D5) following a 3-month nose-only exposure in Fischer 344 rats. Toxicol Sci 43(2):230–240

  • Burns-Naas LA, Mast RW, Klykken PC, McCay JA, White KL Jr, Mann PC, Naas DJ (1998b) Toxicology and humoral immunity assessment of decamethylcyclopentasiloxane (D5) following a 1-month whole body inhalation exposure in Fischer 344 rats. Toxicol Sci 43(1):28–38

  • Burns-Naas LA, Meeks RG, Kolesar GB, Mast RW, Elwell MR, Hardisty JF, Thevenaz P (2002) Inhalation toxicology of octamethylcyclotetrasiloxane (D4) following a 3-month nose-only exposure in Fischer 344 rats. Int J Toxicol 21:39–53

    Article  CAS  Google Scholar 

  • Buser AM, Kirkegaard A, Bogdal C, MacLeod M, Scheringer M, Hungerbühler K (2013) Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland. Environ Sci Technol 47:7045e7051

  • Bzdek BR, Horan AJ, Pennington MR, Janechek NJ, Baek J, Stanier CO, Johnston MV (2014) Silicon is a frequent component of atmospheric nanoparticles. Environ Sci Technol 48:11137–11145. https://doi.org/10.1021/es5026933

    Article  CAS  Google Scholar 

  • Capela D, Alves A, Homem V, Santos L (2016) From the shop to the drain—volatile methylsiloxanes in cosmetics personal care products. Environ Int 92:50–62

    Article  Google Scholar 

  • Capela D, Ratola N, Alves A, Homem V (2017) Volatile methyl siloxanes through wastewater treatment plants–a review of levels implications. Environ Int 102:9–29

    Article  CAS  Google Scholar 

  • Chemical Economics Handbook (2013) Chemical economics handbook marketing research report silicones. In: Jebens AM, Kälin T, Kishi A, Liu S (eds) Chemical economics handbook. IHS Publication, Denver, CO

  • Companioni-Damas EY, Santos FJ, Galceran MT (2012) Analysis of linear and cyclic methylsiloxanes in sewage sludges urban soils by concurrent solvent recondensation – large volume injection – gas chromatography–mass spectrometry. J Chromatogr A 1268:150–156

    Article  CAS  Google Scholar 

  • Cortada C, dos Reis LC, Vidal L, Llorca J, Canals A (2014) Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta 120:191–197

    Article  CAS  Google Scholar 

  • Cui S, Qiang F, Lihui A, Ting YF, Zhang S, Gao D, Liu, Jia H (2019) Trophic transfer of cyclic methyl siloxanes in the marine food web in the Bohai Sea China. Ecotoxicol Environ Saf 178:86–93

    Article  CAS  Google Scholar 

  • David MD, Fendinger NJ, H, V.C., (2000) Determination of Henry’s law constants for organosiloxanes in acutal simulated wastewater. Environ Sci Technol 34:4554–4559

    Article  CAS  Google Scholar 

  • DCC (2005) Decamethylcyclopentasiloxane (D5): A 24-month combined chronic toxicity carcinogenicity whole body vapor inhalation study in Fischer 344 rats. Study No. 9346, Report Number: 2003-I0000–53252

  • DCC (2009) Dow Corning Corporation technical report - non-regulated study: potential for octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane to bind dopamine receptors in vitro. Study no. 10878–102

  • DCC (2010a) Dow Corning Corporation, health environmental sciences technical report -non-regulated study: effect of octamethylcyclotetrasiloxane (D4, CAS No. 556–67–2) and decamethylcyclopentasiloxane (D5, CAS No. 541–02–6) on circulating prolactin levels in the aged female Fischer 344 rat (SEHSC Contract No. 09–030). Siloxanes Environmental, Health Safety Council Study Number 11360–102, draft of 2010a

  • DCC (2010b) Dow Corning Corporation, Health Environmental Sciences Technical report - Non-regulated study: In vivo evaluation of the impact of exposure/endpoint evaluation timing on the potential for octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane to affect circulating prolactin levels in the reserpine-treated Fischer 344 rat. DCC Study no.11257–102, Siloxanes Environmental Health Safety Council, HES Study no. 11360–102

  • de Arespacochaga N, Valderrama C, Raich-Montiu J, Crest M, Mehta S, Cortina DJL (2015) Understing the effects of the origin, occurrence, monitoring, control, fate removal of siloxanes on the energetic valorisation of sewage biogas- a review. Renew Sustain Energy Revi 52:366–38. https://doi.org/10.1016/j.rser.2015.07.106

    Article  CAS  Google Scholar 

  • Dekant W, Scialli AR, Plotzke K, Klaunig JE (2017) Biological relevance of effects following chronic administration of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats. Toxicol Lett 279:42–53. https://doi.org/10.1016/j.toxlet.2017.01.010

    Article  CAS  Google Scholar 

  • Dewil R, Appels L, Baeyens J, Buczynska A, Van Vaeck L (2007) The analysis of volatile siloxanes in waste activated sludge. Talanta 74:14–19

    Article  CAS  Google Scholar 

  • Drottar KR (2005) 14C-Decamethylcyclopentasiloxane (14C-D5): Bioconcentration in the fathead minnow (Pimephales promelas) under flow-through test conditions. Dow Corning, Midl, MI, USA

  • Dudzina T, von Goetz N, Bogdal C, Biesterbos JWH, Hungerbühler K (2014) Concentrations of cyclic volatile methylsiloxanes in European cosmetics personal care products: prerequisite for human environmental exposure assessment. Environ Int 62:84–94

    Article  Google Scholar 

  • ECHA (2016) Committee for Risk Assessment (RAC); Committee for socio-economic analysis (SEAC) background document to the opinion on the annex XV dossier proposing restrictions on Octamethylcyclotetrasiloxane (D4) Decamethylcyclopentasiloxane (D5)

  • ECHA, European Chemicals Agency (2018) Support document for identification of dodecamethylcyclohexasiloxane (D6) as a substance of very high concern because of its PBT/vPvB properties

  • ECHC, Environment Canada Health Canada (2008a) Screening assessment for the challenge Octamethylcyclotetrasiloxane (D4). http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_556-67-2.cfm. Accessed 30 July 2021

  • ECHC, Environment Canada Health Canada (2008b) Screening assessment for the challenge decamethylcyclopentasiloxane (D5). http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_541-02-6.cfm. Accessed 30 July 2021

  • ECHC, Environment Canada Health Canada (2008c) Screening assessment for the challenge Dodecamethylcyclohexasiloxane(D6). http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_540-97-6.cfm. Accessed 30 July 2021

  • Elcombe CR, Peffer RC, Wolf DC, Bailey J, Bars R, Bell D, Cattley RC, Ferguson SS, Geter D, Goetz A, Goodman JI, Hester S, Jacobs A, Omiecinski CJ, Schoeny R, Xie W, Lake BG (2014) Mode of action human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive rostane receptor (CAR) activator. Crit Rev Toxicol 44:64–82

    Article  CAS  Google Scholar 

  • Eneji IS, ShaíAto R, Annune PA (2011) Bioaccumulation of heavy metals in fish (Tilapia Zilli and Clarias Gariepinus) organs from river Benue, north ñ Central Nigeria Pak. J Anal Environ Chem 12(1 & 2):25–31

    CAS  Google Scholar 

  • ESIS, European Chemical Substances Information System (2007) European Chemical Bureau (ECB), Version 5. http://ecb.jrc.it/esis. Accessed 7 Sept 2021

  • European Commission (2001) Adapting to technical progress for the 28th time Council Directive 67/548/EEC on the approximation of the laws, regulations administrative provisions relating to the classification, packaging labelling of dangerous substances. COMMISSION DIRECTIVE 2001/59/EC. Annex I. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:225:0001:0333:EN. Accessed 18 July 2021

  • European Commission (2010) Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XIII. http://register.consilium.europa.eu/pdf/en/10/st14/st14860.en10.pdf

  • European Chemicals Agency (ECHA) (2011) Peter Fisk Associates Ltd, Herne Bay

  • Fairbrother A, Burton GA, Klaine SJ, Powell DE, Staples CA, Mihaich EM (2015) Characterization of ecological risks from environmental releases of decamethylcyclopentasiloxane (D5). Environ Toxicol Chem 34(12):2715–2722

    Article  CAS  Google Scholar 

  • Fendinger NJ, Mcavoy DC, Eckhoff WS (1997) Environmental occurrence of polydimethylsiloxane. Environ Sci Technol 31(5):1555–1563

    Article  CAS  Google Scholar 

  • Franzen A, Van Lingham C, Greene T, Plotzke K, Gentry R (2016) A global human health risk assessment for Decamethylcyclopentasiloxane (D5). Regulatory Toxicology Pharmacology 74:S25–S43

    Article  CAS  Google Scholar 

  • Franzen A, Greene T, Van Lingham C, Gentry R (2017) Toxicology of octamethylcyclotetrasiloxane (D4). Toxicol Lett 279:2–22

    Article  CAS  Google Scholar 

  • Fromme H, Cequier E, Kim JT, Hanssen L, Hilger B, Thomsen C (2015) Persistent emerging pollutants in the blood of German adults: occurrence of dechloranes, polychlorinated naphthalenes, siloxanes. Environ Int 85:292–298. https://doi.org/10.1016/j.envint.2015.09.002

    Article  CAS  Google Scholar 

  • Gallego E, Perales JF, Roca FJ, Guardino X, Gadea E (2017) Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas. Atmos Environ 15:108–118. https://doi.org/10.1016/j.atmosenv.2017.02.013

    Article  CAS  Google Scholar 

  • Gentry R, Franzen A, Van Lingham C, Greene T, Plotzke K (2017) A global human health risk assessment for octamethylcyclotetrasiloxane (D4). Toxicol Lett 279:23–41. https://doi.org/10.1016/j.toxlet.2017.05.019

    Article  CAS  Google Scholar 

  • Genualdi S, Harner T, Cheng Y, MacLeod M, Hansen KM, van Egmond R, Shoeib M, Lee SC (2011) Global distribution of linear cyclic volatile methyl siloxanes in air. Environ Sci Technol 45:3349–3354

    Article  CAS  Google Scholar 

  • Gerhards R, Seston RM, Kozerski GE, McNett DA, Boehmer T, Durham JA, Shihe Xu (2022) Basic considerations to minimize bias in collection and analysis of volatile methyl siloxanes in environmental samples. Sci Total Environ 851(2022):158275

    Article  CAS  Google Scholar 

  • Giesy JP, Solomon K, Kacew S (2011) Report of the board of review for decamethylcyclopentasiloxane (D5). Siloxane D5 Board of Review, Ottawa, ON, Canada, p. 83

  • Glamowska D, Szymkowska K, Mojsiewicz PienkowskaPienkowska K, Cal K, Jankowski Z (2015) Loss of the skin barrier after dermal application of the low molecular methyl siloxanes (volatile methyl siloxanes, vms siloxanes). Proceedings of the XIII International Conference on Toxicology, London

  • Gobas FA, Lee YS (2019) Growth-correcting the bioconcentration factor and biomagnification factor in bioaccumulation assessments. Environmental Toxicology Chemistry 38(9):2065–2072. https://doi.org/10.1002/etc.4509

    Article  CAS  Google Scholar 

  • Gobas FA, de Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integrated Environmental Assessment and Management: An International Journal 5(4):624–637

    Article  CAS  Google Scholar 

  • Gobas FA, Lee YS, Lo JC, Parkerton TF, Letinski DJ (2020) A toxicokinetic framework and analysis tool for interpreting organisation for economic co-operation and development guideline 305 dietary bioaccumulation tests. Environ Toxicol Chem 39(1):171–188

    Article  CAS  Google Scholar 

  • Gobas FAPC, Powell DE, Woodburn KB, Springer T, Huggett DB (2015a) Bioaccumulation of decamethylpentacyclosiloxane (D5): a review. Environ Toxicol Chem 34:2703–2714

    Article  CAS  Google Scholar 

  • Gobas FAPC, Xu S, Kozersky G, Powell DE, Woodburn KB, Mackay D (2015b) Fugacity activity analysis of the bioaccumulation environmental risks of decamethylcyclopentasiloxane (D5). Environ Toxicol Chem 34:2723–2731

    Article  CAS  Google Scholar 

  • Gouin T, van Egmond R, Sparham C, Hastie C, Chowdhury N (2013) Simulated use wash-off release of decamethylcyclopentasiloxane used in anti-perspirants. Chemosphere 93(5):726–734

    Article  CAS  Google Scholar 

  • Grümping R, Michalke K, Hirner AV, Hensel R (1999) Microbial degradation of octamethylcyclotetrasiloxane. Appl Environ Microbiol 65:2276–2278

    Article  Google Scholar 

  • GSC, Global Siloxane Council (2016) Socio-economic evaluation of the global siloxanes industry. https://sehsc.americanchemistry.com/Socio-Economic-Evaluation-of-the-Global-Siloxanes-Industry-Final-Report.pdf. Accessed 24 July 2021

  • GSPA (1991) Global Siloxane Producers Association, International Research Development Corporation. Thirteen-week subchronic inhalation toxicity study on D4 in rats. Report no. 416–074, February 08, 1991. [cited in SEHSC (Siloxanes Environmental, Health Safety Council). 2007d. Additional toxicity exposure information for a screening health assessment of octamethylcyclotetrasiloxane (D4), CAS No. 556–67–2

  • Guo J, Zhou Y, Zhang B, Zhang J (2019) Distribution evaluation of the fate of cyclic volatile methyl siloxanes in the largest lake of southwest China. Sci Total Environ 657:87–95

    Article  CAS  Google Scholar 

  • Guo W, Dai Y, Chu X, Cui S, Sun Y, Li YF, Jia H (2021) Assessment bioaccumulation factor (BAF) of methyl siloxanes in crucian carp (Carassius auratus) around a siloxane production factory. Ecotoxicol Environ Saf 213:111983. https://doi.org/10.1016/j.ecoenv.2021.111983

    Article  CAS  Google Scholar 

  • Hamelink JL, Simon PB, Silberhorn EM (1996) Henry’s law constant, volatilization rate, and aquatic half-life of octamethylcyclotetrasiloxane. Environ Sci Technol 30:1946–1952

    Article  CAS  Google Scholar 

  • Hanssen L, Warner NA, Braathen T, Odl JO, Lund E, Nieboer E, Sanger TM (2013) Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant postmenopausal Norwegian women self-reported use of personal care products (PCPs). Environ Int 51:82–87

    Article  CAS  Google Scholar 

  • Health Canada (2008) Screening assessment for the challenge Decamethylcyclopentasiloxane (D5) (2008) chemical abstracts service registry no: 541–02-6

  • He B, Rhodes-Brower S, Miller MR, Munson AE, Germolec DR, Walker VR, Korach KS, Meade BJ (2003) Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ERR. Toxicol Appl Pharmacol 192(3):254–261

    Article  CAS  Google Scholar 

  • He Y, Su S, Lyu Y, Tang Z (2021) Occurrence of methylsiloxanes in sediments from a subtropical river-lake system in eastern China and its implication for ecological risks. Ecotoxicol Environ Saf 223:112627. https://doi.org/10.1016/j.ecoenv.2021.112627

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta Hydrochim Hydrobiol 30:227–243

    Article  Google Scholar 

  • Hirner AV, Flassbeck D, Gruemping R (2003) Organosilicon compounds in the environment. Oganometallic compounds in the environment. 305–351

  • Holson JF, Reynolds VL (1995) An inhalation range-findings reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in rats. Report No. 1995-I0000–40919. Midl, MI: Dow Corning Corporation

  • Homem V, Capela D, Silva JA, Cincinelli A, Santos L, Alves A, Ratola N (2017) An approach to the environmental prioritisation of volatile methylsiloxanes in several matrices. Sci Total Environ 579:506–513

    Article  CAS  Google Scholar 

  • Hong WJ, Jia H, Liu C, Zhang Z, Sun Y, Li YF (2014) Distribution, source, fate and bioaccumulation of methyl siloxanes in marine environment. Environ Pollut 191:175–181. https://doi.org/10.1016/j.envpol.2014.04.033

    Article  CAS  Google Scholar 

  • Horii Y, Kannan K (2008) Survey of organosiloxane compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55(4):701

    Article  CAS  Google Scholar 

  • Horii Y, Minomo K, Ohtsuka N, Motegi M, Nojiri K, Kannan K (2017) Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: analysis of surface waters by purge and trap method. Sci Total Environ 586:56–65. https://doi.org/10.1016/j.scitotenv.2017.02.014

    Article  CAS  Google Scholar 

  • Horii Y, Nojiri K, Minomo K, Motegi M, Kannan K (2019) Volatile methylsiloxanes in sewage treatment plants in Saitama, Japan: mass distribution and emissions. Chemosphere 233:677–686. https://doi.org/10.1016/j.chemosphere.2019.05.247

    Article  CAS  Google Scholar 

  • HSDB, 2018. Hazardous Substance Data Bank. United States National Library of Medicine. https://toxnet.nlm.nih.gov. Accessed 17 October 2021

  • Hughes L, Mackay D, Powell DE, Kim J (2012) An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane). Chemosphere 87:118–124

    Article  CAS  Google Scholar 

  • IRDC (1991) International Research and Development Corporation - Thirteen-week subchronic inhalation toxicity study on D4 in rats. Report No. 416–074, performing laboratory IRDC, Mattawan, MI; sponsor: Global Siloxane Producers Association, date of study completion February 08, 1991

  • IRDC (1993a) International Research and Development Corporation - Inhalation developmental toxicity study in New Zeel white rabbits with octamethylcyclotetrasiloxane. Report No. 665–005, performing laboratory IRDC, Mattawan, MI; sponsor: Global Siloxane Producers Association, date of study completion December 17, 1993a.

  • IRDC (1993b) International Research and Development Corporation. Inhalation developmental toxicity study in rats with D4. Study No. 665–004

  • Isquith A, Matheson D, Slesinski R (1988a) Genotoxicity studies on selected organosilicon compounds: in vitro assays. Food Chem Toxicol 26:255–261

    Article  CAS  Google Scholar 

  • Isquith A, Matheson D, Slesinski R (1988b) Genotoxicity studies on selected organosilicon compounds: in vivo assays. Food Chem Toxicol 26:263–266

    Article  CAS  Google Scholar 

  • Janechek NJ, Hansen KM, Stanier CO (2017) Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products. Atmos Chem Phys 17(13):8357–8370

    Article  CAS  Google Scholar 

  • Jean PA, Sloter ED, Plotzke KP (2017) Effects of chronic exposure to octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane in the aging female Fischer 344 rat. Toxicol Lett 279:54–74

    Article  CAS  Google Scholar 

  • Jean PA, McCracken KA, Arthurton JA, Plotzke KP (2005) Investigation of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) as dopamine D2-receptor agonists (abstract # 1812). The Toxicologist

  • Johnson W Jr, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Andersen FA (2011) Safety assessment of cyclomethicone, cyclotetrasiloxane, cyclopentasiloxane, cyclohexasiloxane, and cycloheptasiloxane. Int J Toxicol 30(6_suppl):149S-227S

    Article  CAS  Google Scholar 

  • Jovanovic ML, McMahon JM, McNett DA, Tobin JM, Plotzke KP (2008) In vitro and in vivo percutaneous absorption of 14C-octamethylcyclotetrasiloxane (14C–D4) and 14C-decamethylcyclopentasiloxane (14C–D5). Regul Toxicol Pharmacol 50(2):239–248

    Article  CAS  Google Scholar 

  • Kaj L, Schlabach M, Andersson J, Palm Cousins A, Schmidbauer N, Brorström-Lunden E (2005b) Siloxanes in the Nordic Environment; TemaNord; p 593. http://norden.diva-portal.org/smash/get/diva2:702777/FULLTEXT01.pdf. Accessed 20 June 2021

  • Kaj L, Andersson J, Palm Cousins A, Remberger M, Ekheden Y, Dusan B, Brorström-Lunden E, Cato I (2005a) Results from the Swedish national screening programme, Subreport 4: Siloxanes. IVL Report B1643. http://www.ivl.se/webdav/files/B-rapporter/B1643.pdf. Accessed 22 Oct 2021

  • Kent DJ, McNamara PC, Putt AE, Hobson JF, Silberhorn EM (1994) Octamethylcyclotetrasiloxane in aquatic sediments: toxicity and risk assessment. Ecotoxicol Environ Saf 29:372–389

    Article  CAS  Google Scholar 

  • Kierkegaard A, McLachlan MS (2013) Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmos Environ 80:322–329

    Article  CAS  Google Scholar 

  • Kierkegaard A, Adolfsson-Erici M, McLachlan MS (2010) Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method. Anal Chem 82:9573–9578

    Article  CAS  Google Scholar 

  • Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary. Environ Sci Technol 15;45(14):5936–5942. https://doi.org/10.1021/es200707r

    Article  CAS  Google Scholar 

  • Kierkegaard A, Bignert A, McLachlan MS (2013) Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes. Chemosphere 93(5):789–793. https://doi.org/10.1016/j.chemosphere.2012.10.050. (PubMed PMID: 23228907)

    Article  CAS  Google Scholar 

  • Kim J, Mackay D, Whelan MJ (2018) Predicted persistence and response times of linear and cyclic volatile methylsiloxanes in global and local environments. Chemosphere 195:325–335

    Article  CAS  Google Scholar 

  • Kim J, Woodburn K, Coady K (2020) Comment on “bioaccumulation of methyl siloxanes in common carp (Cyprinus carpio) in an estuarine food web in Northeastern China.” Arch Environ Contam Toxicol 78:163–173. https://doi.org/10.1007/s00244-019-00681-2

    Article  CAS  Google Scholar 

  • King RP, Jonathan GE (2003) Aquatic environmental perturbations and monitoring. African Experience, USA:166

  • Krenczkowska D, Mojsiewicz-Pieńkowska K, Wielgomas B, Cal K, Bartoszewski R, Bartoszewska S, Jankowski Z (2019) The consequences of overcoming the human skin barrier by siloxanes (siloxanes) part 1. Penetration and permeation depth study of cyclic methyl siloxanes. Chemosphere. 231:607–623

    Article  CAS  Google Scholar 

  • Krogseth IS, Kierkegaard A, McLachlan MS, Breivik K, Hansen KM, Schlabach M (2013) Occurrence and seasonality of cyclic volatile methyl siloxanes in arctic air. Environ Sci Technol 47(1):502–509

    Article  CAS  Google Scholar 

  • Krogseth IS, Undeman E, Evenset A, Christensen GN, Whelan MJ, Breivik K, Warner NA (2017a) Elucidating the behavior of cyclic volatile methylsiloxanes in a subarctic freshwater food web: a modeled and measured approach. Environ Sci Technol 51(21):12489–12497

    Article  CAS  Google Scholar 

  • Krueger HO, Thomas ST, Kendall TZ (2007) D5: a prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment. Wildlife International, LTD. Project Number 583A-108. Centre Europeen des Siloxanes (CES)

  • Krueger HO, Thomas ST, Kendall TZ (2008) D4: a prolonged sediment toxicity test with Chironomus riparius using spiked sediment. Final Report March 24 2008. Project Number 570A-107. Easton, MD: Wildlife International Ltd.

  • Krueger HO, Thomas ST, Kendall TZ (2009) Octamethylcyclotetrasiloxane (D4): a prolonged sediment toxicity test with Lumbriculus variegatususing spiked artificial sediment. Project 570A-110B. Wildlife International, Easton, MD, USA

  • Lassen C, Hansen CL, Mikkelsen SH, Maag,J (2014) Siloxanes-consumption, toxicity alternatives, (2014). Danish Environmental Protection Agency, Environmental Protection Agency, Environmental Project no.1031. http://www.miljoestyrelsen.dk/udgiv/publications/2005/87-7614-756-8/pdf/. Accessed 19 November 2021

  • Lee D (2019) Distribution of siloxanes in coastal sediments collected from industrial bays in South Korea. Ecotoxicol Environ Saf 182:109457. https://doi.org/10.1016/j.ecoenv.2019.109457

    Article  CAS  Google Scholar 

  • Lee S, Moon HB, Song GJ, Ra K, Lee WC, Kannan K (2014) A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Sci Total Environ 1(497–498):106–112. https://doi.org/10.1016/j.scitotenv.2014.07.083. (PMID: 25127445)

    Article  CAS  Google Scholar 

  • Lee SY, Lee S, Choi M, Kannan K, Moon HB (2018) An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea. Environ Pollut 236:111–118. https://doi.org/10.1016/j.envpol.2018.01.051. (PMID: 29414330)

    Article  CAS  Google Scholar 

  • Lehmann RG, Smith DM, Narayan R, Kozerski GE, Miller JR (1999) Life cycle of siloxane polymer, from pilot-scale composting to soil amendment. Compost Sci Util 7(3):72–81

    Article  Google Scholar 

  • Li B, Li WL, Sun SJ, Qi H, Ma WL, Liu LY, Zhang ZF, Zhu NZ, Li YF (2016) The occurrence and fate of siloxanes in wastewater treatment plant in Harbin. China Environmental Science and Pollution Research 23(13):13200–13209

    Article  CAS  Google Scholar 

  • Lieberman MW, Lykissa ED, Barrios R, Ou CN, Kala G, Kala SV (1999) Cyclosiloxanes produce fatal liver and lung damage in mice. Environ Health Perspect 107:161–165

    Article  CAS  Google Scholar 

  • Liu N, Shi Y, Li W, Xu L, Cai Y (2014) Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China. Sci Total Environ 476–477:65–72

    Article  Google Scholar 

  • Liu N, Xu L, Cai Y (2018) Methyl siloxanes in barbershops and residence indoor dust and the implication for human exposures. Sci Total Environ 618:1324–1330

    Article  CAS  Google Scholar 

  • Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research directions. Environ Pollut 150(1):150–165

    Article  CAS  Google Scholar 

  • Lu Y, Yuan T, Yun SH, Wang W, Wu Q, Kannan K (2010) Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ Sci Technol 44:6081–6087

    Article  CAS  Google Scholar 

  • Lu Y, Yuan T, Wang W, Kannan K (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 159(12):3522–3528

    Article  CAS  Google Scholar 

  • Mackay D, Hughes L, Powell DE, Kim J (2014) An updated quantitative water air sediment interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: Application to D5 (decamethylcyclopentasiloxane) and PCB180 in two lakes. Chemosphere 111:359–365

    Article  CAS  Google Scholar 

  • Mackay D, Cowan-Ellsberry CE, Powell DE, Woodburn KB, Xu S, Kozerski GE, Kim J (2015a) Decamethylcyclopentasiloxane (D5) environmental sources, fate, transport, and routes of exposure. Environ Toxicol Chem 34(12):2689–2702

    Article  CAS  Google Scholar 

  • Mackay D, Gobas F, Solomon K (2015b) Comment on “Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill.” Environ Sci Technol 49(12):7507–7509

    Article  CAS  Google Scholar 

  • Mackay D, Powell DE, Woodburn KB (2015c) Bioconcentration and aquatic toxicity of superhydrophobic chemicals: a modeling case study of cyclic volatile methyl siloxanes. Environ Sci Technol 49(19):11913–11922

    Article  CAS  Google Scholar 

  • Maxim LD, Mazzoni S, Dunham DB (1998) D4, D5, and D6 exposure in the manufacture and use of personal care products: an interim assessment. Dow Corning Corporation

  • McKim JM Jr, Choudhuri S, Wilga PC, Madan A, Burns-Naas LA, Gallavan RH, Mast RW, Naas DJ, Parkinson A, Meeks RG (1999) Induction of hepatic xenobiotic metabolizing enzymes in female Fischer-344 rats following repeated inhalation exposure to decamethylcyclopentasiloxane (D5). Toxicol Sci 50:10–19

    Article  CAS  Google Scholar 

  • McKim JM Jr, Wilga PC, Breslin WJ, Plotzke KP, Gallavan RH, Meeks RG (2001) Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (D4) and the linear siloxane hexamethyldisiloxane (HMDS) in immature rats using the uterotrophic assay. Toxicol Sci 63(1):37–46

    Article  CAS  Google Scholar 

  • McLachlan MS (2018) Can the Stockholm convention address the spectrum of chemicals currently under regulatory scrutiny? Advocating a more prominent role for modeling in POP screening assessment. Environ Sci Process Impacts 20(1):32–37. https://doi.org/10.1039/C7EM00473G

    Article  CAS  Google Scholar 

  • McLachlan MS, Kierkegaard A, Hansen KM, van Egmond R, Christensen JH, Skjøth CA (2010) Concentrations and fate of decamethylcyclopentasiloxane (D5) in the atmosphere. Environ Sci Technol 44:5365–5370

    Article  CAS  Google Scholar 

  • McLachlan MS, Kierkegaard A (2012) Linear and cyclic VMS in rural Swedish air. Presented at 3rd workshop on organosiloxanes in the environment; Canada Centre for Inl Waters, Burlington, Ontario, Canada, May 8−9th

  • Meeks RG (1999) The dow corning siloxane research program: an overview and update. Medical Device & Diagnostic Industry Magazine, May 1999 Column. http://www.devicelink.com/mddi/archive/99/05/007.html

  • Meeks RG, Stump DG, Siddiqui WH, Holson JF, Plotzke KP, Reynolds VL (2007) An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in female rats using multiple and single day exposure regimens. Reprod Toxicol 23:192–201

    Article  CAS  Google Scholar 

  • Meng F, Wu H (2015) Indoor air pollution by methylsiloxane in household and automobile settings. PLoS ONE 10(8):e0135509. https://doi.org/10.1371/journal.pone.0135509

    Article  CAS  Google Scholar 

  • Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes(silicones) – safety or risk part 1.Characteristics of siloxanes (silicones). Front Pharmacol 7:132. https://doi.org/10.3389/fphar.(2016).00132

  • Montemayor BP, Price BB, van Egmond RA (2013) Accounting for intended use application in characterizing the contributions of cyclopentasiloxane (D5) to aquatic loadings following personal care product use: antiperspirants, skin care products and hair care products. Chemosphere 93(5):735–740. https://doi.org/10.1016/j.chemosphere.2012.10.043

  • Navea JG, Xu S, Stanier CO, Young MA, Grassian VH (2009b) Effect of ozone and relative humidity on the heterogenous uptake of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane on model mineral dust aerosol components. J Phys Chem A 113:7030–7038

    Article  CAS  Google Scholar 

  • Navea JG, Young MA, Xu S, Grassian VH, Stanier CO (2011) The atmospheric lifetimes and concentrations of cyclic methylsiloxanes octamethylcyclotetrasiloxane (D (4)) decamethylcyclopentasiloxane (D(5)) the influence of heterogeneous uptake. Atmos Environ 45:3181–3191. https://doi.org/10.1016/j.atmosenv.2011.02.038

    Article  CAS  Google Scholar 

  • Navea JG, Stanier CO, Young MA, Grassian VH (2009a) A laboratory and modeling study at the University of Iowa designed to better underst the atmospheric fate of D4 and D5. Final Report, Centre Européen des Siloxanes (CES)

  • Neumann HD, Buxtrup M, Weber M, von Hahn N, Koppisch D, Breuer D, Hahn JU (2012) Vorschlag zur Ableitung von Innenraumarbeitsplatz-Referenzwerten in Schulen. Gefahrstoffe-Reinhalt Luft 72:291–298

    CAS  Google Scholar 

  • Nguyen HMN, Khieu HT, Ta NA, Le HQ, Nguyen TQ, Do TQ, Hoang AQ, Kannan K, Tran TM (2021) Distribution of cyclic volatile methylsiloxanes in drinking water, tap water, surface water, and wastewater in Hanoi, Vietnam. Environmental Pollution 285:117260. https://doi.org/10.1016/j.envpol.2021.117260

    Article  CAS  Google Scholar 

  • Norden (2005) Siloxanes in the Nordic environment. Copenhagen: Nordic Council of Ministers, [TemaNord 2005, 593 http://www.norden.org/pub/miljo/miljo/uk/TN2005593.pdf. Accessed 13 August 2021

  • Norwood WP, Alaee M, Sverko E, Wang D, Brown M, Galicia M (2013) Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca. Chemosphere 93(5):805–812. https://doi.org/10.1016/j.chemosphere.2012.10.052

    Article  CAS  Google Scholar 

  • [NYIEQ] New York Indoor Environmental Quality Center (2005) Indoor environmental quality: assessing and mitigating the impact of exposure to multiple indoor contaminants. Project no. R828605-01. Available from: www.syracusecoe.org/documents/2007/2/13/R828605-01%20Final%20Report.pdf

  • OECD glossary (2001) Glossary of environment statistics, studies in methods, series F, no. 67, United Nations, NY, 1997. https://stats.oecd.org/glossary/detail.asp?ID=1558

  • O’Lenick AJ (2003) Siloxanes for personal care. Allured Publishing Corp, Carol Stream, IL, p 123

    Google Scholar 

  • OECD (2007) Manual for investigation of HPV Chemicals. http://www.oecd.org/document/7/0,3343,en_2649_34379_1947463_1_1_1_1,00.html. Accessed 27 July 2021

  • OECD (2008) SIAR for SIAM 26: hexamethylcyclotrisiloxane. Organisation for Economic Cooperation and Development, Paris, France. http://webnet.oecd.org. Accessed 27 July 2021

  • OECD (2009) SIAR for SIAM 29: Dodecamethylcyclohexasiloxane (D6). Organization for Economic Cooperation and Development, Paris, France. https://hpvchemicals.oecd.org. Accessed 27 July 2021

  • Orata F, Birgen F (2016) Fish tissue bio-concentration and interspecies uptake of heavy metals from waste water lagoons. Journal of Pollution Effects and Control 4(2):157. https://doi.org/10.4172/2375-4397.1000157

    Article  Google Scholar 

  • Panagopoulos D, MacLeod M (2018) A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models. Environ Sci Process Impacts 20(1):183–194. https://doi.org/10.1039/C7EM00524E

    Article  CAS  Google Scholar 

  • Panagopoulos D, Jahnke A, Kierkegaard A, MacLeod M (2015) Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: measurements and polyparameter linear free energy relationships. Environ Sci Technol 49:12161–12168

    Article  CAS  Google Scholar 

  • Parrott J, Alaee M, Sverko E (2011) Fathead minnow (Pimephales promelas) egg-to-juvenile exposure to decamethylcyclopentasiloxane (D5). Technical Ecological Assessment Division. Environment, Burlington

  • Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D (2019) Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environ Sci Nano 6(6):1619–1656. https://doi.org/10.1039/C8EN01378K

    Article  CAS  Google Scholar 

  • Picard CR (2009) 28-Day toxicity test exposing freshwater amphipods (Hyalella azteca) to D5 applied to sediment under static-renewal conditions following OPPTS Draft Guideline 850.1735. Springborn Smithers Laboratory, Siloxanes Environmental Health and Safety Center, American Chemistry Council, Washington, DC

  • Plotzke, KP, Utell MJ, Looney RJ (2000a) Absorption, distribution and elimination of 13C-D4 in humans after dermal administration

  • Plotzke KP, Crofoot SD, Ferdinandi ES, Beattie JG, Reitz RH, McNett DA, Meeks RG (2000b) Disposition of radioactivity in Fischer 344 rats after single and multiple inhalation exposure to [14C] octamethylcyclotetrasiloxane ([14C] D4). Drug Metab Dispos 28(2):192–204

  • Powell DE, Suganuma N, Kobayashi K (2017) Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay. Japan Sci Total Environ 578:366–382

    Article  CAS  Google Scholar 

  • Powell DE, Schøyen M, Øxnevad S, Gerhards R, Böhmer T, Koerner M, Durham J, Huff DW (2018) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord. Norway Science of the Total Environment 622:127–139

    Article  Google Scholar 

  • Powell DE, Durham J, Huff DW (2009a) Interim report: preliminary assessment of cyclic volatile methylsiloxanes (cVMS) materials in surface sediments, cores, zooplankton and fish of Lake Opeongo, Ontario, Canada. Health and Environmental Sciences, Dow Corning Corporation, Auburn. Study submitted to CES (Centre Européen des Siloxanes European Chemical Industry Council (CEFIC))

  • Powell DE, Woodburn KB, Drottar K, Durham J, Huff DW (2009b) Trophic dilution of cyclic volatile methylsiloxane (cVMS) materials in a temperate freshwater lake. HES Study No. 10771–108, Health and Environmental Sciences, Dow Corning Corporation, Auburn. Study submitted to CES (Centre Européen des Siloxanes, European Chemical Industry Council (CEFIC))

  • Powell DE, Durham J, Huff DW, Böhmer T, Gerhards R, Koerner M (2010) Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) materials in the aquatic marine food webs of the inner and outer Oslofjord, Norway. HES Study No. 11060–108, Health and Environmental Sciences, Dow Corning Corporation, Auburn. Study submitted to CES (Centre Européen des Siloxanes, European Chemical Industry Council (CEFIC))

  • Powell DE (2009c) Interim report: historical deposition of cyclic volatile methylsiloxanes (cVMS) materials in Lake Pepin, Navigation Pool 4 of the Upper Mississippi River. Dow Corning Corporation, Midl, M.I., Study submitted to CES (Centre Européen des Siloxanes, European Chemicals Industry Council (CEFIC))

  • Quinn AL, Dalu A, Meeker LS, Jean PA, Meeks RG, Crissman JW, Gallavan RH Jr, Plotzke KP (2007a) Effects of octamethylcyclotetrasiloxane (D4) on the luteinizing hormone (LH) surge and levels of various reproductive hormones in female Sprague-Dawley rats. Reprod Toxicol 23:532–540

    Article  CAS  Google Scholar 

  • Quinn AL, Dalu A, Meeker LS, Jean PA, Meeks RG, Crissman JW, Gallavan RH Jr, Plotzke KP (2007b) In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic siloxanes. Toxicol Sci 96(1):145–153

    Article  CAS  Google Scholar 

  • REACH (2011) REACHchemical safety report substance name: Decamethylcyclopentasiloxane CAS number: 541–02-6

  • Reddy MB, Looney RJ, Utell MJ, Plotzke KP, Andersen ME (2007) Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). Toxicol Sci 99(2):422–431

    Article  CAS  Google Scholar 

  • Reddy MB, Andersen ME, Morrow PE, Dobrev ID, Varaprath S, Plotzke KP, Utell MJ (2003) Physiological modeling of inhalation kinetics of octamethylcyclotetrasiloxane in humans during rest and exercise. Toxicol Sci 72(1):3–18

    Article  CAS  Google Scholar 

  • Reddy MB, Dobrev ID, McNett DA, Tobin JM, Utell MJ, Morrow PE, Domoradzki JY, Plotzke KP, Andersen ME (2008) Inhalation dosimetry modeling with decamethylcyclopentasiloxane in rats and humans. Toxicol Sci 105(2):275–285

    Article  CAS  Google Scholar 

  • Reisch MS (2011) Storm over Siloxanes Chemical and Engineering News 89(18):10–13

  • Rocha F, Homem V, Castro-Jiménez J, Ratola N (2019) Marine vegetation analysis for the determination of volatile methylsiloxanes in coastal areas. Sci Total Environ 650:2364–2373

    Article  CAS  Google Scholar 

  • Rücker C, Kümmerer K (2015) Environmental chemistry of organosiloxanes. Chem Rev 14 115(1):466–524. https://doi.org/10.1021/cr500319v

  • Sánchez-Brunete C, Miguel E, Albero B, Tadeo JL (2010) Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry. J Chromatogr A 1217(45):7024–7030

    Article  Google Scholar 

  • Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538

    Article  Google Scholar 

  • Sanchís J, Cabrerizo A, Galban-Malagon C (2015) Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49(7):4415–4424

    Article  Google Scholar 

  • Sarangapani R, Teeguarden J, Plotzke KP, McKim JM Jr, Andersen ME (2002) Dose-response modeling of cytochrome P450 induction in rats by octamethylcyclotetrasiloxane. Toxicol Sci 67(2):159–172

    Article  CAS  Google Scholar 

  • SCCS (2010) Scientific Committee on consumer safety, opinion on cyclomethicone - octamethylcyclotetrasiloxane (cyclotetrasiloxane, D4) and decamethylcyclopentasiloxane (cyclopentasiloxane, D5), adopted at its 7th plenary meeting of 22 June 2010

  • SCCS (2015) SCCS opinion on decamethylcyclopentasiloxane (cyclopentasiloxane, D5) in cosmetic products, SCCS/1549/15. Scientific Committe on Consumer Safety, European Commission

  • SCCS, E (2012) The SCCS’s notes of guidance for the testing of cosmetic substances and their safety evaluation–8th revision. SCCS/1501/12. Available online: http://ec.europa.eu/health

  • Schlabach M, Andersen MS, Green N, Schøyen M, Kaj L (2007) Siloxanes in the environment of the inner Oslofjord; Norwegian Pollution Control Authority: Oslo, Norway

  • Sha B, Dahlberg AK, Wiberg K, Ahrens L (2018) Fluorotelomer alcohols (FTOHs), brominatedflame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments. Environ Pollut 241:319–330

    Article  CAS  Google Scholar 

  • Shen M, Zhang Y, Tian Y, Zeng G (2018) Recent advances in research on cyclic volatile methylsiloxanes in sediment, soil and biosolid: a review. Chem Ecol 34(7):675–695

    Article  CAS  Google Scholar 

  • Shi Y, Xu S, Xu L (2015) Distribution, elimination, and rearrangement of cyclic volatile methylsiloxanes in oil-contaminated soil of the Shengli Oilfield. China Environ Sci Technol 49(19):11527–11535

    Article  CAS  Google Scholar 

  • Shields HC, Fleischer DM, Weschler CJ (1996) Comparisons among VOCs measured in three types of US commercial buildings with different occupant densities. Indoor Air 6(1):2–17

    Article  CAS  Google Scholar 

  • Siddiqui WH, Stump DG, Reynolds VL, Plotzke KP, Holson JF, Meeks RG (2007a) A two-generation reproductive toxicity study of decamethylcyclopentasiloxane (D5) in rats exposed by whole-body vapor inhalation. Reprod Toxicol 23(2):216–225

    Article  CAS  Google Scholar 

  • Siddiqui WH, Stump DG, Plotzke KP, Holson JF, Meeks RG (2007b) A two-generation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in rats exposed by whole body vapor inhalation. Reprod Toxicol 23:202–215

    Article  CAS  Google Scholar 

  • Sommerlade R, Parlar H, Wrobel D, Kochs P (1993) Product analysis and kinetics of the gas-phase reactions of selected organosilicon compounds with OH radicals using a smog chamber–mass spectrometer system. Environ Sci Technol 27:2435–2440

    Article  CAS  Google Scholar 

  • Şoreanu G, Falletta P, Bél M (2009) Abiotic and biotic mitigation of volatile methyl siloxanes in anaerobic gas-phase biomatrices. Environ Eng Manag J 8(5):1235–1240

    Article  Google Scholar 

  • Sousa JV, McNamara PC, Putt AE, Machado MW, Surprenant DC, Hamelink JL, Kent JK (1995) Effects of octamethylcyclotetrasiloxane (OMCTS) on freshwater and marine organisms. Environ Toxicol Chem 14:1639–1647

    Article  CAS  Google Scholar 

  • Sparham C, van Egmond R, Hastie C (2010) Determination of decamethylcyclopentasiloxane in river and estuarine sediments in the UK. J Chromatogr A 1218(6):817–823. https://doi.org/10.1016/j.chroma.2010.12.030. (PMID: 21186028)

    Article  CAS  Google Scholar 

  • Springborn Laboratories (2000) Decamethylcyclopentasiloxane-14-day prolonged acute toxicity to rainbow trout (Oncorhynchus mykiss) under flow-through conditions. Siloxanes Environmental, Health and Safety Council (SEHSC). Cited from the Report of the Assessment for D5 by Environment Canada and Health Canada

  • Springer T (2007) Decamethylcyclopentasiloxane (D5): a 96-hour study of the elimination and metabolism of orally gavaged 14C-D5 in rainbow trout (Oncorhynchus mykiss). HES Study Number 10218–101. Centre Europeen des Siloxanes (CES), Brussels, Belgium

  • Surita SC, Tansel B (2014) Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments. Sci Total Environ 468:46–52

    Article  Google Scholar 

  • Surita SC, Tansel B (2015) Contribution of siloxanes to COD loading at wastewater treatment plants: phase transfer, removal, and fate at different treatment units. Chemosphere 122:245–250

    Article  CAS  Google Scholar 

  • TAPL3 model (2000) Transport and persistence level III model https://www.trentu.ca/cemc/resources-andmodels/level-iii-model

  • Tran TM, Kannan K (2015) Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Sci Total Environ 511:138–144. https://doi.org/10.1016/j.scitotenv.2014.12.022

    Article  CAS  Google Scholar 

  • Tran MT, Abualnaja OK, Asimakopoulos GA, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani AT, Malarvannan G, Minh BT, Moon BH, Nakata H, Sinha KR, Kannan K (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44

    Article  CAS  Google Scholar 

  • Tran TM, Le HT, Vu ND, Dang GHM, Minh TB, Kannan K (2017) Cyclic and linear siloxanes in indoor air from several northern cities in Vietnam: levels, spatial distribution and human exposure. Chemosphere 184:1117–1124. https://doi.org/10.1016/j.chemosphere.2017.06.092

    Article  CAS  Google Scholar 

  • Tran TM, Hoang AQ, Le ST, Minh TB, Kannan K (2019) A review of contamination status, emission sources, and human exposure to volatile methyl siloxanes (VMSs) in indoor environments. Sci Total Environ 691(584–594):10. https://doi.org/10.1016/j.scitotenv.2019.07.168

    Article  CAS  Google Scholar 

  • USEPA (2005) Guidelines for carcinogen risk assessment. United States Environmental Protection Agency, Risk Assessment Forum. Washington, DC, M arch. EPA/630/P- 03/001B

  • USEPA, U (2011) Exposure Factors Handbook 2011 Edition (Final Report) (Vol. 52). EPA/600/R-(September)):1–1466. https://doi.org/EPA/600/R-090

  • (USEPA) United States Environmental Protection Agency, 2014. Chapter one of the SW-846 compendium: project quality assurance and quality control. Available at: https://www.epa.gov/sites/production/files/2015–10/documents/chap1_1.pdf

  • US EPA (2018a) Substance Registry Services. United States Environmental Protection Agency. https://ofmpub.epa.gov. Accessed 12 Oct 2021

  • US EPA (2018b) TSCA Chemical Substance Inventory. United States Environmental Protection Agency. https://www.epa.gov. Accessed 12 Oct 2021

  • van Egmond R, Sparham C, Hastie C, Gore D, Chowdhury N (2013) Monitoring and 449 modelling of siloxanes in a sewage treatment plant in the Uk. Chemosphere 93:757–765

    Article  Google Scholar 

  • Varaprath S, Stutts DH, Kozerski GE (2006) A primer on the analytical aspects of silicones at trace levels-challenges and artifacts - a review. Silicon Chem 3:79e102. https://doi.org/10.1007/s11201-006-9005-8

    Article  CAS  Google Scholar 

  • Velicogna J, Ritchie E, Princz J (2012) Ecotoxicity of siloxane D5 in soil. Chemosphere 87(1):77–83

    Article  CAS  Google Scholar 

  • Vergnes JS, Jung R, Thakur AK, Barfknecht TR, Reynolds VL (2000) Genetic toxicity evaluation of octamethylcyclotetrasiloxane. Environ Mol Mutagen 36:13–21

    Article  CAS  Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

  • Wang R, Moody RP, Koniecki D, Zhu J (2009) Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environ Int 35:900–904

    Article  CAS  Google Scholar 

  • Wang DG, Norwood W, Alaee M (2013a) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93(5):711–725

    Article  CAS  Google Scholar 

  • Wang DG, Steer H, Tait T, Williams Z, Pacepavicius G, Young T, Ng T, Smyth SA, Kinsman L, Alaee M (2013b) Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere 93(5):766–773. https://doi.org/10.1016/j.chemosphere.2012.10.047

    Article  CAS  Google Scholar 

  • Wang D-G, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015a) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217

  • Wang DG, Du J, Pei W, Liu Y, Guo M (2015b) Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors. Sci Total Environ 512:472–479

    Article  Google Scholar 

  • Warner NA, Evenset A, Christensen G (2010) Volatile siloxanes in the European arctic: assessment of sources and spatial distribution. Environ Sci Technol 44(19):7705–7710

    Article  CAS  Google Scholar 

  • Warner NA, Kozerski G, Durham J, Koerner M, Gerhards R, Campbell R, McNett, D.A.,Positive vs. False detection: a comparison of analytical methods and performance R. Gerhards, et al (2013) Science of the Total Environment 851 (2022) 158275 15 for analysis of cyclic volatile methylsiloxanes (cVMS) in environmental samples from remote regions. Chemosphere 93:749–756

    Article  CAS  Google Scholar 

  • Warner NA, Krogseth IS, Whelan MJ (2015) Comment on “Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. Environ Sci Technol 49(12):7504–7506

    Article  CAS  Google Scholar 

  • Weisbrod AW, Woodburn KB, Koelmans AA, Parkerton TF, McElroy AE, Borgå K (2009) Evaluation of bioaccumulation using in vivo laboratory and field studies Integr. Environ Assess Manage 5:598–623

    CAS  Google Scholar 

  • Whelan MJ (2013) Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model. Chemosphere 91:1566–1576

    Article  CAS  Google Scholar 

  • Whelan MJ, Breivik K (2013) Dynamic modelling of aquatic exposure and pelagic food chain transfer of cyclic volatile methyl siloxanes in the Inner Oslofjord. Chemosphere 93:794–804

    Article  CAS  Google Scholar 

  • Whelan MJ, Sers D, Van Egmond R (2009) Effect of Aldrich humic acid on water–atmosphere transfer of decamethylcyclopentasiloxane. Chemosphere 74(8):1111–1116

    Article  CAS  Google Scholar 

  • Whelan MJ, van Egmond R, Gore D, Sers D (2010) Dynamic multi-phase partitioning of decamethylcyclopentasiloxane (D5) in river water. Water Res 44:3679–3686

    Article  CAS  Google Scholar 

  • Woodburn K, Drottar K, Domoradzki J, Durham J, McNett D, Jezowski R (2013) Determination of the dietary biomagnification of octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout (Oncorhynchus mykiss). Chemosphere 93:779–788

    Article  CAS  Google Scholar 

  • Woodburn KB, Seston RM, Kim J, Powell DE (2018) Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: comparison of hazard quotient and probabilistic risk assessment approaches. Chemosphere 192:337–347

    Article  CAS  Google Scholar 

  • Wu Y, Johnston MV (2016) Molecular characterization of secondary aerosol from oxidation of cyclic methylsiloxanes. J Am Soc Mass Spectr 27:402–409. https://doi.org/10.1007/s13361-015-1300-1

    Article  CAS  Google Scholar 

  • Xiao R, Zammit I, Wei Z, Hu WP, MacLeod M, Spinney R (2015) Kinetics and mechanism of the oxidation of cyclic methylsiloxanes by hydroxyl radical in the gas phase: an experimental and theoretical study. Environ Sci Technol 49(22):13322–13330. https://doi.org/10.1021/acs.est.5b03744

    Article  CAS  Google Scholar 

  • Xu S (1998) Hydrolysis of poly(dimethylsiloxanes) on clay minerals as influenced by exchangeable cations and moisture. Environ Sci Technol 32(20):3162–3168

    Article  CAS  Google Scholar 

  • Xu S (1999) Fate of cyclic methylsiloxanes in soils. 1 The degradation pathway. Environ Sci Technol 33(4):603–608

    Article  CAS  Google Scholar 

  • Xu S, Wania F (2013) Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment. Chemosphere 93:835–843. https://doi.org/10.1016/j.chemosphere.2012.10.056

    Article  CAS  Google Scholar 

  • Xu L, Shi Y, Wang T, Dong Z, Su W, Cai Y (2012) Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population. Environ Sci Technol 46:11718–11726

    Article  CAS  Google Scholar 

  • Xu L, Shi Y, Liu N, Cai Y (2015) Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China. Sci Total Environ 505:454–463. https://doi.org/10.1016/j.scitotenv.2014.10.039. (PMID: 25461047)

    Article  CAS  Google Scholar 

  • Xu L, Xu S, Zhi L, He X, Zhang C, Cai Y (2017) Methylsiloxanes release from one landfill through yearly cycle and their removal mechanisms (especially hydroxylation) in leachates. Environ Sci Technol 51(21):12337–12346

    Article  CAS  Google Scholar 

  • Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33:4034e4039

  • Xu S, Warner N, Bohlin-Nizzetto P, Durham J, McNett D (2019) Long-range transport potential and atmospheric persistence of cyclic volatile methylsiloxanes based on global measurements. Chemosphere 228:460–468

    Article  CAS  Google Scholar 

  • Xu S, Vogel A (2019) Snow scavenging of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) under laboratory conditions. A final report to CES. Dow Chemical Study ID: 17508–108

  • Xu S (2007) Estimation of degradation rates of cVMS in soils. HES Study No. 10787–102. Auburg, MI: Health and Environmental Sciences, Dow Corning Corporation

  • Xu S (2010) Aerobic and anaerobic transformation of 14C-decamethylcyclopentasiloxane (14C-D5) in the aquatic sediment systems. Centre Européen des Siloxanes (CES) Dow Corning Corporation. https://doi.org/10.13671/j.hjkxxb.2014.0993.html

  • Xu S (2019) In-depth scientific review on monitoring data for volatile methylsiloxanes in the antarctic region. www.siloxanes.eu. Accessed 28 Nov 2021

  • Yucuis RA, Stanier CO, Hornbuckle KC (2013) Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92(8):905–910. https://doi.org/10.1016/j.chemosphere.2013.02.051

    Article  CAS  Google Scholar 

  • Zareba G, Gelein R, Morrow PE, Utell MJ (2002) Percutaneous absorption studies of octamethylcyclotetrasiloxane using the human skin/nude mouse model. Skin Pharmacol Physiol 15(3):184–194

    Article  CAS  Google Scholar 

  • Zeng J, Gao JM, Chen YP, Yan P, Dong Y, Shen Y, Guo JS, Zeng N, Zhang P (2016) Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants. Sci Rep 6:26721

    Article  CAS  Google Scholar 

  • Zhang J, Falany J, Xie X, Falany C (2000) Induction of rat hepatic drug metabolizing enzymes by dimethylcyclosiloxanes. Chem-Biol Interact 124:133–147

    Article  CAS  Google Scholar 

  • Zhang Z, Qi H, Ren N (2011) Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, Northeastern China. Arch Environ Con Tox 60(2):204–211

    Article  CAS  Google Scholar 

  • Zhang Y, Shen M, Tian Y, Zeng G (2018) Cyclic volatile methylsiloxanes in sediment, soil, and surface water from Dongting Lake China. Journal of Soils and Sediments 18(5):2063–2071. https://doi.org/10.1007/s11368-018-1948-9

    Article  CAS  Google Scholar 

  • Zhang L, Jiang R, Li W, Muir DC, Zeng EY (2020) Development of a solid-phase microextraction method for fast analysis of cyclic volatile methylsiloxanes in water. Chemosphere 250:126304. https://doi.org/10.1016/j.chemosphere.2020.126304

    Article  CAS  Google Scholar 

  • Zhi L, Xu L, He X, Zhang C, Cai Y (2018) Occurrence and profiles of methylsiloxanes and their hydrolysis product in aqueous matrices from the Daqing oilfield in China. Sci Total Environ 631:879–886

    Article  Google Scholar 

  • Zhi L, Xu L, He X, Zhang C, Cai Y (2019) Distribution of methylsiloxanes in benthic mollusks from the Chinese Bohai Sea. J Environ Sci 76:199–207

    Article  CAS  Google Scholar 

  • Zhou CQ, Yuan T (2014) The environmental occurrences and behaviors of volatile methylsiloxanes: a review. Environ Chem 33(3):386–396

    CAS  Google Scholar 

  • Zhu J, Wong SL, Cakmak S (2013) Nationally representative levels of selected volatile organic compounds in Canadian residential indoor air: population-based survey. Environ Sci Technol 47:13276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, CSIR-NEERI, for allowing us to undertake this challenging work. We are also thankful to the Recycling and Environment Industry Association of India for providing financial support for this scientific work. The paper has been checked by iThenticate plagiarism checker software within the institute and has been approved to be published vide KRC No. CSIR-NEERI/KRC/2021/MAY/KZC/3.

Funding

This work was supported by the Recycling and Environment Industry Association of India (REIAI). Dr. Kanchan Kumari has received financial support from REIAI.

Author information

Authors and Affiliations

Authors

Contributions

Kanchan Kumari conceptualized the work, visualized the review, critically analyzed the data, and finalized the manuscript. Anshika Singh performed the literature and data search and equally participated in preparation of the first and the final draft and performed summarization of data under the supervision of Kanchan Kumari. Deepak Marathe was equally involved in the preparation of the manuscript, and formation of tabular data and graphical representation as well.

Corresponding author

Correspondence to Kanchan Kumari.

Ethics declarations

Ethical approval

This is a review article, so ethical approval is not required.

Consent to participate

Not applicable.

Consent for publication

All authors agree to publish this review article in ESPR and have obtained internal institutional consent.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Roland Peter Kallenborn

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Singh, A. & Marathe, D. Cyclic volatile methyl siloxanes (D4, D5, and D6) as the emerging pollutants in environment: environmental distribution, fate, and toxicological assessments. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-25568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-023-25568-7

Keywords

Navigation