Skip to main content

The regulation of stress-activated MAP kinase signalling by protein phosphatases

  • Chapter
  • First Online:
Stress-Activated Protein Kinases

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

Abstract

The regulated dephosphorylation of mitogen-activated protein kinases (MAPKs) is a key determinant of the biological outcome of signalling. Because MAPKs require phosphorylation on both threonine and tyrosine residues for activation, they are potential substrates for all three major classes of protein phosphatase. These include serine/threonine phosphatases, protein tyrosine phosphatases (PTPs) and a dedicated subfamily of dual-specificity thr/tyr MAPK phosphatases (MKPs). This review summarises genetic and biochemical studies in model organisms including yeasts, Drosophila, and C. elegans, which have provided evidence for a complex interplay between upstream activators and these enzymes in regulating stress responsive MAPK pathways. Such studies have provided important insights into the regulation of the stress-responsive JNK and p38 MAPK pathways in mammals, where genetic experiments are beginning to reveal important roles for dual-specificity MKPs in regulating diverse physiological endpoints. These include resistance to environmental stress, immune function, and metabolic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asthagiri AR, Lauffenburger DA (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 17:227–239

    Article  PubMed  CAS  Google Scholar 

  2. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–1023

    Article  PubMed  CAS  Google Scholar 

  3. Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3:741–746

    Article  PubMed  CAS  Google Scholar 

  4. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, Binetruy B (2005) The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54:402–411

    Article  PubMed  CAS  Google Scholar 

  5. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14:6–16

    PubMed  CAS  Google Scholar 

  6. Carrasco D, Bravo R (1993) Expression of the nontransmembrane tyrosine phosphatase gene erp during mouse organogenesis. Cell Growth Differ 4:849–859

    PubMed  CAS  Google Scholar 

  7. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  8. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 103:2274–2279

    Article  PubMed  CAS  Google Scholar 

  9. Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K (1996) The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 271:6497–6501

    Article  PubMed  CAS  Google Scholar 

  10. Collister M, Didmon MP, MacIsaac F, Stark MJ, McDonald NQ, Keyse SM (2002) YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae. FEBS Lett 527:186–192

    Article  PubMed  CAS  Google Scholar 

  11. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  12. Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70

    PubMed  CAS  Google Scholar 

  13. Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R (1996) Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13:925–931

    PubMed  CAS  Google Scholar 

  14. Du Y, Walker L, Novick P, Ferro-Novick S (2006) Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J 25:4413–4422

    Article  PubMed  CAS  Google Scholar 

  15. Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin J, Jaeger S, Erdjument-Bromage H, Tempst P, Spiegelman BM (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev 18:278–289

    Article  PubMed  CAS  Google Scholar 

  16. Flandez M, Cosano IC, Nombela C, Martin H, Molina M (2004) Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 279:11027–11034

    Article  PubMed  CAS  Google Scholar 

  17. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  18. Hahn JS, Thiele DJ (2002) Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277:21278–21284

    Article  PubMed  CAS  Google Scholar 

  19. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, Lang R (2006) Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 203:15–20

    Article  PubMed  CAS  Google Scholar 

  20. Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I (1997) Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 272:17749–17755

    Article  PubMed  CAS  Google Scholar 

  21. Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, Gillieron C, Mackay F, Grey S, Camps M, Rommel C, Gerondakis SD, Mackay CR (2006) Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol 7:274–283

    Article  PubMed  CAS  Google Scholar 

  22. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  23. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12:186–192

    Article  PubMed  CAS  Google Scholar 

  24. Keyse SM, Emslie EA (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359:644–647

    Article  PubMed  CAS  Google Scholar 

  25. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626

    Article  PubMed  CAS  Google Scholar 

  26. Kim DH, Liberati NT, Mizuno T, Inoue H, Hisamoto N, Matsumoto K, Ausubel FM (2004) Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA 101:10990–10994

    Article  PubMed  CAS  Google Scholar 

  27. Koga M, Zwaal R, Guan KL, Avery L, Ohshima Y (2000) A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J 19:5148–5156

    Article  PubMed  CAS  Google Scholar 

  28. Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  PubMed  CAS  Google Scholar 

  29. Kwak SP, Hakes DJ, Martell KJ, Dixon JE (1994) Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem 269:3596–3604

    PubMed  CAS  Google Scholar 

  30. Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  31. Mapes J, Ota IM (2004) Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway. EMBO J 23:302–311

    Article  PubMed  CAS  Google Scholar 

  32. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4:82–89

    Article  PubMed  CAS  Google Scholar 

  33. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

  34. Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16

    Article  PubMed  CAS  Google Scholar 

  35. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12:557–570

    Article  PubMed  CAS  Google Scholar 

  36. Masuda K, Shima H, Watanabe M, Kikuchi K (2001) MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem 276:39002–39011

    Article  PubMed  CAS  Google Scholar 

  37. Mattison CP, Ota IM (2000) Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 14:1229–1235

    PubMed  CAS  Google Scholar 

  38. Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM (1999) Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol 19:7651–7660

    PubMed  CAS  Google Scholar 

  39. McEwen DG, Peifer M (2005) Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 132:3935–3946

    Article  PubMed  CAS  Google Scholar 

  40. Mizuno T, Hisamoto N, Terada T, Kondo T, Adachi M, Nishida E, Kim DH, Ausubel FM, Matsumoto K (2004) The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J 23:2226–2234

    Article  PubMed  CAS  Google Scholar 

  41. Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19:91–118

    Article  PubMed  CAS  Google Scholar 

  42. Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271:27205–27208

    Article  PubMed  CAS  Google Scholar 

  43. O'Rourke SM, Herskowitz I, O'Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    Article  PubMed  Google Scholar 

  44. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  45. Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569–3572

    Article  PubMed  CAS  Google Scholar 

  46. Ring JM, Martinez Arias A (1993) puckered, a gene involved in position-specific cell differentiation in the dorsal epidermis of the Drosophila larva. Dev Suppl, 251–259

    Google Scholar 

  47. Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U, Kelly K (1993) PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259:1763–1766

    Article  PubMed  CAS  Google Scholar 

  48. Sabbagh W Jr, Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683–691

    Article  PubMed  CAS  Google Scholar 

  49. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T (2006) Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176:1899–1907

    PubMed  CAS  Google Scholar 

  50. Sanchez-Perez I, Martinez-Gomariz M, Williams D, Keyse SM, Perona R (2000) CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene 19:5142–5152

    Article  PubMed  CAS  Google Scholar 

  51. Saxena M, Mustelin T (2000) Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol 12:387–396

    Article  PubMed  CAS  Google Scholar 

  52. Schieven GL (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5:921–928

    Article  PubMed  CAS  Google Scholar 

  53. Tanoue T, Moriguchi T, Nishida E (1999) Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274:19949–19956

    Article  PubMed  CAS  Google Scholar 

  54. Tanoue T, Yamamoto T, Maeda R, Nishida E (2001) A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J Biol Chem 276:26629–26639

    Article  PubMed  CAS  Google Scholar 

  55. Theodosiou A, Ashworth A (2002) MAP kinase phosphatases. Genome Biol 3:3009

    Article  Google Scholar 

  56. Theodosiou A, Smith A, Gillieron C, Arkinstall S, Ashworth A (1999) MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 18:6981–6988

    Article  PubMed  CAS  Google Scholar 

  57. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  58. Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5:811–816

    Article  PubMed  CAS  Google Scholar 

  59. Wang Z, Xu J, Zhou JY, Liu Y, Wu GS (2006) Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res 66:8870–8877

    Article  PubMed  CAS  Google Scholar 

  60. Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367:651–654

    Article  PubMed  CAS  Google Scholar 

  61. Warmka J, Hanneman J, Lee J, Amin D, Ota I (2001) Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 21:51–60

    Article  PubMed  CAS  Google Scholar 

  62. Wu JJ, Bennett AM (2005) Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 280:16461–16466

    Article  PubMed  CAS  Google Scholar 

  63. Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS, Neufer PD, Shulman GI, Kim JK, Bennett AM (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4:61–73

    Article  PubMed  CAS  Google Scholar 

  64. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297

    PubMed  CAS  Google Scholar 

  65. Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC (2003) PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422:527–531

    Article  PubMed  CAS  Google Scholar 

  66. Young C, Mapes J, Hanneman J, Al-Zarban S, Ota I (2002) Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot Cell 1:1032–1040

    Article  PubMed  CAS  Google Scholar 

  67. Zhan XL, Deschenes RJ, Guan KL (1997) Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 11:1690–1702

    Article  PubMed  CAS  Google Scholar 

  68. Zhan XL, Guan KL (1999) A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev 13:2811–2827

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA, Dong C (2004) Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430:793–797

    Article  PubMed  CAS  Google Scholar 

  70. Zhao Q, Shepherd EG, Manson ME, Nelin LD, Sorokin A, Liu Y (2005) The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: attenuation of proinflammatory cytokine biosynthesis via feedback control of p38. J Biol Chem 280:8101–8108

    Article  PubMed  CAS  Google Scholar 

  71. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, Baliga RS, Meng X, Smith CV, Bauer JA, Chang CH, Liu Y (2006) MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203:131–140

    Article  PubMed  CAS  Google Scholar 

  72. Zhou JY, Liu Y, Wu GS (2006) The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res 66:4888–4894

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Keyse .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keyse, S.M. (2007). The regulation of stress-activated MAP kinase signalling by protein phosphatases. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0240

Download citation

Publish with us

Policies and ethics