Skip to main content

In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy

  • Chapter
  • First Online:
Diabetes: from Research to Clinical Practice

Abstract

Diabetes in pregnancy is associated with an increased risk of poor outcomes, both for the mother and her offspring. Although clinical and epidemiological studies are invaluable to assess these outcomes and the effectiveness of potential treatments, there are certain ethical and practical limitations to what can be assessed in human studies.

Thus, both in vivo and in vitro models can aid us in the understanding of the mechanisms behind these complications and, in the long run, towards their prevention and treatment. This review summarizes the existing animal and cell models used to mimic diabetes, with a specific focus on the intrauterine environment.

Graphical Abstract

Summary of this review

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelalim E, Memon B (2020) Stem cell therapy for diabetes: beta cells versus pancreatic progenitors. Cell 9(2):pii: E283

    Article  CAS  Google Scholar 

  • Abou-Kheir W, Barrak J, Hadadeh O, Daoud G (2017) HTR-8/SVneo cell line contains a mixed population of cells. Placenta 50:1–7

    Article  CAS  PubMed  Google Scholar 

  • Acar N, Korgun ET, Cayli S, Sahin Z, Demir R, Ustunel I (2008) Is there a relationship between PCNA expression and diabetic placental development during pregnancy? Acta Histochem [Internet] 110(5):408–417. [cited 2019 Nov 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18377963

    Article  CAS  Google Scholar 

  • Aerts L, Vercruysse L, Van Assche FA (1997) The endocrine pancreas in virgin and pregnant offspring of diabetic pregnant rats. Diabetes Res Clin Pract [Internet] 38(1):9–19. [cited 2019 Nov 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9347241

    Article  CAS  Google Scholar 

  • Aigha II, Memon B, Elsayed AK, Abdelalim EM (2018) Differentiation of human pluripotent stem cells into two distinct NKX6.1 populations of pancreatic progenitors. Stem Cell Res Ther 9(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus, ADA clinical practice recommendations. Diabetes Care 36(Suppl 1):S67–S74

    Article  Google Scholar 

  • American Diabetes Association (2019) 2.Classification and diagnosis of diabetes: standards of medical care in diabetes 2019. Diabetes Care 42:S13–S28

    Article  Google Scholar 

  • Amirruddin NS, Low BSJ, Lee KO, Tai ES, Teo AKK (2019) New insights into human beta cell biology using human pluripotent stem cells. Semin Cell Dev Biol. pii: S1084-9521(18)30308-2

    Google Scholar 

  • Amorim EMP, Damasceno DC, Perobelli JE, Spadotto R, Fernandez CDB, Volpato GT et al (2011) Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats. Reprod Biol Endocrinol 9:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson LE, Valtat B, Bagge A, Sharoyko VV, Nicholls DG, Ravassard P et al (2015) Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line. PLoS One 10(3):e0120879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apps R, Sharkey A, Gardner L, Male V, Trotter M, Miller N et al (2011) Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta 32(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo Júnior E, Peixoto AB, Zamarian ACP, Elito Júnior J, Tonni G (2017) Macrosomia. In: Best practice and research: clinical obstetrics and gynaecology, vol 38. Bailliere Tindall Ltd, pp 83–96

    Google Scholar 

  • Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin secreting cell lines. Endocrinology 130:167–178

    Article  CAS  PubMed  Google Scholar 

  • Azizkhan JC, Speeg KV, Stromberg K, Goode D (1979) Stimulation of human chorionic gonadotropin by JAr line choriocarcinoma after inhibition of DNA synthesis. Cancer Res 39(6 Pt 1):1952–1959

    CAS  PubMed  Google Scholar 

  • Bakhti M, Böttcher A, Lickert H (2019) Modelling the endocrine pancreas in health and disease. Nat Rev Endocrinol 15(3):155–171

    Article  CAS  PubMed  Google Scholar 

  • Balboa D, Saarimäki-Vire J, Otonkoski T (2019) Concise review: human pluripotent stem cells for the modeling of pancreatic β-cell pathology. Stem Cells 37(1):33–41

    Article  PubMed  Google Scholar 

  • Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J et al (2019) Mechanisms of adiponectin action in fertility: An overview from gametogenesis to gestation in humans and animal models in normal and pathological conditions. Int J Mol Sci [Internet] 20(7). [cited 2019 Oct 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30934676

  • Basak S, Das MK, Srinivas V, Duttaroy AK (2015) The interplay between glucose and fatty acids on tube formation and fatty acid uptake in the first trimester trophoblast cells, HTR8/SVneo. Mol Cell Biochem 401(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  • Basak S, Vilasagaram S, Naidu K, Duttaroy AK (2019) Insulin-dependent, glucose transporter 1 mediated glucose uptake and tube formation in the human placental first trimester trophoblast cells. Mol Cell Biochem 451(1–2):91–106

    Article  CAS  PubMed  Google Scholar 

  • Bassalert C, Valverde-Estrella L, Chazaud C (2018) Primitive endoderm differentiation: from specification to epithelialization. Curr Top Dev Biol [Internet] 128:81–104. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0070215317300716

    Article  CAS  Google Scholar 

  • Beebe LF, Kaye PL (1991) Maternal diabetes and retarded preimplantation development of mice. Diabetes 40(4):457–461

    Article  CAS  PubMed  Google Scholar 

  • Benazra M, Lecomte M-J, Colace C, Müller A, Machado C, Pechberty S et al (2015) A human beta cell line with drug inducible excision of immortalizing transgenes. Mol Metab 4(12):916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo-Alvarez P, Rosenfeld CS, Roberts RM (2012a) Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model. Hum Reprod [Internet] 27(12):3513–3522. Available from: https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/des327

    Article  CAS  Google Scholar 

  • Bermejo-Alvarez P, Roberts RM, Rosenfeld CS (2012b) Effect of glucose concentration during in vitro culture of mouse embryos on development to blastocyst, success of embryo transfer, and litter sex ratio. Mol Reprod Dev 79(5):329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggers JD, McGinnis LK (2001) Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Hum Reprod 16(1):153–163

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti P, Nobecourt E, Oshima M, Albagli-Curiel O, Laurysens V, Stangé G et al (2015) Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev 24(15):1766–1778

    Article  CAS  PubMed  Google Scholar 

  • Brito-Casillas Y, Melián C, Wägner AM (2016) Study of the pathogenesis and treatment of diabetes mellitus through animal models. Endocrinol Nutr [Internet] 63(7):345–353. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1575092216300481

    Article  Google Scholar 

  • Brito-Casillas Y, Aranda-Tavío H, Rodrigo-González L, Expósito-Montesdeoca AB, Martín-Rodríguez P, Guerra B, Wägner AM, Fernández-Pérez L (2019) SOCS2-/- mouse as a potential model of macrosomia and gestational diabetes. Eur Med J [Internet]. [cited 2019 Dec 20]. Available from: https://www.emjreviews.com/diabetes/abstract/socs2-mouse-as-a-potential-model-of-macrosomia-and-gestational-diabetes/

  • Brown K, Heller DS, Zamudio S, Illsley NP (2011) Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta 32(12):1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown HM, Green ES, Tan TCY, Gonzalez MB, Rumbold AR, Hull ML et al (2018) Periconception onset diabetes is associated with embryopathy and fetal growth retardation, reproductive tract hyperglycosylation and impaired immune adaptation to pregnancy. Sci Rep 8(1):2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruin JE, Rezania A, Xu J, Narayan K, Fox JK, O’Neil JJ et al (2013) Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56(9):1987–1998

    Article  PubMed  Google Scholar 

  • Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT et al (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12(1):194–208

    Article  CAS  PubMed  Google Scholar 

  • Burke SD, Dong H, Hazan AD, Croy BA (2007) Aberrant endometrial features of pregnancy in diabetic NOD mice. Diabetes 56(12):2919–2926

    Article  CAS  PubMed  Google Scholar 

  • Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR et al (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39

    Article  CAS  PubMed  Google Scholar 

  • Capobianco E, Jawerbaum A, Romanini MC, White V, Pustovrh C, Higa R et al (2005) 15-Deoxy-Delta12,14-prostaglandin J2 and peroxisome proliferator-activated receptor gamma (PPARgamma) levels in term placental tissues from control and diabetic rats: modulatory effects of a PPARgamma agonist on nitridergic and lipid placental metabolism. Reprod Fertil Dev [Internet] 17(4):423–433. [cited 2019 Nov 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15899154

    Article  CAS  Google Scholar 

  • Carlson AJ, Drennan FM (1911) The control of pancreatic diabetes in pregnancy by the passage of the internal secretion of the pancreas of the fetus to the blood of the mother. Am J Physiol Content 28(7):391–395

    Article  Google Scholar 

  • Chang AS, Dale AN, Moley KH (2005) Maternal diabetes adversely affects Preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology [Internet] 146(5):2445–2453. [cited 2019 Nov 29]. Available from: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2004-1472

    Article  CAS  Google Scholar 

  • Chaudhry ZZ, Morris DL, Moss DR, Sims EK, Chiong Y, Kono T et al (2013) Streptozotocin is equally diabetogenic whether administered to fed or fasted mice. Lab Anim 47(4):257–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Canet MJ, Sheng L, Jiang L, Xiong Y, Yin L et al (2015) Hepatocyte TRAF3 promotes insulin resistance and type 2 diabetes in mice with obesity. Mol Metab 4(12):951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi MMY, Pingsterhaus J, Carayannopoulos M, Moley KH (2000) Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 275(51):40252–40257

    Article  CAS  PubMed  Google Scholar 

  • Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci U S A 74:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin BN, Longtine MS, Chen B, Costa ML, Nelson DM (2017) Oleate attenuates palmitate-induced endoplasmic reticulum stress and apoptosis in placental trophoblasts. Reproduction 153(4):369–380

    Article  CAS  PubMed  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG et al (2006) Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401

    Article  PubMed  CAS  Google Scholar 

  • Desoye G, Mouzon SH (2007) The human placenta in gestational diabetes mellitus. Diabetes Care 30(Supplement 2):S120–S126

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JE, Meyer BA, Brath PC, Chmielowiec S, Walsh SW, Parisi VM et al (1990) Placental thromboxane and prostacyclin production in an ovine diabetic model. Am J Obstet Gynecol [Internet] 163(6 Pt 1):1831–1835. [cited 2019 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2147814

    Article  CAS  Google Scholar 

  • Ding R, Liu XM, Xiang YQ, Zhang Y, Zhang JY, Guo F et al (2018) Altered matrix metalloproteinases expression in placenta from patients with gestational diabetes mellitus. Chin Med J 131:1255–1258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dontas IA, Marinou KA, Karatzas T (2012) Research in diabetes using animal models. Br J Pharmacol 166(3):877–894

    Article  CAS  Google Scholar 

  • Dowling D, Corrigan N, Horgan S, Watson CJ, Baugh J, Downey P et al (2014) Cardiomyopathy in offspring of pregestational diabetic mouse pregnancy. J Diabetes Res 2014:624939

    Article  PubMed  PubMed Central  Google Scholar 

  • Elumalai S, Karunakaran U, Lee IK, Moon JS, Won KC (2017) Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells. Redox Biol 11:126–134

    Article  CAS  PubMed  Google Scholar 

  • Eriksson UJ, Bone AJ, Turnbull DM, Baird JD (1989) Timed interruption of insulin therapy in diabetic BB/E rat pregnancy: effect on maternal metabolism and fetal outcome. Acta Endocrinol (Copenh) [Internet] 120(6):800–810. [cited 2019 Nov 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2658457

    Article  CAS  Google Scholar 

  • Esakoff TF, Cheng YW, Sparks TN, Caughey AB (2009) The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol 200(6):672.e1–672.e4

    Article  Google Scholar 

  • Ezekwe MO, Ezekwe EI, Sen DK, Ogolla F (1984) Effects of maternal streptozotocin-diabetes on fetal growth, energy reserves and body composition of newborn pigs. J Anim Sci [Internet] 59(4):974–980. [cited 2019 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6239852

    Article  CAS  Google Scholar 

  • Favaro RR, Salgado RM, Covarrubias AC, Bruni F, Lima C, Fortes ZB et al (2013) Long-term type 1 diabetes impairs decidualization and extracellular matrix remodeling during early embryonic development in mice on occasion of the 30th anniversary of the Laboratory of Reproductive and Extracellular Matrix Biology we dedicate this article to its founder, Professor Paulo Abrahamsohn. Placenta 34(12):1128–1135

    Article  CAS  PubMed  Google Scholar 

  • Feige JN, Lagouge M, Auwerx J, Feige JN, Lagouge M, Auwerx J (2008) Dietary manipulation of mouse metabolism. In: Current protocols in molecular biology [Internet]. Wiley, Hoboken, pp 29B.5.1–29B.5.12. Available from: http://doi.wiley.com/10.1002/0471142727.mb29b05s84

    Google Scholar 

  • Frank HG, Gunawan B, Ebeling-Stark I, Schulten HJ, Funayama H, Cremer U et al (2000) Cytogenetic and DNA-fingerprint characterization of choriocarcinoma cell lines and a trophoblast/choriocarcinoma cell hybrid. Cancer Genet Cytogenet 116(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • Fraser RB, Waite SL, Wood KA, Martin KL (2007) Impact of hyperglycemia on early embryo development and embryopathy: in vitro experiments using a mouse model. Hum Reprod 22(12):3059–3068

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich JD, Desoye G, König J, Huppertz B (2015) Oxygen and glucose dependent viability of HLA-G positive and negative trophoblasts using ACH-3P cells as first trimester trophoblast-derived cell model. J Reprod Heal Med 1(1):4–9

    Article  Google Scholar 

  • Gauguier D, Bihoreau MT, Ktorza A, Berthault MF, Picon L (1990) Inheritance of diabetes mellitus as consequence of gestational hyperglycemia in rats. Diabetes [Internet] 39(6):734–739. [cited 2019 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2189765

    Article  CAS  Google Scholar 

  • Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY et al (2014) Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 12(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez E, Jawerbaum A (2006) Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem 13(18):2127–2138

    Article  PubMed  Google Scholar 

  • Graham CH, Hawley TS, Hawley RC, MacDougall JR, Kerbel RS, Khoo N et al (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 206(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Green AD, Vasu S, McClenaghan NH, Flatt PR (2015) Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells. Pflügers Arch – Eur J Physiol 467(10):2219–2228

    Article  CAS  Google Scholar 

  • Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H et al (2013) Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140(21):4452–4462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieco FA, Moore F, Vigneron F, Santin I, Villate O, Marselli L et al (2014) IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia 57(3):502–511

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M et al (2013) Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 123(8):3305–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurgul-Convey E, Kaminski MT, Lenzen S (2015) Physiological characterization of the human EndoC-βH1 β-cell line. Biochem Biophys Res Commun 464(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U et al (2018) Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11(2):537–551

    Article  CAS  Google Scholar 

  • Han CS, Herrin MA, Pitruzzello MC, Mulla MJ, Werner EF, Pettker CM et al (2015) Glucose and metformin modulate human first trimester trophoblast function: a model and potential therapy for diabetes-associated Uteroplacental insufficiency. Am J Reprod Immunol 73(4):362–371

    Article  CAS  PubMed  Google Scholar 

  • Hanafusa T, Miyagawa J, Nakajima H, Tomita K, Kuwajima M, Matsuzawa Y et al (1994) The NOD mouse. Diabetes Res Clin Pract [Internet] 24:S307–S311. [cited 2019 Nov 15]. Available from: https://linkinghub.elsevier.com/retrieve/pii/0168822794902674

    Article  Google Scholar 

  • Hart NJ, Powers AC (2019) Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia 62(2):212–222

    Article  CAS  PubMed  Google Scholar 

  • Heaton SJ, Eady JJ, Parker ML, Gotts KL, Dainty JR, Fairweather-Tait SJ et al (2008) The use of BeWo cells as an in vitro model for placental iron transport. Am J Physiol Cell Physiol 295(5):C1445–C1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim KR, Mulla MJ, Potter JA, Han CS, Guller S, Abrahams VM (2018) Excess glucose induce trophoblast inflammation and limit cell migration through HMGB1 activation of Toll-Like receptor 4. Am J Reprod Immunol 80(5):e13044

    Article  PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26(1):59–99

    Article  CAS  PubMed  Google Scholar 

  • Hiden U, Wadsack C, Prutsch N, Gauster M, Weiss U, Frank H-G et al (2007) The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations – TNF-α stimulates MMP15 expression. BMC Dev Biol 7(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hindley CJ, Cordero-Espinoza L (2016) Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol 420(2):251–261

    Article  CAS  PubMed  Google Scholar 

  • Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, Damm P, Desoye G et al (2019) Diabetes in pregnancy and epigenetic mechanisms—how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol (Lancet Publishing Group) 7:796–806

    Article  Google Scholar 

  • Holemans K, Caluwaerts S, Poston L, Van Assche FA (2004) Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol 190(3):858–865

    Article  PubMed  Google Scholar 

  • Hong Y, Ahn H-J, Shin J, Lee JH, Kim J-H, Park H-W et al (2018) Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects. J Reprod Immunol 125:56–63

    Article  CAS  PubMed  Google Scholar 

  • Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P et al (2014) Differentiated human stem cells resemble fetal, not adult, β cells. Proc Natl Acad Sci U S A 111(8):3038–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Snider F, Cross JC (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology [Internet] 150(4):1618–1626. [cited 2019 Nov 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19036882

    Article  CAS  Google Scholar 

  • Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32(20):2708–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme CH, Stevens A, Dunn W, Heazell AEP, Hollywood K, Begley P et al (2018) Identification of the functional pathways altered by placental cell exposure to high glucose: lessons from the transcript and metabolite interactome. Sci Rep 8(1):5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illsley NP, Baumann MU (1866) Human placental glucose transport in fetoplacental growth and metabolism. Biochim Biophys Acta Mol basis Dis 2020(2):165359

    Article  CAS  Google Scholar 

  • Jacob HJ, Pettersson A, Wilson D, Mao Y, Lernmark Å, Lander ES (1992a) Genetic dissection of autoimmune type I diabetes in the BB rat. Nat Genet 2(1):56–60

    Article  CAS  PubMed  Google Scholar 

  • Jacob HJ, Pettersson A, Wilson D, Mao Y, Lernmark Å, Lander ES (1992b) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Nat Genet 2(1):56–60

    Article  CAS  PubMed  Google Scholar 

  • Jansson T, Wennergren M, Powell TL (1999) Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am J Obstet Gynecol 180(1 I):163–168

    Article  CAS  PubMed  Google Scholar 

  • Jansson T, Cetin I, Powell TL, Desoye G, Radaelli T, Ericsson A et al (2006) Placental transport and metabolism in fetal overgrowth – a workshop report. Placenta 27(SUPPL):109–113

    Article  Google Scholar 

  • Jastreboff AM (2014) Giving leptin a second chance. Sci Transl Med 6(220):220ec14

    Article  Google Scholar 

  • Jawerbaum A, White V (2010) Animal models in diabetes and pregnancy. Endocr Rev [Internet] 31(5):680–701. [cited 2019 Nov 1].. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20534704

    Article  Google Scholar 

  • Jawerbaum A, Gonzalez ET, Catafau JR, Rodriguez RR, Gomez G, Gimeno AL et al (1993) Glucose, glycogen and triglyceride metabolism, as well as prostaglandin production in uterine strips and in embryos from diabetic pregnant rats. Influences of the presence of substrate in the incubation medium. Prostaglandins [Internet] 46(5):417–431. [cited 2019 Oct 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/8278619

    Article  CAS  Google Scholar 

  • Jiang S, Teague AM, Tryggestad JB, Chernausek SD (2017) Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun 487(3):607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L, Feng T, Shih HP, Zerda R, Luo A, Hsu J et al (2013) Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A 110(10):3907–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L, Feng T, Zerda R, Chen C-C, Riggs AD, Ku HT (2014) In vitro multilineage differentiation and self-renewal of single pancreatic colony-forming cells from adult C57BL/6 mice. Stem Cells Dev 23(8):899–909

    Article  CAS  PubMed  Google Scholar 

  • Kaddis JS, Olack BJ, Sowinski J, Cravens J, Contreras JL, Niland JC (2009) Human pancreatic islets and diabetes research. JAMA 301(15):1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser N, Nesher R, Donath MY, Fraenkel M, Behar V, Magnan C et al (2005) Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 54(SUPPL. 2):S137–S144

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Kawamuro Y, Shiraki N, Miki R, Sakano D, Yoshida T et al (2013) Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment. Biochem Biophys Res Commun 430(3):1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J, Roddick JW (1981) An animal model of gestational diabetes. Am J Obstet Gynecol 141(5):479–482

    Article  CAS  PubMed  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol [Internet] 8(6):e1000412. Available from: https://dx.plos.org/10.1371/journal.pbio.1000412

    Article  CAS  Google Scholar 

  • Kim JH, Pan JH, Cho HT, Kim YJ (2016a) Black ginseng extract counteracts Streptozotocin-induced diabetes in mice. Irwin N, editor. PLoS One [Internet] 11(1):e0146843. [cited 2019 Nov 29]. Available from: http://dx.plos.org/10.1371/journal.pone.0146843

    Article  CAS  Google Scholar 

  • Kim Y, Kim H, Ko UH, Oh Y, Lim A, Sohn J-W et al (2016b) Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 6(1):35145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima N (2014) In vitro reconstitution of pancreatic islets. Organogenesis 10(2):225–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopp JL, Grompe M, Sander M (2016) Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18(3):238–245

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Keane K, Rodrigues-Krause J, Crognale D, Egan B, De Vito G et al (2014) Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic β-cell dysfunction and death in vitro. Clin Sci 126(10):739–752

    Article  CAS  Google Scholar 

  • Krishnan K, Ma Z, Björklund A, Islam MS (2015) Calcium signaling in a genetically engineered human pancreatic β-cell line. Pancreas 44(5):773–777

    Article  CAS  PubMed  Google Scholar 

  • Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H (2005) Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol [Internet] 25(6):2498–2510. [cited 2019 Nov 29]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15743841

    Article  CAS  Google Scholar 

  • Lager S, Jansson N, Olsson AL, Wennergren M, Jansson T, Powell TL (2011) Effect of IL-6 and TNF-α on fatty acid uptake in cultured human primary trophoblast cells. Placenta 32(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Lappas M, Hiden U, Desoye G, Froehlich J, De Mouzon SH, Jawerbaum A (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15:3061–3100

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Sullivan MK, Hazelwood RL (1993) Effects of diabetes mellitus on lactation in the rat. Proc Soc Exp Biol Med 204(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Lebreton F, Lavallard V, Bellofatto K, Bonnet R, Wassmer CH, Perez L et al (2019) Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 10(1):4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J et al (2013) Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. elife 2:e00940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Lee HC, Kim SY, Cho GJ, Woodruff TK (2019) Poorly-controlled type 1 diabetes mellitus impairs LH-LHCGR signaling in the ovaries and decreases female fertility in mice. Yonsei Med J 60(7):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Lin L, Wang Y, Yang H (2019) 1,25(OH)2D3 protects trophoblasts against insulin resistance and inflammation via suppressing mTOR signaling. Reprod Sci 26(2):223–232

    Article  CAS  PubMed  Google Scholar 

  • Li M, Rahman ML, Wu J, DIng M, Chavarro JE, Lin Y et al (2020) Genetic factors and risk of type 2 diabetes among women with a history of gestational diabetes: findings from two independent populations. BMJ Open Diabetes Res Care 8(1):e000850

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao Z, Wang J, Tan H, Wei L (2017) Cinnamon extracts exert intrapancreatic cytoprotection against streptozotocin in vivo. Gene 627:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Yuan Z, Zhang C, Ju H, Sun Y, Huang N et al (2020) Common genetic variants in ADCY5 and gestational glycemic traits. Petry CJ, editor. PLoS One [Internet] 15(3):e0230032. [cited 2020 Apr 12]. Available from: https://dx.plos.org/10.1371/journal.pone.0230032

    Article  CAS  Google Scholar 

  • Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M et al (2018) Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep 10(3):712–724

    Article  CAS  Google Scholar 

  • López-Soldado I, Herrera E (2003) Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring. Exp Diabesity Res 4(2):107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano I, Van Der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M et al (2016) High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab 13:15

    Article  CAS  Google Scholar 

  • Luo H, Chen C, Guo L, Xu Z, Peng X, Wang X et al (2018) Exposure to maternal diabetes mellitus causes renal dopamine D1 receptor dysfunction and hypertension in adult rat offspring. Hypertension 72(4):962–970

    Article  CAS  PubMed  Google Scholar 

  • Mage RG, Esteves PJ, Rader C (2019) Rabbit models of human diseases for diagnostics and therapeutics development. Dev Comp Immunol (Elsevier Ltd) 92:99–104

    Article  CAS  Google Scholar 

  • Marchetti P, Schulte AM, Marselli L, Schoniger E, Bugliani M, Kramer W et al (2019) Fostering improved human islet research: a European perspective. Diabetologia 62(8):1514–1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Markowitz J, Soskin S (1927) Pancreatic diabetes and pregnancy. Am J Physiol Content 79(3):553–558

    Article  Google Scholar 

  • Martin ME, Garcia AM, Blanco L, Herrera E, Salinas M (1995) Effect of streptozotocin diabetes on polysomal aggregation and protein synthesis rate in the liver of pregnant rats and their offspring. Biosci Rep 15(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Martínez N, Capobianco E, White V, Pustovrh MC, Higa R, Jawerbaum A (2008) Peroxisome proliferator-activated receptor α activation regulates lipid metabolism in the feto-placental unit from diabetic rats. Reproduction 136(1):95–103

    Article  PubMed  CAS  Google Scholar 

  • Mathew B, Muñoz-Descalzo S, Corujo-Simon E, Schröter C, Stelzer EHK, Fischer SC (2019) Mouse ICM organoids reveal three-dimensional cell fate clustering. Biophys J 116(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • McClenaghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YHA, O’Harte FPM, Yoon T-W et al (1996) Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 45(8):1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki J-I, Araki K, Yamato E, Ikegami H, ASANO T, Shibasaki Y et al (1990) Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms∗. Endocrinology 127(1):126–132

    Article  Google Scholar 

  • Moley KH, Vaughn WK, DeCherney AH, Diamond MP (1991) Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil [Internet] 93(2):325–332. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1787451

    Article  CAS  Google Scholar 

  • Moley KH, M-Y Chi M, Manchester JK, McDougal DB, Lowry OH (1996) Alterations of intraembryonic metabolites in preimplantation mouse embryos exposed to elevated concentrations of glucose: a metabolic explanation for the developmental retardation seen in preimplantation embryos from diabetic Animals1. Biol Reprod 54(6):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Moley KH, Chi MM-Y, Knudson CM, Korsmeyer SJ, Mueckler MM (1998) Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med [Internet] 4(12):1421–1424. Available from: http://www.nature.com/articles/nm1298_1421

    Article  CAS  Google Scholar 

  • Moon S, Bin KDY, Ko JH, Kim YS (2019) Recent advances in the CRISPR genome editing tool set. Exp Mol Med (NLM Medline) 51:130

    Google Scholar 

  • Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L et al (2019) Concise review: canine diabetes mellitus as a translational model for innovative regenerative medicine approaches. Stem Cells Transl Med (Wiley) 8:450–455

    Article  Google Scholar 

  • Nakao K (2019) Translational science: newly emerging science in biology and medicine – lessons from translational research on the natriuretic peptide family and leptin. Proc Jpn Acad Ser B Phys Biol Sci 95(9):538–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi P, Lim H, Torres-Garcia EJ, Lala PK (2018) Human trophoblast stem cell self-renewal and differentiation: role of decorin. Sci Rep 8(1):8977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nanobashvili K, Jack-Roberts C, Bretter R, Jones N, Axen K, Saxena A et al (2018) Maternal choline and betaine supplementation modifies the placental response to hyperglycemia in mice and human trophoblasts. Nutrients 10(10):1507

    Article  PubMed Central  CAS  Google Scholar 

  • Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li S-A, Chen Y et al (2005) A human β-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23(10):1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Niland JC, Stiller T, Cravens J, Sowinski J, Kaddis J, Qian D (2010) Effectiveness of a web-based automated cell distribution system. Cell Transplant 19(9):1133–1142

    Article  PubMed  Google Scholar 

  • Novaro V, Jawerbaum A, Faletti A, Gimeno MA, González ET (1998) Uterine nitric oxide and prostaglandin E during embryonic implantation in non-insulin-dependent diabetic rats. Reprod Fertil Dev [Internet] 10(3):217–223.[cited 2019 Nov 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11596867

    Article  CAS  Google Scholar 

  • Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69(3):1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22(1):50–63.e6

    Article  CAS  PubMed  Google Scholar 

  • Ota H, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Miyaoka T, Fujimura T et al (2013) Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene. Life Sci 93(18–19):664–672

    Article  CAS  PubMed  Google Scholar 

  • Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH et al (2014) Generation of functional human pancreatic β cells in vitro. Cell 159(2):428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasek RC, Gannon M (2013) Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab 305:1327–1338

    Article  CAS  Google Scholar 

  • Pearson JA, Wong FS, Wen L (2016) The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun (Academic Press) 66:76–88

    Article  CAS  Google Scholar 

  • Peng HY, Li MQ, Li HP (2018) High glucose suppresses the viability and proliferation of HTR-8/SVneo cells through regulation of the miR-137/PRKAA1/IL-6 axis. Int J Mol Med 42(2):799–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-López L, Boronat M, Melián C, Saavedra P, Brito-Casillas Y, Wägner AM (2019) Assessment of the association between diabetes mellitus and chronic kidney disease in adult cats. J Vet Intern Med 33(5):1921–1925

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19

    Article  CAS  PubMed  Google Scholar 

  • Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH (2018a) Molecular sciences the pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19(11):pii: E3342. [cited 2019 Oct 29] Available from: www.mdpi.com/journal/ijms

    Article  CAS  Google Scholar 

  • Plows J, Stanley J, Baker P, Reynolds C, Vickers M (2018b) The pathophysiology of gestational diabetes mellitus. Int J Mol Sci [Internet] 19(11):3342. [cited 2019 Nov 11]. Available from: http://www.mdpi.com/1422-0067/19/11/3342

    Article  CAS  Google Scholar 

  • Poaty H, Coullin P, Peko JF, Dessen P, Diatta AL, Valent A et al (2012) Genome-wide high-resolution aCGH analysis of gestational Choriocarcinomas. Krahe R, editor. PLoS One 7(1):e29426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priel T, Aricha-Tamir B, Sekler I (2007) Clioquinol attenuates zinc-dependent β-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol 565(1–3):232–239

    Article  CAS  PubMed  Google Scholar 

  • Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P et al (2011) A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J et al (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61(554722):1–14

    Google Scholar 

  • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset J-C, Korving J, Vivié J et al (2018) Blastocyst-like structures generated solely from stem cells. Nature [Internet] 557(7703):106–111. Available from: http://www.nature.com/articles/s41586-018-0051-0

    Article  CAS  Google Scholar 

  • Rogal J, Zbinden A, Schenke-Layland K, Loskill P (2019) Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 140:101–128

    Article  CAS  PubMed  Google Scholar 

  • Rousseau-Ralliard D, Couturier-Tarrade A, Thieme R, Brat R, Rolland A, Boileau P et al (2019) A short periconceptional exposure to maternal type-1 diabetes is sufficient to disrupt the feto-placental phenotype in a rabbit model. Mol Cell Endocrinol [Internet] 480:42–53. [cited 2019 Mar 29]. Available from: https://www.sciencedirect.com/science/article/pii/S0303720718302910?via%3Dihub#

    Article  CAS  Google Scholar 

  • Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M et al (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh L, Prast J, Haslinger P, Husslein P, Helmer H, Knöfler M (2007) Effects of different human chorionic gonadotrophin preparations on trophoblast differentiation. Placenta 28(2–3):199–203

    Article  CAS  PubMed  Google Scholar 

  • Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout-Neveu E, Grenier-Godard M et al (2014) Development of a conditionally immortalized human pancreatic β cell line. J Clin Invest 124(5):2087–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfmann R, Didiesheim M, Richards P, Chandra V, Oshima M, Albagli O (2016) Mass production of functional human pancreatic β-cells: why and how? Diabetes Obes Metab 18(Suppl 1):128–136

    Article  PubMed  Google Scholar 

  • Schmied BM, Ulrich A, Matsuzaki H, Batra SK, Pour PM, Schmied BM et al (2000) Maintenance of human islets in long term culture. Differentiation 66(4–5):173–180

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss H-D, Bentzel CJ et al (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116(2):301–309

    Article  CAS  PubMed  Google Scholar 

  • Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V, Teramo KA (1994) Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care 17(7):640–648

    Article  CAS  PubMed  Google Scholar 

  • Šeda O, Vieira AR, Proshchina A, Molina-Hernández A, Márquez-Valadez B, Valle-Bautista R et al (2018) Maternal diabetes and fetal programming toward neurological diseases: beyond neural tube defects. Front Endocrinol [Internet] 9:664. [cited 2019 Nov 28]. Available from: www.frontiersin.org

    Article  Google Scholar 

  • Shahjalal HM, Abdal Dayem A, Lim KM, Jeon T-l, Cho SG (2018) Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther 9(1):1–19

    Article  CAS  Google Scholar 

  • Sharma A, Zangen DH, Reitz P, Taneja M, Lissauer ME, Miller CP et al (1999) The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes [Internet] 48(3):507–513. [cited 2019 Oct 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10078550

    Article  CAS  Google Scholar 

  • Shim J-H, Kim J, Han J, An SY, Jang YJ, Son J et al (2015) Pancreatic islet-Like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in Streptozotocin-induced diabetic mice. Cell Transplant 24(10):2155–2168

    Article  PubMed  Google Scholar 

  • Shimizu R, Sakazaki F, Okuno T, Nakamuro K, Ueno H (2012) Difference in glucose intolerance between C57BL/6J and ICR strain mice with streptozotocin/nicotinamide-induced diabetes. Biomed Res 33:63–66

    Article  CAS  PubMed  Google Scholar 

  • Shin J-Y, Jeong J-H, Han J, Bhang SH, Jeong G-J, Haque MR et al (2015) Transplantation of Heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and Antiapoptosis. Tissue Eng Part A 21(5–6):1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ (2008) Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest 118(10):3378–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starling S (2019) New therapeutic promise for leptin. Nat Rev Endocrinol (Nature Publishing Group) 15:625

    Article  CAS  Google Scholar 

  • Stirm L, Kovářová M, Perschbacher S, Michlmaier R, Fritsche L, Siegel-Axel D et al (2018) BMI-independent effects of gestational diabetes on human placenta. J Clin Endocrinol Metab 103(9):3299–3309

    Article  PubMed  Google Scholar 

  • Sugimura Y, Murase T, Oyama K, Uchida A, Sato N, Hayasaka S et al (2009) Prevention of neural tube defects by loss of function of inducible nitric oxide synthase in fetuses of a mouse model of streptozotocin-induced diabetes. Diabetologia 52(5):962–971

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J et al (2013) Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci 110(31):12691–12696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes [Internet] 37(9):1163–1167. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3044882

    Article  CAS  Google Scholar 

  • Suwaki N, Masuyama H, Masumoto A, Takamoto N, Hiramatsu Y (2007) Expression and potential role of peroxisome proliferator-activated receptor gamma in the placenta of diabetic pregnancy. Placenta [Internet] 28(4):315–323. [cited 2019 Nov 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16753211

    Article  CAS  Google Scholar 

  • Takahashi Y, Takebe T, Taniguchi H (2018) Methods for generating vascularized islet-Like organoids via self-condensation. Curr Protoc Stem Cell Biol 45(1):e49

    PubMed  Google Scholar 

  • Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y et al (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16(5):556–565

    Article  CAS  PubMed  Google Scholar 

  • Thong EP, Codner E, Laven JSE, Teede H (2020) Diabetes: a metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol 8(2):134–149

    Article  CAS  PubMed  Google Scholar 

  • Triñanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, Wagner A, De Vries APJ, Cuesto G et al (2017) Deciphering tacrolimus-induced toxicity in pancreatic β cells. Am J Transplant [Internet] 17(11):2829–2840. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28432716

    Article  CAS  Google Scholar 

  • Tsakmaki A, Fonseca Pedro P, Bewick GA (2020) Diabetes through a 3D lens: organoid models. Diabetologia 27:1–10

    Google Scholar 

  • Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Kirstine Ringgaard A, Ingvorsen C et al (2018) The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab 8:144–157

    Article  CAS  PubMed  Google Scholar 

  • Turco MY, Moffett A (2019) Development of the human placenta. Development 146(22):pii: dev163428

    Article  CAS  Google Scholar 

  • Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS et al (2018) Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564(7735):263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Türk G, Rişvanlı A, Çeribaşı AO, Sönmez M, Yüce A, Güvenç M et al (2018) Effect of gestational diabetes mellitus on testis and pancreatic tissues of male offspring. Andrologia [Internet] 50(4):e12976. [cited 2019 Nov 29] Available from: http://doi.wiley.com/10.1111/and.12976

    Article  CAS  Google Scholar 

  • Uchida S, Watanabe S, Aizawa T, Furuno A, Muto T (1979) Polyoncogenicity and insulinoma-inducing ability of BK Virus, a human Papovavirus, in Syrian golden hamsters. J Natl Cancer Inst 63(1):119–126

    CAS  PubMed  Google Scholar 

  • Van Assche FA, Holemans K, Aerts L (2001) Long-term consequences for offspring of diabetes during pregnancy. Br Med Bull 60:173–182

    Article  PubMed  Google Scholar 

  • Vasu S, McClenaghan NH, McCluskey JT, Flatt PR (2013) Cellular responses of novel human pancreatic β-cell line, 1.1B4 to hyperglycemia. Islets 5(4):170–177

    Article  PubMed  Google Scholar 

  • Vaxillaire M, Froguel P (2006) Genetic basis of maturity-onset diabetes of the young [Internet]. Endocrinol Metab Clin N Am 35:371–384. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0889852906000107. [cited 2020 Mar 24]

    Article  CAS  Google Scholar 

  • Vercheval M, De Hertogh R, Pampfer S, Vanderheyden I, Michiels B, De Bernardi P et al (1990) Experimental diabetes impairs rat embryo development during the preimplantation period. Diabetologia [Internet] 33(4):187–191. [cited 2019 Nov 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2347432

    Article  CAS  Google Scholar 

  • Wang Q, Moley KH (2010) Maternal diabetes and oocyte quality. Mitochondrion 10:403–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Jin S, Ye K (2017) Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds. Stem Cells Dev 26(6):394–404

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Liang J, Gao LR, Si ZP, Zhang XT, Liang G et al (2018) Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system article. Cell Death Dis 9(2):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss G, Huppertz B, Lang I, Siwetz M, Moser G (2014) First trimester trophoblast cell line ACH-3P as model to study invasion into arteries vs. veins. Placenta 35(9):A99–A100

    Article  Google Scholar 

  • Wong MK, Wahed M, Shawky SA, Dvorkin-Gheva A, Raha S (2019) Transcriptomic and functional analyses of 3D placental extravillous trophoblast spheroids. Sci Rep 9(1):1–13

    Google Scholar 

  • Wu L, Song W, Xie Y, Hu L, Hou X, Wang R et al (2018) miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis 9(2):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wyman A, Pinto AB, Sheridan R, Moley KH (2008) One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149(2):466–469

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Shao J, Ishizuka T, Klepcyk PJ, Muhlenkamp P, Qiao L et al (2001) Leptin administration prevents spontaneous gestational diabetes in heterozygous Lepr(db/+) mice: effects on placental leptin and fetal growth. Endocrinology [Internet] 142(7):2888–2897. [cited 2019 Nov 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11416008

    Article  CAS  Google Scholar 

  • Yamashita H, Shao J, Qiao L, Pagliassotti M, Friedman JE (2003) Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Leprdb/+ mice. Pediatr Res 53(3):411–418

    Article  CAS  PubMed  Google Scholar 

  • Yang S-C, Tseng H-L, Shieh K-R (2013) Circadian-clock system in mouse liver affected by insulin resistance. Chronobiol Int [Internet] 30(6):796–810. [cited 2019 Nov 29]. Available from: http://www.tandfonline.com/doi/full/10.3109/07420528.2013.766204

    Article  CAS  Google Scholar 

  • Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O (2016) Engineering stem cell organoids. Cell Stem Cell 18(1):25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Singh U, Shi W, Konno T, Soares MJ, Geyer R et al (2008) Influence of murine maternal diabetes on placental morphology, gene expression, and function. Arch Physiol Biochem 114(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Yung H, Alnæs-Katjavivi P, Jones CJP, El-Bacha T, Golic M, Staff A-C et al (2016) Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 59(10):2240–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamudio S, Torricos T, Fik E, Oyala M, Echalar L, Pullockaran J et al (2010) Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One 5(1):e8551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Q, Melton DA (2018) Pancreas regeneration. Nature (Nature Publishing Group) 557:351–358

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeray Brito-Casillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lilao-Garzón, J., Valverde-Tercedor, C., Muñoz-Descalzo, S., Brito-Casillas, Y., Wägner, A.M. (2020). In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_536

Download citation

  • DOI: https://doi.org/10.1007/5584_2020_536

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51088-6

  • Online ISBN: 978-3-030-51089-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics