Skip to main content

Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 7

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1237))

Abstract

Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate. Although the use of stem cells is evolving into a potentially effective approach for the treatment of cancer, few studies on stem cell therapy in HCC have been published. The administration of stem cells from bone marrow, adipose tissue, the amnion, and the umbilical cord to experimental animal models of HCC has not yielded consistent responses. However, it is possible to induce the apoptosis of cancer cells, repress angiogenesis, and cause tumor regression by administration of genetically modified stem cells. New alternative approaches to cancer therapy, such as the use of stem cell derivatives, exosomes or stem cell extracts, have been proposed. In this review, we highlight these experimental approaches for the use of stem cells as a vehicle for local drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2:

ATP-binding cassette sub-family G member 2

ADC:

Apparent diffusion coefficient

ADSCs:

Adipose-derived stem cells

AFP:

Alpha-fetoprotein

AM:

Amniotic membrane

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

CAF:

Cancer-associated fibroblasts

CA-MSCs:

Cancer-associated MSCs

CDKN2B:

Cyclin-dependent kinase inhibitor 2B transcript

CDX2:

Homeobox transcription factor 2

CM:

Conditioned medium

CSCs:

Cancer stem cells

DIRAS3:

GTP-binding RAS-like 3

EMT:

Epithelial-mesenchymal transition

GATA6:

GATA-binding protein 6

hAECs:

Amniotic membrane-derived epithelial stem cells

hAMPE:

hAECs protein extract

hAMSCs:

Human amniotic membrane-derived mesenchymal stem cells

HCC:

Hepatocellular carcinoma

HPCs:

Hepatic progenitor cells

HSP:

Heat shock protein

MDR:

Multidrug resistance

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NLK:

Nemo-like kinase

PACDC:

Pancreatic adenocarcinoma-derived cell lines

PCNA:

Proliferating cell nuclear antigen

PEDF:

Pigment epithelium-derived factor

PI3K:

Phosphatide inositol 3 kinase

Rbl-1:

Retinoblastoma-like 1

SPIO:

Superparamagnetic iron oxide

TAK1:

TGF β-activated kinase-1

TAMs:

Tumor-associated macrophages

TERT:

Telomerase reverse transcriptase

TGF-β:

Transforming growth factor Beta

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

UC-MSCs:

Umbilical cord-derived mesenchymal stem cells

References

  • Abdel-Hamid NM et al (2018) Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 107:1246–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelmoneem M et al (2019) Dual-targeted Lactoferrin Shell-Oily Core Nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces 11(30):26731–26744

    Article  CAS  PubMed  Google Scholar 

  • Alexia C et al (2004) An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol 68(6):1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Alison M, Islam S, Lim S (2009) Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 217(2):282–298

    Article  CAS  PubMed  Google Scholar 

  • Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11

    Article  CAS  PubMed  Google Scholar 

  • Bader AG et al (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5(12):921

    Article  CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci 103(5):1475–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352

    Article  CAS  PubMed  Google Scholar 

  • Barboni B et al (2014) Gestational stage affects amniotic epithelial cells phenotype, methylation status, immunomodulatory and stemness properties. Stem Cell Rev Rep 10(5):725–741

    Article  CAS  PubMed  Google Scholar 

  • Bengochea A et al (2008) Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer 99(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bénistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase [alpha](p85 [alpha]-p110 [alpha]) in cell survival and for phosphatidylinositol 3-kinase [beta](p85 [alpha]-p110 [beta]) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19(44):5083

    Article  PubMed  Google Scholar 

  • Blum HE (2005) Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11(47):7391–7400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bournazou E, Bromberg J (2013) Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2(2):e23828

    PubMed  PubMed Central  Google Scholar 

  • Brugge J, Hung M-C, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107

    Article  CAS  PubMed  Google Scholar 

  • Bruno S et al (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771

    Article  CAS  PubMed  Google Scholar 

  • Caja L et al (2011) The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226(5):1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Carlson B (2004) Placenta and extraembryonic membranes. In: Human embryology and developmental biology, 3rd edn. Mosby, Philadelphia, pp 106–127

    Google Scholar 

  • Chen YL, Law P-Y, Loh HH (2005) Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anticancer Agents 5(6):575–589

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16(4):749–756

    Article  CAS  PubMed  Google Scholar 

  • Chen L et al (2010) CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest 120(4):1178–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2019) Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin alpha5 in hepatocellular carcinoma. Cell Death Dis 10(6):425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiba T et al (2007) Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 133(3):937–950

    Article  CAS  PubMed  Google Scholar 

  • Chuma M et al (2008) 8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 23(9):1431–1436

    Article  PubMed  Google Scholar 

  • Clayton A et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174

    Article  CAS  PubMed  Google Scholar 

  • Colombino M et al (2012) BRAF and PIK3CA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis 3(1):e259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousin B et al (2009) Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 4(7):e6278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danen-Van Oorschot AA et al (2003) Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem 278(30):27729–27736

    Article  CAS  PubMed  Google Scholar 

  • Dawson D et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248

    Article  CAS  PubMed  Google Scholar 

  • De Boeck A et al (2013) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62(4):550–560

    Article  PubMed  CAS  Google Scholar 

  • De Jong WH et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919

    Article  PubMed  CAS  Google Scholar 

  • de Lima VM et al (2008) A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. J Hepatol 49(6):1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Deng Q et al (2014) TRAIL-secreting mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice. Gene Ther 21(3):317–327

    Article  CAS  PubMed  Google Scholar 

  • Doi C et al (2010) Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice. Cytotherapy 12(3):408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domenis R et al (2017) Systemic T cells immunosuppression of Glioma stem cell-derived Exosomes is mediated by Monocytic myeloid-derived suppressor cells. PLoS One 12(1):e0169932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Dunlop E, Tee A (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21(6):827–835

    Article  CAS  PubMed  Google Scholar 

  • El-Badawy A, El-Badri N (2016) Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS One 11(4):e0151938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Badawy A et al (2016) Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells. Sci Rep 6:37801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Badawy A et al (2017a) Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res Ther 8(1):254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Badawy A, Ahmed SM, El-Badri N (2017b) Adipose-derived stem cell-based therapies in regenerative medicine. In: El-Badri N (ed) Advances in stem cell therapy: bench to bedside. Springer International Publishing, Cham, pp 117–138

    Chapter  Google Scholar 

  • El-Badawy A et al (2018) Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 7(7):bio034181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Badri N (2016) Advances in stem cell therapy: bench to bedside. Springer, Humana Press

    Google Scholar 

  • El–Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576

    Article  PubMed  CAS  Google Scholar 

  • Elsharkawy AM, Mann DA (2007) Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46(2):590–597

    Article  CAS  PubMed  Google Scholar 

  • Esch JSA 2nd et al (2005) Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 23(4):463–470

    Article  Google Scholar 

  • Fattovich G et al (2002) Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. Am J Gastroenterol 97(11):2886–2895

    Article  PubMed  Google Scholar 

  • Fattovich G et al (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5 Suppl 1):S35–S50

    Article  PubMed  Google Scholar 

  • Ferlay J et al (2010) GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, p 2

    Google Scholar 

  • Font-Burgada J et al (2015) Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162(4):766–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JK et al (2008) Adipose-derived stem cells. Methods Mol Biol 449:59–67

    PubMed  Google Scholar 

  • Furst G et al (2007) Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology 243(1):171–179

    Article  PubMed  Google Scholar 

  • Gabr MM et al (2017) From human Mesenchymal stem cells to insulin-producing cells: comparison between bone marrow- and adipose tissue-derived cells. Biomed Res Int 2017:3854232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galderisi U, Giordano A, Paggi MG (2010) The bad and the good of mesenchymal stem cells in cancer: boosters of tumor growth and vehicles for targeted delivery of anticancer agents. World J Stem Cells 2(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2010) Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene 29(19):2784–2794

    Article  CAS  PubMed  Google Scholar 

  • Gauthaman K et al (2012) Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 113(6):2027–2039

    Article  CAS  PubMed  Google Scholar 

  • Giambartolomei S et al (2001) Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the Hepatitis C Virus (HCV) core protein. Oncogene 20(20):2606

    Article  CAS  PubMed  Google Scholar 

  • Giannelli G et al (2005) Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129(5):1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Giannelli G, Villa E, Lahn M (2014) Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res 74(7):1890–1894

    Article  CAS  PubMed  Google Scholar 

  • Gollob JA et al (2006) Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. In: Seminars in oncology. Elsevier, WB Saunders

    Google Scholar 

  • Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281(32):22429–22433

    Article  CAS  PubMed  Google Scholar 

  • Grisendi G et al (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70(9):3718–3729

    Article  CAS  PubMed  Google Scholar 

  • Grozdanov PN, Yovchev MI, Dabeva MD (2006) The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Investig 86(12):1272–1284

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi N et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120(9):3326–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He G et al (2013) Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155(2):384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He AR, Smith D, Mishra L (2015) Targeting cancer stem cells in hepatocellular carcinoma. Gastrointest Cancer Targets Ther 5:1–10

    Google Scholar 

  • Heldin C-H, Moustakas A (2012) Role of Smads in TGFβ signaling. Cell Tissue Res 347(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann K et al (2011) Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res 31(11):3883–3890

    CAS  PubMed  Google Scholar 

  • Hogan NM et al (2012) Mesenchymal stem cells in the colorectal tumor microenvironment: recent progress and implications. Int J Cancer 131(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Holczbauer A et al (2013) Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145(1):221–231

    Article  CAS  PubMed  Google Scholar 

  • Hsu YL et al (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942

    Article  CAS  PubMed  Google Scholar 

  • Hu TH et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97(8):1929–1940

    Article  CAS  PubMed  Google Scholar 

  • Huynh H et al (2010) AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol 52(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Imamura H et al (2003) Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 38(2):200–207

    Article  PubMed  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y et al (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27(4):951–958

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Wang XW (2012) Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 39(4):461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Yamashita T, Wang XW (2011) Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell Biosci 1(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao H et al (2012) Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39(1):467–473

    Article  CAS  PubMed  Google Scholar 

  • Jindal A, Thadi A, Shailubhai K (2019) Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol 9(2):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Jors S et al (2015) Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest 125(6):2445–2457

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinina O et al (2013) Somatic changes in primary liver cancer in Russia: a pilot study. Mutat Res Genet Toxicol Environ Mutagen 755(2):90–99

    Article  CAS  Google Scholar 

  • Kang N-H et al (2012) Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 40(6):2022–2028

    CAS  PubMed  Google Scholar 

  • Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  CAS  PubMed  Google Scholar 

  • Khakoo AY et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW et al (2013a) Wharton’s jelly-derived Mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14(6):11692–11712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SW et al (2013b) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427

    Article  CAS  PubMed  Google Scholar 

  • Kim YH et al (2016) Image-aided suicide gene therapy utilizing multifunctional hTERT-targeting adenovirus for clinical translation in hepatocellular carcinoma. Theranostics 6(3):357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitade M et al (2013) Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev 27(15):1706–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko SF et al (2015) Adipose-derived Mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells Int 2015:853506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kogure T et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54(4):1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Kubo M et al (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42(7):1539–1546

    CAS  PubMed  Google Scholar 

  • Kucerova L et al (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai T-Y et al (2011) β-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep 26(2):415–422

    CAS  PubMed  Google Scholar 

  • Lang HL et al (2017a) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38(2):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang HL et al (2017b) Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci 21(5):959–972

    PubMed  Google Scholar 

  • Lathrop MJ et al (2015) Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Ther 22(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Leonardi GC et al (2012) The tumor microenvironment in hepatocellular carcinoma (review). Int J Oncol 40(6):1733–1747

    CAS  PubMed  Google Scholar 

  • Li GC et al (2010) Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 101(12):2546–2553

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2016) E1A-engineered human umbilical cord mesenchymal stem cells as carriers and amplifiers for adenovirus suppress hepatocarcinoma in mice. Oncotarget 7(32):51815–51828

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G et al (2017) Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1. Mol Med Rep 16(5):5799–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L et al (2009a) The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 28(7):961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin G et al (2009b) Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev 18(10):1399–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin G et al (2010) Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 70(10):1066–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L et al (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66(24):11851–11858

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2016) Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells. BMC Cancer 16:566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48(4):1312–1327

    Article  CAS  PubMed  Google Scholar 

  • Llovet JM et al (2000) Randomized controlled trial of interferon treatment for advanced hepatocellular carcinoma. Hepatology 31(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362(9399):1907–1917

    Article  PubMed  Google Scholar 

  • Loebinger MR et al (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loebinger MR et al (2010) TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer 103(11):1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou G et al (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu YR et al (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7(2):245–251

    Article  CAS  PubMed  Google Scholar 

  • Lv LH et al (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287(19):15874–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv MY et al (2019) Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/beta-catenin signaling. J Cell Biochem 120(10):17273–17282

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2012a) The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat 133(2):473–485

    Article  CAS  PubMed  Google Scholar 

  • Ma B et al (2012b) Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol 14(10):764–773

    Article  CAS  PubMed  Google Scholar 

  • Maddika S et al (2005) Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 118(Pt 19):4485–4493

    Article  CAS  PubMed  Google Scholar 

  • Magatti M et al (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. J Cell Mol Med 16(9):2208–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaguarnera M et al (1996) Role of interleukin 6 in hepatocellular carcinoma. Bull Cancer 83(5):379–384

    CAS  PubMed  Google Scholar 

  • Mamede A et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458

    Article  CAS  PubMed  Google Scholar 

  • Mamede AC et al (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247(4):357–360

    Article  CAS  PubMed  Google Scholar 

  • Mamede A et al (2015) Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 32(12):257

    Article  CAS  PubMed  Google Scholar 

  • Mamede A et al (2016) Oxidative stress, DNA, cell cycle/cell cycle associated proteins and multidrug resistance proteins: targets of human amniotic membrane in hepatocellular carcinoma. Pathol Oncol Res 22(4):689–697

    Article  CAS  PubMed  Google Scholar 

  • Mannová P, Beretta L (2005) Activation of the N-Ras–PI3K–Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J Virol 79(14):8742–8749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marei HES et al (2017) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 233(2):936–945

    Article  PubMed  CAS  Google Scholar 

  • Marongiu F et al (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol 12:1E. 5.1–1E. 5.11

    Google Scholar 

  • Marquardt JU (2016) Deconvolution of the cellular origin in hepatocellular carcinoma: hepatocytes take the center stage. Hepatology 64(4):1020–1023

    Article  PubMed  Google Scholar 

  • Maurya DK et al (2010) Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer 10:590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McElreavey KD et al (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19(1):29s

    Article  CAS  PubMed  Google Scholar 

  • Meliga E et al (2007) Adipose-derived cells. Cell Transplant 16(9):963–970

    Article  PubMed  Google Scholar 

  • Menon LG et al (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27(9):2320–2330

    Article  CAS  PubMed  Google Scholar 

  • Mi F, Gong L (2017) Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci Rep 37(4):BSR20170181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan SE, Kastan MB (1997) p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 71:1–25

    Article  CAS  PubMed  Google Scholar 

  • Mu X et al (2015) Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 125(10):3891–3903

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura H et al (2011) HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res 41(5):455–462

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H et al (2013) Side dependent effects of the human amnion on angiogenesis. Placenta 34(4):340–345

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H et al (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Nooter K, Herweijer H (1991) Multidrug resistance (mdr) genes in human cancer. Br J Cancer 63(5):663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  PubMed  Google Scholar 

  • Ohta N et al (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 10(5):e0123756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perz JF et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45(4):529–538

    Article  PubMed  Google Scholar 

  • Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Pineau P et al (2010) miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 107(1):264–269

    Article  CAS  PubMed  Google Scholar 

  • Protiva P, Gong J, Sreekumar B, Torres R, Zhang X, Belinsky GS, Cornwell M, Crawford SE, Iwakiri Y, Chung C (2015) Pigment epithelium-derived factor (PEDF) inhibits Wnt/beta-catenin signaling in the liver. Cell Mol Gastroenterol Hepatol 1:535–549.e514

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu Z et al (2016) Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 35:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebouissou S et al (2016) Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology 64(6):2047–2061

    Article  CAS  PubMed  Google Scholar 

  • Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105

    Article  CAS  PubMed  Google Scholar 

  • Ridge SM, Sullivan FJ, Glynn SA (2017) Mesenchymal stem cells: key players in cancer progression. Mol Cancer 16(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts LR, Gores GJ (2005) Hepatocellular carcinoma: molecular pathways and new therapeutic targets. In: Seminars in liver disease. Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA

    Google Scholar 

  • Rolfo A et al (2014) New perspectives for prostate cancer treatment: in vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media. Aging Male 17(2):94–101

    Article  PubMed  Google Scholar 

  • Russo FP, Parola M (2011) Stem and progenitor cells in liver regeneration and repair. Cytotherapy 13(2):135–144

    Article  PubMed  Google Scholar 

  • Sahin F et al (2004) mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10(24):8421–8425

    Article  CAS  PubMed  Google Scholar 

  • Sasportas LS et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzenbach H et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145

    Article  CAS  PubMed  Google Scholar 

  • Secchiero P et al (2010) Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin’s lymphoma xenografts. PLoS One 5(6):e11140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70(4):812–814

    Article  CAS  PubMed  Google Scholar 

  • Severi T et al (2010) Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 31(11):1409–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao C et al (2004) Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci 45(6):1758–1762

    Article  PubMed  Google Scholar 

  • Sherif RN et al (2018) Effect of human umbilical cord blood derived CD34(+) hematopoietic stem cell on the expression of Wnt4 and P53 genes in a rat model of hepatocellular carcinoma. Tissue Cell 50:125–132

    Article  CAS  PubMed  Google Scholar 

  • Shin S et al (2016) Genetic lineage tracing analysis of the cell of origin of Hepatotoxin-induced liver tumors in mice. Hepatology (Baltimore, Md) 64(4):1163–1177

    Article  CAS  Google Scholar 

  • Shinagawa K et al (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127(10):2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Shirai Y et al (1994) Plasma transforming growth factor-β1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 73(9):2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Soltysova A, Altanerova V, Altaner C (2005) Cancer stem cells. Neoplasma 52(6):435

    CAS  PubMed  Google Scholar 

  • Song YH et al (2016) Adipose-derived stem cells increase angiogenesis through matrix metalloproteinase-dependent collagen Remodeling. Integr Biol Quant Biosci Nano Macro 8(2):205–215

    CAS  Google Scholar 

  • Su F, Ioannou GN (2018) The impact of direct-acting antiviral therapy for hepatitis C on hepatocellular carcinoma risk. Curr Hepatol Rep 17(4):377–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Suetsugu A et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351(4):820–824

    Article  CAS  PubMed  Google Scholar 

  • Sugihara E, Saya H (2013) Complexity of cancer stem cells. Int J Cancer 132(6):1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Sun XY et al (2011) MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 31(11):3705–3712

    CAS  PubMed  Google Scholar 

  • Taebunpakul P et al (2012) Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and DeltaNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 17(8):762–776

    Article  CAS  PubMed  Google Scholar 

  • Takahara K et al (2016) microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate Cancer. Stem Cells Dev 25(17):1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Tang Y et al (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci 105(7):2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang XJ et al (2014) TRAIL-engineered bone marrow-derived mesenchymal stem cells: TRAIL expression and cytotoxic effects on C6 glioma cells. Anticancer Res 34(2):729–734

    CAS  PubMed  Google Scholar 

  • Tang YM et al (2016) Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep 14(3):2717–2724

    Article  CAS  PubMed  Google Scholar 

  • Tornesello ML et al (2016) Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 7(18):25087–25102

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovoli F et al (2018) Systemic treatments for hepatocellular carcinoma: challenges and future perspectives. Hepat Oncol 5(1):HEP01–HEP01

    Article  PubMed  PubMed Central  Google Scholar 

  • Tschaharganeh DF et al (2014) p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 158(3):579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsilimigras DI et al (2019) Prognosis after resection of Barcelona Clinic Liver Cancer (BCLC) stage 0, A, and B hepatocellular carcinoma: a comprehensive assessment of the current BCLC classification. Ann Surg Oncol 1–8

    Google Scholar 

  • Villanueva A et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135(6):1972–1983. e11

    Article  CAS  PubMed  Google Scholar 

  • Wang XW (2001) Microinjection technique used to study functional interaction between p53 and hepatitis B virus X gene in apoptosis. Mol Biotechnol 18(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Wang H-Y, Liu T, Malbon CC (2006) Structure-function analysis of Frizzleds. Cell Signal 18(7):934–941

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2017) Genetically engineered bone marrow-derived mesenchymal stem cells co-expressing IFN-gamma and IL-10 inhibit hepatocellular carcinoma by modulating MAPK pathway. J BUON 22(6):1517–1524

    PubMed  Google Scholar 

  • Weidle HU et al (2017) The multiple roles of Exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Wu SD et al (2012) Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 38(3):218–225

    Article  CAS  PubMed  Google Scholar 

  • Wu Q et al (2015) Decreased expression of hepatocyte nuclear factor 4alpha (Hnf4alpha)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J Biol Chem 290(2):1170–1185

    Article  CAS  PubMed  Google Scholar 

  • Xiao W et al (2013) Effects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells. Eur J Med Res 18:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu H et al (2015) Targeting human telomerase reverse transcriptase by a simple siRNA expression cassette in HepG2 cells. Hepat Mon 15(3):e24343

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita T et al (2007) Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res 67(22):10831–10839

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T et al (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136(3):1012–1024. e4

    Article  CAS  PubMed  Google Scholar 

  • Yan C et al (2014) Suppression of orthotopically implanted hepatocarcinoma in mice by umbilical cord-derived mesenchymal stem cells with sTRAIL gene expression driven by AFP promoter. Biomaterials 35(9):3035–3043

    Article  CAS  PubMed  Google Scholar 

  • Yang ZF et al (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47(3):919–928

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2014) IFN-γ-secreting-Mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res 2014:9

    Google Scholar 

  • Yang J et al (2016) Condition medium of HepG-2 cells induces the transdifferentiation of human umbilical cord mesenchymal stem cells into cancerous mesenchymal stem cells. Am J Transl Res 8(8):3429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y et al (2013) Tumor cell-derived exosome-targeted dendritic cells stimulate stronger CD8+ CTL responses and antitumor immunities. Biochem Biophys Res Commun 436(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Yap TA et al (2008) Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah G et al (2015) The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane. Cryobiology 71(3):413–418

    Article  CAS  PubMed  Google Scholar 

  • Yu S et al (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178(11):6867–6875

    Article  CAS  PubMed  Google Scholar 

  • Yu JM et al (2008) Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 17(3):463–473

    Article  CAS  PubMed  Google Scholar 

  • Yu P et al (2015) NSK-01105 inhibits proliferation and induces apoptosis of prostate cancer cells by blocking the Raf/MEK/ERK and PI3K/Akt/mTOR signal pathways. Tumor Biol 36(3):2143–2153

    Article  CAS  Google Scholar 

  • Yuan X et al (2016) Mesenchymal stem cells deliver and release conditionally replicative adenovirus depending on hepatic differentiation to eliminate hepatocellular carcinoma cells specifically. Cancer Lett 381(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y et al (2018) Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: a possible role for apoptosis and Wnt signaling. Oncol Lett 15(6):8536–8544

    PubMed  PubMed Central  Google Scholar 

  • Yuzugullu H et al (2009) Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer 8(1):90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang W et al (2019) Traditional Chinese Medicine (TCM) Astragalus Membranaceus and Curcuma Wenyujin promote vascular normalization in tumor-derived endothelial cells of human hepatocellular carcinoma. Anticancer Res 39(6):2739–2747

    Article  CAS  PubMed  Google Scholar 

  • Zhang B et al (2012a) The inhibitory effect of MSCs expressing TRAIL as a cellular delivery vehicle in combination with cisplatin on hepatocellular carcinoma. Cancer Biol Ther 13(12):1175–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HG et al (2012b) Exosomes and immune surveillance of neoplastic lesions: a review. Biotech Histochem 87(3):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2016) Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem 416(1–2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Zhao W et al (2012) Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm 27(9):606–613

    Article  CAS  PubMed  Google Scholar 

  • Zhao J et al (2014) Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology 25(40):405101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L et al (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27(2):255–261

    Article  CAS  PubMed  Google Scholar 

  • Zhou HS et al (2016) Mesenchymal stem cells promote pancreatic adenocarcinoma cells invasion by transforming growth factor-beta1 induced epithelial-mesenchymal transition. Oncotarget 7(27):41294–41305

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W et al (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23(5):925–933

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z et al (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 126(9):2067–2078

    CAS  PubMed  Google Scholar 

  • Zhu W et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ et al (2017) New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38(5):614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Q et al (2012) Multivariate analysis of several molecular markers and clinicopathological features in postoperative prognosis of hepatocellular carcinoma. Anat Rec 295(3):423–431

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by grant #5300, funded by the Science and Technology Development Fund (STDF) and the Sawiris Foundation for Social Development.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkhenany, H., Shekshek, A., Abdel-Daim, M., El-Badri, N. (2019). Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 7. Advances in Experimental Medicine and Biology(), vol 1237. Springer, Cham. https://doi.org/10.1007/5584_2019_441

Download citation

Publish with us

Policies and ethics