Skip to main content

Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M (2018) Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif Cells Nanomed Biotechnol 46(sup3):S943–S949. https://doi.org/10.1080/21691401.2018.1521816

    Article  CAS  PubMed  Google Scholar 

  • Atala A (2011) Tissue engineering of human bladder. Br Med Bull 97(1):81–104

    Article  PubMed  Google Scholar 

  • Atoufi Z, Zarrintaj P, Motlagh GH, Amiri A, Bagher Z, Kamrava SK (2017) A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. J Biomater Sci Polym Ed 28(15):1617–1638. https://doi.org/10.1080/09205063.2017.1340044

    Article  CAS  PubMed  Google Scholar 

  • Ávila HM, Feldmann E-M, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133

    Article  Google Scholar 

  • Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-jahromi S, Ziraksaz Z (2017) Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 33(2):144–172. https://doi.org/10.1080/02648725.2018.1430464

    Article  CAS  PubMed  Google Scholar 

  • Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M (2018) An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artif Cells Nanomed Biotechnol 46(6):1274–1281. https://doi.org/10.1080/21691401.2017.1367928

    Article  CAS  PubMed  Google Scholar 

  • Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YZ, Wang LL, Cai HX, Qi YY, Zou XH, Ouyang HW (2010) Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J Biomed Mater Res A 95(1):49–57

    Article  PubMed  Google Scholar 

  • Cherubino M, Valdatta L, Balzaretti R, Pellegatta I, Rossi F, Protasoni M, Tedeschi A, Accolla RS, Bernardini G, Gornati R (2016) Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice. Regen Med 11(3):261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da H, Jia S-J, Meng G-L, Cheng J-H, Zhou W, Xiong Z, Mu Y-J, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 8(1):e54838. https://doi.org/10.1371/journal.pone.0054838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV (1980) Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res 14(4):511–528

    Article  CAS  PubMed  Google Scholar 

  • Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2012) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9(67):202–221. Royal Society. https://doi.org/10.1098/rsif.2011.0438

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Acosta E, Avila J, Diaz-Flores L, Martin-Vasallo P (2012) Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Front Biosci Scholar S4(4):1275–1294. https://doi.org/10.2741/s331

    Article  CAS  Google Scholar 

  • Dodel M, Hemmati Nejad N, Bahrami SH, Soleimani M, Mohammadi Amirabad L, Hanaee-Ahvaz H, Atashi A (2017) Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals 46:99–107. https://doi.org/10.1016/j.biologicals.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  • Eberli D, Freitas Filho L, Atala A, Yoo JJ (2009) Composite scaffolds for the engineering of hollow organs and tissues. Methods 47(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Ehrbar M, Zeisberger SM, Raeber GP, Hubbell JA, Schnell C, Zisch AH (2008) The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29(11):1720–1729

    Article  CAS  PubMed  Google Scholar 

  • Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL (2018) Overview of silk fibroin use in wound dressings. Trends Biotechnol 36(9):907–922. Elsevier Ltd. https://doi.org/10.1016/j.tibtech.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  • Getgood AMJ, Kew SJ, Brooks R, Aberman H, Simon T, Lynn AK, Rushton N (2012) Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen–glycosaminoglycan biopolymer in a caprine model. Knee 19(4):422–430

    Article  PubMed  Google Scholar 

  • Giannoni P, Lazzarini E, Ceseracciu L, Barone AC, Quarto R, Scaglione S (2015) Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. J Tissue Eng Regen Med 9(10):1182–1192

    Article  CAS  PubMed  Google Scholar 

  • Golchin A, Nourani MR (2020) Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing. Polym Adv Technol 31(11):2443–2452. https://doi.org/10.1002/pat.4960

    Article  CAS  Google Scholar 

  • Golchin A, Rekabgardan M, Taheri RA, Nourani MR (2018) Promotion of cell-based therapy: special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies. In: Advances in experimental medicine and biology. Springer, Cham, pp 103–118. https://doi.org/10.1007/5584_2018_256

    Chapter  Google Scholar 

  • Golchin A, Shams F, Karami F (2020) Advancing mesenchymal stem cell therapy with CRISPR/Cas9 for clinical trial studies. Adv Exp Med Biol 1247:89–100. https://doi.org/10.1007/5584_2019_459

    Article  CAS  PubMed  Google Scholar 

  • Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Guda T, Walker JA, Pollot BE, Appleford MR, Oh S, Ong JL, Wenke JC (2011) In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius. J Mater Sci Mater Med 22(3):647–656

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Xu S, Ma L, Huang A, Gao C (2010) Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials 31(28):7308–7320

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Xu S, Ma L, Huang A, Gao C (2011) The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen–chitosan dermal equivalents. Biomaterials 32(4):1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Teng J, Xu S, Ma L, Huang A, Gao C (2014) Comparison studies of the in vivo treatment of full-thickness excisional wounds and burns by an artificial bilayer dermal equivalent and J-1 acellular dermal matrix. Wound Repair Regen 22(3):390–398

    Article  PubMed  Google Scholar 

  • Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A (2021) Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03374-8

  • Horst M, Madduri S, Milleret V, Sulser T, Gobet R, Eberli D (2013) A bilayered hybrid microfibrous PLGA–acellular matrix scaffold for hollow organ tissue engineering. Biomaterials 34(5):1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Howard D, Wardale J, Guehring H, Henson F (2015) Delivering rhFGF-18 via a bilayer collagen membrane to enhance microfracture treatment of chondral defects in a large animal model. J Orthop Res 33(8):1120–1127

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang YY, Tan Y, Wang J, Liu H, Wang YY, Yang S, Shi M, Zhao S, Zhang Y, Yuan Q (2017) A Difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv Mater 29(15):1605235. https://doi.org/10.1002/adma.201605235

    Article  CAS  Google Scholar 

  • Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25(10):1277–1290. https://doi.org/10.1002/jor.20442

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen L, Zhang S, Tong T, Zhang W, Liu W, Xu G, Tuan RS, Heng BC, Crawford R (2013) Incorporation of bioactive polyvinylpyrrolidone–iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Acta Biomater 9(9):8089–8098

    Article  CAS  PubMed  Google Scholar 

  • Kon E, Filardo G, Shani J, Altschuler N, Levy A, Zaslav K, Eisman JE, Robinson D (2015) Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res 10(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlovsky A, Aboodi G, Moses O, Tal H, Artzi Z, Weinreb M, Nemcovsky CE (2009) Bio-degradation of a resorbable collagen membrane (Bio-Gide®) applied in a double-layer technique in rats. Clin Oral Implants Res 20(10):1116–1123

    Article  PubMed  Google Scholar 

  • Kumbhar JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM (2017) In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomedicine 12:6437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science 260: 920–926. Tissue Engineering: The Union of Biology And Engineering, 98. https://doi.org/https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Langer%2C+R.%2C+%26+Vacanti%2C+J.+%281993%29.+Tissue+engineering.+Science+260%3A+920-926.+TISSUE+ENGINEERING%3A+THE+UNION+OF+BIOLOGY+AND+ENGINEERING%2C+98.+&btnG

  • Liao J, Tian T, Shi S, Xie X, Ma Q, Li G, Lin Y (2017) The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res 5:17018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Dong C, Lu G, Lu Q, Li Z, Kaplan DL, Zhu H (2013) Bilayered vascular grafts based on silk proteins. Acta Biomater 9(11):8991–9003

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wu J, Liu X, Chen D, Bowlin GL, Cao L, Lu J, Li F, Mo X, Fan C (2015) Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold. J Biomed Mater Res A 103(2):581–592

    Article  PubMed  Google Scholar 

  • Lv X, Feng C, Liu Y, Peng X, Chen S, Xiao D, Wang H, Li Z, Xu Y, Lu M (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8(11):3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). JBJS 85:45–57

    Article  Google Scholar 

  • Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    Article  PubMed  Google Scholar 

  • McClure MJ, Simpson DG, Bowlin GL (2012) Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: optimization of graft properties. J Mech Behav Biomed Mater 10:48–61

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei-parsa MJ, Ghanbari H, Alipoor B, Tavakoli A, Najafabadi MRH, Faridi-Majidi R (2018) Nanofiber acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 75(3):709–721

    Google Scholar 

  • Mohammadi Amirabad L, Massumi M, Shamsara M, Shabani I, Amari A, Mossahebi Mohammadi M, Hosseinzadeh S, Vakilian S, Steinbach SK, Khorramizadeh MR, Soleimani M, Barzin J (2017) Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Appl Mater Interfaces 9(8):6849–6864. https://doi.org/10.1021/acsami.6b15271

    Article  CAS  PubMed  Google Scholar 

  • Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M (2018) Chitosan in biomedical engineering: a critical review. Curr Stem Cell Res Ther 14(2):93–116. https://doi.org/10.2174/1574888x13666180912142028

    Article  CAS  Google Scholar 

  • Moradi SLSL, Golchin A, Hajishafieeha Z, Khani M-M, Ardeshirylajimi A (2018) Bone tissue engineering: adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 233(10):6509–6522. https://doi.org/10.1002/jcp.26606

    Article  CAS  PubMed  Google Scholar 

  • Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Joint Res 5(9):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natesan S, Zamora DO, Wrice NL, Baer DG, Christy RJ (2013) Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration. J Burn Care Res 34(1):18–30

    Article  PubMed  Google Scholar 

  • Niknam Z, Golchin A, Rezaei–Tavirani M, Ranjbarvan P, Zali H, Omidi MMV (2021) Osteogenic differentiation potential of adipose-derived mesenchymal stem cells cultured on magnesium oxide/polycaprolactone nanofibrous scaffolds for improving bone tissue reconstruction. Adv Pharm Bull, In press

    Google Scholar 

  • Nilforoushzadeh MA, Amirkhani MA, Zarrintaj P, Salehi Moghaddam A, Mehrabi T, Alavi S, Mollapour Sisakht M (2018) Skin care and rejuvenation by cosmeceutical facial mask. J Cosmet Dermatol 17(5):693–702. Blackwell Publishing Ltd. https://doi.org/10.1111/jocd.12730

    Article  PubMed  Google Scholar 

  • Nillesen STM, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen–heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28(6):1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149. https://doi.org/10.1038/6146

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137

    Article  CAS  PubMed  Google Scholar 

  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65(4):489–497

    Article  PubMed  Google Scholar 

  • Pérez-Silos V, Moncada-Saucedo NK, Peña-Martínez V, Lara-Arias J, Marino-Martínez IA, Camacho A, Romero-Díaz VJ, Banda ML, García-Ruiz A, Soto-Dominguez A, Rodriguez-Rocha H, López-Serna N, Tuan RS, Lin H, Fuentes-Mera L (2019) A cellularized biphasic implant based on a bioactive silk fibroin promotes integration and tissue organization during osteochondral defect repair in a porcine model. Int J Mol Sci 20(20):5145. https://doi.org/10.3390/ijms20205145

    Article  CAS  PubMed Central  Google Scholar 

  • Priya SG, Gupta A, Jain E, Sarkar J, Damania A, Jagdale PR, Chaudhari BP, Gupta KC, Kumar A (2016) Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl Mater Interfaces 8(24):15145–15159

    Article  CAS  PubMed  Google Scholar 

  • Pu J, Yuan F, Li S, Komvopoulos K (2015) Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomater 13:131–141

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Zhao T, Xu K, Dai T, Yan W (2012) The restoration of full-thickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model. Mol Biol Rep 39(2):1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc 22(6):1424–1433

    Article  PubMed  Google Scholar 

  • Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem 46(2):73–84

    Article  CAS  PubMed  Google Scholar 

  • Rajaei B, Shamsara M, Amirabad LM, Massumi M, Sanati MH (2017) Pancreatic endoderm-derived from diabetic patient-specific induced pluripotent stem cell generates glucose-responsive insulin-secreting cells. J Cell Physiol 232(10):2616–2625. https://doi.org/10.1002/jcp.25459

    Article  CAS  PubMed  Google Scholar 

  • Reyes R, Delgado A, Solis R, Sanchez E, Hernandez A, Roman JS, Evora C (2014) Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold. J Biomed Mater Res A 102(4):1110–1120

    Article  PubMed  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Sánchez JH, Ramos-Zúñiga R, de Anda SL, López-Dellamary F, Gonzalez-Castañeda R, De la Cruz Ramírez-Jaimes J, Jorge-Espinoza G (2012) A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World Neurosurg 77(3–4):577–582

    Article  PubMed  Google Scholar 

  • Sarker MD, Naghieh S, McInnes AD, Schreyer DJ, Chen X (2018) Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 171:125–150. Elsevier Ltd. https://doi.org/10.1016/j.pneurobio.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Tanabe T, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, Sasaki N (2013) Effects of bilayer gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses. Res Vet Sci 95(3):1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Tariverdian T, Zarintaj P, Milan PB, Saeb MR, Kargozar S, Sefat F, Samadikuchaksaraei A, Mozafari M (2018) Nanoengineered biomaterials for kidney regeneration. In: Nanoengineered biomaterials for regenerative medicine. Elsevier, pp 325–344. https://doi.org/10.1016/B978-0-12-813355-2.00014-4

    Chapter  Google Scholar 

  • Valarmathi MT, Davis JM, Yost MJ, Goodwin RL, Potts JD (2009) A three-dimensional model of vasculogenesis. Biomaterials 30(6):1098–1112

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu P, Hu X, You C, Guo R, Shi H, Guo S, Zhou H, Chaoheng Y, Zhang Y (2016) Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J Mech Behav Biomed Mater 56:120–133

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Liao J, Wang F, Jiang J, Cao C, Li S (2018) Novel bilayer wound dressing composed of SIS membrane with SIS cryogel enhanced wound healing process. Mater Sci Eng C 85:162–169

    Article  CAS  Google Scholar 

  • Xie J, MacEwan MR, Liu W, Jesuraj N, Li X, Hunter D, Xia Y (2014) Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces 6(12):9472–9480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudintceva NM, Nashchekina YA, Blinova MI, Orlova NV, Muraviov AN, Vinogradova TI, Sheykhov MG, Shapkova EY, Emeljannikov DV, Yablonskii PK (2016) Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells. Int J Nanomedicine 11:4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamanlui S, Amirabad LM, Soleimani M, Faghihi S (2018) Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Biologicals 56:1–8. https://doi.org/10.1016/j.biologicals.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M (2017a) Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine 12(19):2403–2422. Future Medicine Ltd. https://doi.org/10.2217/nnm-2017-0173

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Rezaeian I, Bakhshandeh B, Heshmatian B, Ganjali MR (2017b) Bio - conductive scaffold based on agarose - polyaniline for tissue engineering. J Skin Stem Cell, (In Press). https://doi.org/10.5812/jssc.67394

  • Zarrintaj P, Ahmadi Z, Reza Saeb M, Mozafari M (2018a) Poloxamer-based stimuli-responsive biomaterials. Mater Today Proc 5(7):15516–15523. https://doi.org/10.1016/j.matpr.2018.04.158

    Article  CAS  Google Scholar 

  • Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, Mozafari M (2018b) Agarose-based biomaterials for tissue engineering. Carbohydr Polym 187:66–84. Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2018.01.060

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M (2018c) Biomaterials selection for neuroprosthetics. Curr Opin Biomed Eng 6:99–109. Elsevier B.V. https://doi.org/10.1016/j.cobme.2018.05.003

    Article  Google Scholar 

  • Zarrintaj P, Urbanska AM, Gholizadeh SS, Goodarzi V, Saeb MR, Mozafari M (2018d) A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. J Colloid Interface Sci 516:57–66. https://doi.org/10.1016/j.jcis.2018.01.044

    Article  CAS  PubMed  Google Scholar 

  • Zarrintaj P, Zangene E, Manouchehri S, Amirabad LM, Baheiraei N, Hadjighasem MR, Farokhi M, Ganjali MR, Walker BW, Saeb MR, Mozafari M, Thomas S, Annabi N (2020) Conductive biomaterials as nerve conduits: recent advances and future challenges. Appl Mater Today 20:100784. Elsevier Ltd. https://doi.org/10.1016/j.apmt.2020.100784

    Article  Google Scholar 

  • Zhang YT, Niu J, Wang Z, Liu S, Wu J, Yu B (2017) Repair of osteochondral defects in a rabbit model using bilayer poly (Lactide-co-Glycolide) scaffolds loaded with autologous platelet-rich plasma. Med Sci Monit Int Med J Exp Clin Res 23:5189. https://doi.org/10.12659/MSM.904082

    Google Scholar 

  • Zhao Y, He Y, Guo J, Wu J, Zhou Z, Zhang M, Li W, Zhou J, Xiao D, Wang Z (2015) Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater 23:91–102

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Jia X, Yang Y, Yang Q, Gao C, Hu S, Zhao Y, Fan Y, Yuan X (2016) Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater 43:303–313

    Article  CAS  PubMed  Google Scholar 

  • Zhuang H, Bu S, Hua L, Darabi MA, Cao X, Xing M (2016) Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth. Int J Nanomedicine 11:1383

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors hold no conflicts of interest.

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leila Mohammadi Amirabad or Ali Golchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashemi, S. et al. (2021). Bilayer Scaffolds for Interface Tissue Engineering and Regenerative Medicine: A Systematic Reviews. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 14. Advances in Experimental Medicine and Biology(), vol 1347. Springer, Cham. https://doi.org/10.1007/5584_2021_637

Download citation

Publish with us

Policies and ethics