Skip to main content

Measurement Methods for Nanoparticles in Indoor and Outdoor Air

  • Chapter
  • First Online:
Indoor and Outdoor Nanoparticles

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 48))

Abstract

A large variety of measurement methods for the characterization of airborne nanoparticles in indoor or outdoor air exist. The choice of an appropriate method depends strongly on the questions to be tackled. If the aerosol is to be characterized only for a single location, one may use stationary equipment that is rather bulky but provides the most details and is most accurate. Spatially resolved measurements can only be conducted with portable or personal measurement equipment which provide a limited dataset with lower accuracy. Furthermore, the metrics to be measured (e.g., number, surface area of mass concentration, chemical composition, etc.) determine the choice of measurement methods as no single method can do it all. Another determining factor is the time resolution of the instruments. While direct-reading monitors deliver the information with high time resolution (often 1 s) and hence allow for linking the measured concentration to certain activities, samplers collect the particles for subsequent analyses and therefore provide an average over the sampling time. Consequently, the choice of a measurement instrument for the characterization of airborne nanoparticles remains a compromise. In many practical applications, the combination of different techniques may be required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission (2015) Definition of a nanomaterial. http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed 20 Apr 2015

  2. Johnston HJ, Hutchinson G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  CAS  Google Scholar 

  3. Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Phil Trans R Soc A 358:2719–2740

    Article  Google Scholar 

  4. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to the oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  5. Driscoll KE (1996) Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol 8(Suppl.):139–153

    Google Scholar 

  6. Bruch J, Landsiedel R, Ma-Hock L, Pauluhn J, Ragot J, Wiemann M (2009) In vivo test systems, NanoCare – Health related aspects of nanomaterials, final scientific report; Chap 4.4, pp 48–67. http://nanopartikel.info/files/projekte/NanoCare/NanoCare_Final_Report.pdf. Accessed 30 Apr 2015

  7. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  Google Scholar 

  8. Standard EN1540:2011 (2012) Workplace exposure. Terminology. ISBN 978-0-580-70841-1

    Google Scholar 

  9. McMurry P (2000) The history of condensation nucleus counters. Aerosol Sci Technol 33:297–322

    Article  CAS  Google Scholar 

  10. Keller A, Tritscher T, Burtscher H (2013) Performance of water-based CPC 3788 for particles from a propane-flame soot-generator operated with rich fuel/air mixtures. J Aerosol Sci 60:67–72

    Article  CAS  Google Scholar 

  11. Vincent J (2005) Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones. J Environ Monit 7:1037–1053

    Article  CAS  Google Scholar 

  12. International Commission for Radiological Protection (ICRP) (1994): Publication 66: Human respiratory tract model for radiological protection. Ann ICRP 24:1–3

    Google Scholar 

  13. Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59

    Article  Google Scholar 

  14. Shin W, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9:61–69

    Article  CAS  Google Scholar 

  15. Jung H, Kittelson DB (2005) Characterization of aerosol surface instruments in transition regime. Aerosol Sci Technol 39:902–911

    Article  CAS  Google Scholar 

  16. Kaminski H, Kuhlbusch TAJ, Fissan H, Ravi L, Horn HG, Han HS, Caldow R, Asbach C (2012) Mathematical description of experimentally determined charge distributions of a unipolar diffusion charger. Aerosol Sci Technol 46:708–716

    Article  CAS  Google Scholar 

  17. Todea AM, Beckmann S, Kaminski H, Asbach C (2015) Accuracy of eletrical aerosol sensors measuring lung deposited surface area concentrations. J Aerosol Sci. in press, http://dx.doi.org/10.1016/j.jaerosci.2015.07.003

  18. Asbach C, Fissan H, Kaminski H, Kuhlbusch TAJ, Pui DYH, Horn HG, Hase T (2011) A low pressure drop preseparator for eliminiation of particles larger than 450 nm. Aerosol Air Qual Res 11:487–496

    Google Scholar 

  19. Patashnick H, Rupprecht EG (1991) Continuous PM-10 measurements using the tapered element oscillating microbalance. J Air Waste Manag Assoc 41:1079–1083

    Article  CAS  Google Scholar 

  20. Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13:230–240

    Article  CAS  Google Scholar 

  21. Fissan HJ, Helsper C, Thielen HJ (1983) Determination of particle size distributions by means of an electrostatic classifier. J Aerosol Sci 14:354–357

    Article  CAS  Google Scholar 

  22. Kousaka Y, Okuyama K, Adachi M (1985) Determination of particle size distribution of ultra-fine aerosols using a differential mobility analyzer. Aerosol Sci Technol 4:209–235

    Article  CAS  Google Scholar 

  23. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere. Geofisica pura e applicata 56:185–193

    Article  Google Scholar 

  24. Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389

    Article  CAS  Google Scholar 

  25. Liu BYH, Pui DYH (1974) A submicron aerosol standard and the primary absolute calibration of the condensation nuclei counter. J Colloid Interface Sci 47:155–171

    Article  CAS  Google Scholar 

  26. Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M, Kuhlbusch TAJ (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–1609

    Article  Google Scholar 

  27. Kaminski H, Kuhlbusch TAJ, Rath S, Götz U, Sprenger M, Wels D, Polloczek J, Bachmann V, Kiesling H-J, Dziurowitz N, Schwiegelshohn A, Monz C, Dahmann D, Asbach C (2013) Comparability of mobility particle sizers and diffusion chargers. J Aerosol Sci 57:156–178

    Article  CAS  Google Scholar 

  28. Cunningham, E. (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Ser A 83:357–365

    Google Scholar 

  29. Kim JH, Mulholland GW, Kuckuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen Number from 0.5 to 83. J Res Natl Inst Stand Technol 110:31–54

    Article  CAS  Google Scholar 

  30. Winkelmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22:289–296

    Article  Google Scholar 

  31. Chen DR, Oui DYH, Hummes D, Fissan H, Quant FR, Sem GJ (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J Aerosol Sci 29:497–509

    Article  CAS  Google Scholar 

  32. Reischl GP, Mäkelä JM, Necid J (1997) Performance of Vienna type differential mobility analyzer at 1.2–20 nanometer. Aerosol Sci Technol 27:651–672

    Article  CAS  Google Scholar 

  33. Hoppel WA (1978) Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols. J Aerosol Sci 9:41–54

    Article  Google Scholar 

  34. Reineking A, Porstendörfer J (1986) Measurements of particle loss functions in a differential mobility analyzer (TSI, model 3071) for different flow rates. Aerosol Sci Technol 5:483–486

    Article  CAS  Google Scholar 

  35. Stolzenburg MR (1988) An ultrafine aerosol size distribution measuring system, Ph.D. Thesis at the University of Minnesota

    Google Scholar 

  36. Wiedensohler A, Orsini D, Covert DS, Coffmann D, Cantrell W, Havlicek M, Brechtel FJ, Russell LM, Weber RJ, Gras J, Hudson JG, Litchy M (1997) Intercomparison study of the size-dependent counting efficiency of 26 condensation particle counters. Aerosol Sci Technol 27:224–242

    Article  Google Scholar 

  37. Hermann H, Wehner B, Bischof O, Han H-S, Krinke T, Liu W, Zerrath A, Wiedensohler A (2007) Particle counting efficiencies of new TSI condensation particle counters. J Aerosol Sci 38:674–682

    Article  CAS  Google Scholar 

  38. Shimada M, Han BW, Okuyama K, Otani Y (2002) Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer. J Chem Eng Jpn 35:786–793

    Article  CAS  Google Scholar 

  39. Han BW, Shimada M, Okuyama K, Choi M (2003) Classification of monodisperse aerosol particles using an adjustable soft X-ray charger. Powder Technol 135:336–344

    Article  Google Scholar 

  40. Lee HM, Kim CS, Shimada M, Okuyama K (2005) Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger. J Aerosol Sci 36:813–829

    Article  CAS  Google Scholar 

  41. Levin M, Gudmundsson A, Pagels JH, Fierz M, Molhave K, Jensen KA, Koponen IK (2015) Limitations in the use of unipolar charging for electrical mobility sizing instruments. Aerosol Sci Technol 49:556–565

    Google Scholar 

  42. Hinds WC (1999) Aerosol technology: properties, behavior, and measurements of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  43. Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23:353–360

    Article  CAS  Google Scholar 

  44. Watson JG, Chow JC, Chen LWA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparison. Aerosol Air Qual Res 5:65–102

    CAS  Google Scholar 

  45. Janssen NAH, Yang A, Strak M, Steenhof M, Hellack B, Gerlots-Nijland ME, Kuhlbusch T, Kelly F, Harrison R, Brunekreef B, Hoek G, Cassee F (2014) Oxidative potential of particulate matter collected at sites with different source characteristics. Sci Total Environ 472:572–581

    Article  CAS  Google Scholar 

  46. Chen S-C, Wang J, Fissan H, Pui DYH (2013) Exposure assessment of nanosized engineered agglomerates and aggregates using Nuclepore filters. J Nanopart Res 15:1955

    Article  Google Scholar 

  47. Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453

    Article  CAS  Google Scholar 

  48. John AC, Kuhlbusch TAJ, Fissan H (2001) Size-fractionated sampling and chemical analysis by total-reflection X-ray fluorescence spectrometry of PMx in ambient air and emissions. Spectrochim Acta Part B 56:2137–2146

    Article  Google Scholar 

  49. Asbach C, Kaminski H, von Barany D, Kuhlbusch TAJ, Monz C, Dziurowitz N, Pelzer J, Vossen K, Berlin K, Dietrich S, Götz U, Kiesling H-J, Schierl R, Dahmann D (2012) Comparability of portable nanoparticle exposure monitors. Ann Occupat Hyg 56:606–621

    CAS  Google Scholar 

  50. Möhlmann C, Monz C, Neumann V, Dahmann D, Asbach C, Kaminski H, Todea AM (2015) From comparison tests to recommendations in standardisation for counting nanoparticles by using CPCs. Presentation at the international congress on safety of engineered nanoparticles and nanotechnologies, 12–15 April 2015, Helsinki, Finland

    Google Scholar 

  51. Fierz M, Houle C, Steigmeier P, Burtscher H (2011) Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Technol 45:1–10

    Article  CAS  Google Scholar 

  52. Marra J, Voetz M, Kiesling H-J (2009) Monitor for detecting and assesing exposure to airborne nanoparticles. J Nanopart Res 12:21–37

    Article  Google Scholar 

  53. Marra J (2011) Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics. J Phys Conf Ser 304:012010

    Article  Google Scholar 

  54. Zhang SH, Akutsu Y, Russell LM, Flagan RC, Seinfeld JH (1995) Radial differential mobility analyzer. Aerosol Sci Technol 23:357–372

    Article  CAS  Google Scholar 

  55. Tritscher T, Beeston M, Zerrath AF, Elzey S, Krinke TJ, Filimundi E, Bischof OF (2012) NanoScan SMPS: a novel, portable nanoparticle sizing and counting instrument. J Phy Conf Ser 429:012061

    Article  Google Scholar 

  56. Fonseca AS, Viana M, Querol X, Todea AM, Monz C, Asbach C (2015) Intercomparison of portable (nanoScan) and stationary mobility particle sizers for nanoscale aerosol measurements. In preparation

    Google Scholar 

  57. Stabile L, Cauda E, Marini S, Buonanno G (2014) Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles. Ann Occup Hyg 58:860–876

    Article  Google Scholar 

  58. Steer B, Gorbunov B, Muir R, Ghimire A, Rowles J (2014) Portable planar DMA: development and tests. Aerosol Sci Technol 48:251–260

    Article  CAS  Google Scholar 

  59. Miller A, Frey G, King G, Sunderman C (2010) A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol 44:417–427

    Article  CAS  Google Scholar 

  60. Fierz M, Meier D, Steigmeier P, Burtscher H (2014) Aerosol measurement by induced currents. Aerosol Sci Technol 48:350–357

    Article  CAS  Google Scholar 

  61. Leith D, Miller-Lionberg D, Casuccio G, Lersch T, Lentz H, Marchese A, Volckens J (2014) Development of a transfer function for a personal, thermophoretic nanoparticle sampler. Aerosol Sci Technol 48:81–89

    Article  CAS  Google Scholar 

  62. Thayer D, Koehler KA, Marchese A, Volckens J (2011) A personal, thermophoretic sampler for airborne nanoparticles. Aerosol Sci Technol 45:744–750

    Article  Google Scholar 

  63. Azong-Wara N, Asbach C, Stahlmecke B, Fissan H, Kaminski H, Plitzko S, Kuhlbusch TAJ (2009) Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. J Nanopart Res 11:1611–1624

    Article  CAS  Google Scholar 

  64. Azong-Wara N, Asbach C, Stahlmecke B, Fissan H, Kaminski H, Plitzko S, Bathen D, Kuhlbusch TAJ (2013) Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler. J Nanopart Res 15:1530

    Article  Google Scholar 

  65. Faure B, Dozol H, Brouard C, Guiot A, Clavaguera S (2015) Evaluation of a personal sampler for the assessment of mass-based exposure to airborne nanoparticles. Environ Sci Technol, Submitted

    Google Scholar 

  66. Cena LG, Anthony TR, Peters TM (2011) A personal nanoparticle respiratory deposition (NRD) sampler. Environ Sci Technol 45:6483–6490

    Article  CAS  Google Scholar 

  67. Thongyen T, Hata M, Toriba A, Ikeda T, Koyama H, Otani Y, Furuuchi M (2015) Development of a PM0.1 personal sampler for evaluation of personal exposure to aerosol nanoparticles. Aerosol Air Qual Res 15:180–187

    CAS  Google Scholar 

  68. Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, Zhou Y (2012) Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 46:4546–4552

    Article  CAS  Google Scholar 

  69. Young L-H, Lin Y-H, Lin T-H, Tsai P-J, Wang Y-F, Hung S-M, Tsai C-J, Chen C-W (2013) Field application of a newly developed personal nanoparticle sampler to selected metalworking operations. Aerosol Air Qual Res 13:849–861

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Asbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asbach, C., Clavaguera, S., Todea, A.M. (2015). Measurement Methods for Nanoparticles in Indoor and Outdoor Air. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_423

Download citation

Publish with us

Policies and ethics