Skip to main content

Insights into chloroplast proteomics: from basic principles to new horizons

  • Chapter
  • First Online:
Cell and Molecular Biology of Plastids

Part of the book series: Topics in Current Genetics ((TCG,volume 19))

  • 2231 Accesses

Abstract

Many proteomic approaches have been employed to investigate the complex and dynamic proteomeof the chloroplast. These range from classical methods like one and two dimensional gel electrophoresisto advanced comparative proteomics strategies such as ICAT or SILAC. Mass spectrometry for proteinidentification or quantitation plays an important role in most of the methods used and is a fastemerging technology in protein biochemistry. Most proteomic studies of the chloroplast focus on thesingle compartments of this plant organelle, which greatly reduces the complexity of the sample andthus allows for a more complete and detailed analysis of the complex protein composition. Therapidly developing field of comparative proteomics makes it possible to analyze dynamic protein changescaused, for example, by different developmental stages of a plant, by various stress conditionsand distinct genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  2. Allmer J, Markert C, Stauber EJ, Hippler M (2004) A new approach that allows identification of intron-split peptides from mass spectrometric data in genomic databases. FEBS Lett 562:202–206

    Article  PubMed  CAS  Google Scholar 

  3. Allmer J, Naumann B, Markert C, Zhang M, Hippler M (2006) Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 6:6207–6220

    Article  PubMed  CAS  Google Scholar 

  4. Andaluz S, Lopez-Millan AF, De Las Rivas J, Aro EM, Abadia J, Abadia A (2006) Proteomic profiles of thylakoid membranes and changes in response to iron deficiency. Photosynth Res 89:141–155

    Article  PubMed  CAS  Google Scholar 

  5. Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamaki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  PubMed  CAS  Google Scholar 

  6. Bafna V, Edwards N (2001) SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics 17:3–21

    Article  Google Scholar 

  7. Bafna V, Edwards N (2003) On de novo Interpretation of Tandem Mass Spectra for Peptide Identification. RECOMB 2003:9–18

    Google Scholar 

  8. Baginsky S, Gruissem W (2004) Chloroplast proteomics: potentials and challenges. J Exp Bot 55:1213–1220

    Article  PubMed  CAS  Google Scholar 

  9. Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    Article  PubMed  CAS  Google Scholar 

  10. Balmer Y, Koller A, Val GD, Schurmann P, Buchanan BB (2004) Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosynth Res 79:275–280

    Article  PubMed  CAS  Google Scholar 

  11. Barnidge DR, Dratz EA, Martin T, Bonilla LE, Moran LB, Lindall A (2003) Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem 75:445–451

    Article  PubMed  CAS  Google Scholar 

  12. Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ (1996) Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 42:1676–1682

    PubMed  CAS  Google Scholar 

  13. Bedard J, Jarvis P (2005) Recognition and envelope translocation of chloroplast preproteins. J Exp Bot 56:2287–2320

    Article  PubMed  CAS  Google Scholar 

  14. Caffarri S, Frigerio S, Olivieri E, Righetti PG, Bassi R (2005) Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics 5:758–768

    Article  PubMed  CAS  Google Scholar 

  15. Chen T, Kao MY, Tepel M, Rush J, Church GM (2001) A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol 8:325–337

    Article  PubMed  CAS  Google Scholar 

  16. Ciambella C, Roepstorff P, Aro EM, Zolla L (2005) A proteomic approach for investigation of photosynthetic apparatus in plants. Proteomics 5:746–757

    Article  PubMed  CAS  Google Scholar 

  17. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6:327–342

    Article  PubMed  CAS  Google Scholar 

  18. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  19. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  20. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  21. Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  22. Ephritikhine G, Ferro M, Rolland N (2004) Plant membrane proteomics. Plant Physiol Biochem 42:943–962

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez-de-Cossio J, Gonzalez J, Satomi Y, Shima T, Okumura N, Besada V, Betancourt L, Padron G, Shimonishi Y, Takao T (2000) Automated interpretation of low-energy collision-induced dissociation spectra by SeqMS, a software aid for de novo sequencing by tandem mass spectrometry. Electrophoresis 21:1694–1699

    Article  PubMed  CAS  Google Scholar 

  24. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  25. Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    Article  PubMed  CAS  Google Scholar 

  26. Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J, Joyard J (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21:3517–3526

    Article  PubMed  CAS  Google Scholar 

  27. Forster B, Mathesius U, Pogson BJ (2006) Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii. Proteomics 6:4309–4320

    Article  PubMed  CAS  Google Scholar 

  28. Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  29. Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2:413–425

    Article  PubMed  CAS  Google Scholar 

  30. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  31. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  PubMed  CAS  Google Scholar 

  32. Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2–2. A comparative proteomics study. Plant Physiol 141:685–701

    Article  PubMed  CAS  Google Scholar 

  33. Giddings MC, Shah AA, Gesteland R, Moore B (2003) Genome-based peptide fingerprint scanning. Proc Natl Acad Sci USA 100:20–25

    Article  PubMed  CAS  Google Scholar 

  34. Gomez SM, Bil KY, Aguilera R, Nishio JN, Faull KF, Whitelegge JP (2003) Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol Cell Proteomics 2:1068–1085

    Article  PubMed  CAS  Google Scholar 

  35. Gomez SM, Nishio JN, Faull KF, Whitelegge JP (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol Cell Proteomics 1:46–59

    Article  PubMed  CAS  Google Scholar 

  36. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  CAS  Google Scholar 

  37. Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  PubMed  CAS  Google Scholar 

  38. Granvogl B, Reisinger V, Eichacker LA (2006) Mapping the proteome of thylakoid membranes by de novo sequencing of intermembrane peptide domains. Proteomics 6:3681–3695

    Article  PubMed  CAS  Google Scholar 

  39. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  40. Hansson M, Vener AV (2003) Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol Cell Proteomics 2:550–559

    PubMed  CAS  Google Scholar 

  41. Heazlewood JL, Tonti-Filippini J, Verboom RE, Millar AH (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol 139:598–609

    Article  PubMed  CAS  Google Scholar 

  42. Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2006) SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  Google Scholar 

  43. Heinemeyer J, Eubel H, Wehmhoner D, Jansch L, Braun HP (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692

    Article  PubMed  CAS  Google Scholar 

  44. Hippler M, Klein J, Fink A, Allinger T, Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J 28:595–606

    Article  PubMed  CAS  Google Scholar 

  45. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  46. Huber CG, Timperio AM, Zolla L (2001) Isoforms of photosystem II antenna proteins in different plant species revealed by liquid chromatography-electrospray ionization mass spectrometry. J Biol Chem 276:45755–45761

    Article  PubMed  CAS  Google Scholar 

  47. Huber CG, Walcher W, Timperio AM, Troiani S, Porceddu A, Zolla L (2004) Multidimensional proteomic analysis of photosynthetic membrane proteins by liquid extraction-ultracentrifugation-liquid chromatography-mass spectrometry. Proteomics 4:3909–3920

    Article  PubMed  CAS  Google Scholar 

  48. Jarvis P (2004) Organellar proteomics: chloroplasts in the spotlight. Curr Biol 14:R317–R319

    Article  PubMed  CAS  Google Scholar 

  49. Jones AM, Bennett MH, Mansfield JW, Grant M (2006a) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6:4155–4165

    Article  PubMed  CAS  Google Scholar 

  50. Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2006b) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  PubMed  CAS  Google Scholar 

  51. Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Marechal E, Block MA, Dorne AJ, Rolland N, Ajlani G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    Article  PubMed  CAS  Google Scholar 

  52. Kapp EA, Schutz F, Connolly LM, Chakel JA, Meza JE, Miller CA, Fenyo D, Eng JK, Adkins JN, Omenn GS, Simpson RJ (2005) An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. Proteomics 5:3475–3490

    Article  PubMed  CAS  Google Scholar 

  53. Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012

    Article  PubMed  CAS  Google Scholar 

  54. Kieselbach T, Bystedt M, Hynds P, Robinson C, Schroder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  PubMed  CAS  Google Scholar 

  55. Kieselbach T, Hagman, Andersson B, Schroder WP (1998) The thylakoid lumen of chloroplasts. Isolation and characterization. J Biol Chem 273:6710–6716

    Article  PubMed  CAS  Google Scholar 

  56. Kieselbach T, Schroder WP (2003) The proteome of the chloroplast lumen of higher plants. Photosynth Res 78:249–264

    Article  PubMed  CAS  Google Scholar 

  57. Kikuchi S, Hirohashi T, Nakai M (2006) Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol 47:363–371

    Article  PubMed  CAS  Google Scholar 

  58. Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47:432–436

    Article  PubMed  CAS  Google Scholar 

  59. Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  60. Koo AJ, Ohlrogge JB (2002) The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiol 130:823–836

    Article  PubMed  Google Scholar 

  61. Kuchler M, Decker S, Hormann F, Soll J, Heins L (2002) Protein import into chloroplasts involves redox-regulated proteins. Embo J 21:6136–6145

    Article  PubMed  Google Scholar 

  62. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  63. Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    Article  PubMed  CAS  Google Scholar 

  64. Lunn JE (2006) Compartmentation in plant metabolism. J Exp Bot 58:35–47

    Article  PubMed  CAS  Google Scholar 

  65. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342

    Article  PubMed  CAS  Google Scholar 

  66. Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–3140

    Article  PubMed  CAS  Google Scholar 

  67. Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345

    Article  PubMed  CAS  Google Scholar 

  68. Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66:4390–4399

    Article  PubMed  CAS  Google Scholar 

  69. Millar AH, Whelan J, Small I (2006) Recent surprises in protein targeting to mitochondria and plastids. Curr Opin Plant Biol 9:610–615

    Article  PubMed  CAS  Google Scholar 

  70. Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M (2002) Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. Embo J 21:6709–6720

    Article  PubMed  CAS  Google Scholar 

  71. Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M (2005) N-terminal processing of Lhca3 Is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in Chlamydomonas reinhardtii. J Biol Chem 280:20431–20441

    Article  PubMed  CAS  Google Scholar 

  72. Newton RP, Brenton AG, Smith CJ, Dudley E (2004) Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65:1449–1485

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  74. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96:6591–6596

    Article  PubMed  CAS  Google Scholar 

  75. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  76. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  77. Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5:114–133

    PubMed  CAS  Google Scholar 

  78. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  Google Scholar 

  79. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    PubMed  CAS  Google Scholar 

  80. Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ (2004a) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781

    Article  PubMed  CAS  Google Scholar 

  81. Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004b) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  PubMed  CAS  Google Scholar 

  82. Peltier JB, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ (2001) Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. J Biol Chem 276:16318–16327

    Article  PubMed  CAS  Google Scholar 

  83. Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091

    Article  PubMed  CAS  Google Scholar 

  84. Perez-Bueno ML, Rahoutei J, Sajnani C, Garcia-Luque I, Baron M (2004) Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  PubMed  CAS  Google Scholar 

  85. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  86. Phee BK, Cho JH, Park S, Jung JH, Lee YH, Jeon JS, Bhoo SH, Hahn TR (2004) Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics 4:3560–3568

    Article  PubMed  CAS  Google Scholar 

  87. Radhamony RN, Theg SM (2006) Evidence for an ER to Golgi to chloroplast protein transport pathway. Trends Cell Biol 16:385–387

    Article  PubMed  CAS  Google Scholar 

  88. Rexroth S, Meyer zu Tittingdorf JM, Krause F, Dencher NA, Seelert H (2003) Thylakoid membrane at altered metabolic state: challenging the forgotten realms of the proteome. Electrophoresis 24:2814–2823

    Article  PubMed  CAS  Google Scholar 

  89. Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    Article  PubMed  CAS  Google Scholar 

  90. Rolland N, Ferro M, Ephritikhine G, Marmagne A, Ramus C, Brugiere S, Salvi D, Seigneurin-Berny D, Bourguignon J, Barbier-Brygoo H, Joyard J, Garin J (2006) A versatile method for deciphering plant membrane proteomes. J Exp Bot 57:1579–1589

    Article  PubMed  CAS  Google Scholar 

  91. Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J (2003) Proteomics of chloroplast envelope membranes. Photosynth Res 78:205–230

    Article  PubMed  CAS  Google Scholar 

  92. Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    Article  PubMed  CAS  Google Scholar 

  93. Savitski MM, Nielsen ML, Zubarev RA (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol Cell Proteomics 4:1180–1188

    Article  PubMed  CAS  Google Scholar 

  94. Schleiff E, Eichacker LA, Eckart K, Becker T, Mirus O, Stahl T, Soll J (2003) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12:748–759

    Article  PubMed  CAS  Google Scholar 

  95. Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  96. Seigneurin-Berny D, Rolland N, Garin J, Joyard J (1999) Technical advance: differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19:217–228

    Article  PubMed  CAS  Google Scholar 

  97. Shadforth I, Crowther D, Bessant C (2005) Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 5:4082–4095

    Article  PubMed  CAS  Google Scholar 

  98. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93:14440–14445

    Article  PubMed  CAS  Google Scholar 

  99. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  100. Spengler B (2004) De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 15:703–714

    Article  PubMed  CAS  Google Scholar 

  101. Srivastava R, Pisareva T, Norling B (2005) Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 5:4905–4916

    Article  PubMed  CAS  Google Scholar 

  102. Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M (2003) Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot Cell 2:978–994

    Article  PubMed  CAS  Google Scholar 

  103. Steen H, Pandey A (2002) Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol 20:361–364

    Article  PubMed  CAS  Google Scholar 

  104. Storf S, Stauber EJ, Hippler M, Schmid VH (2004) Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). Biochemistry 43:9214–9224

    Article  PubMed  CAS  Google Scholar 

  105. Sun Q, Emanuelsson O, van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135:723–734

    Article  PubMed  CAS  Google Scholar 

  106. Sunyaev S, Liska AJ, Golod A, Shevchenko A (2003) MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Anal Chem 75:1307–1315

    Article  PubMed  CAS  Google Scholar 

  107. Tabb DL, Saraf A, Yates JR 3rd (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal Chem 75:6415–6421

    Article  PubMed  CAS  Google Scholar 

  108. Takahashi Y, Yasui TA, Stauber EJ, Hippler M (2004) Comparison of the subunit compositions of the PSI-LHCI supercomplex and the LHCI in the green alga Chlamydomonas reinhardtii. Biochemistry 43:7816–7823

    Article  PubMed  CAS  Google Scholar 

  109. Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73:2594–2604

    Article  PubMed  CAS  Google Scholar 

  110. Timperio AM, Huber CG, Zolla L (2004) Separation and identification of the light harvesting proteins contained in grana and stroma thylakoid membrane fractions. J Chromatogr A 1040:73–81

    Article  PubMed  CAS  Google Scholar 

  111. Timperio AM, Zolla L (2005) Investigation of the lateral light-induced migration of photosystem II light-harvesting proteins by nano-high performance liquid chromatography electrospray ionization mass spectrometry. J Biol Chem 280:28858–28866

    Article  PubMed  CAS  Google Scholar 

  112. Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A (2006a) CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6:2693–2704

    Article  PubMed  CAS  Google Scholar 

  113. Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV (2006b) Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 5:1412–1425

    Article  PubMed  CAS  Google Scholar 

  114. Turkina MV, Villarejo A, Vener AV (2004) The transit peptide of CP29 thylakoid protein in Chlamydomonas reinhardtii is not removed but undergoes acetylation and phosphorylation. FEBS Lett 564:104–108

    Article  PubMed  CAS  Google Scholar 

  115. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  116. van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    Article  PubMed  CAS  Google Scholar 

  117. Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966

    Article  PubMed  CAS  Google Scholar 

  118. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  PubMed  CAS  Google Scholar 

  119. Westerlund I, Von Heijne G, Emanuelsson O (2003) LumenP–a neural network predictor for protein localization in the thylakoid lumen. Protein Sci 12:2360–2366

    Article  PubMed  CAS  Google Scholar 

  120. Whitelegge JP, Laganowsky A, Nishio J, Souda P, Zhang H, Cramer WA (2006) Sequencing covalent modifications of membrane proteins. J Exp Bot 57:1515–1522

    Article  PubMed  CAS  Google Scholar 

  121. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  122. Wilson KA, McManus MT, Gordon ME, Jordan TW (2002) The proteomics of senescence in leaves of white clover, Trifolium repens (L.). Proteomics 2:1114–1122

    Article  PubMed  CAS  Google Scholar 

  123. Wittmann-Liebold B, Graack HR, Pohl T (2006) Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6:4688–4703

    Article  PubMed  CAS  Google Scholar 

  124. Yamaguchi K, Beligni MV, Prieto S, Haynes PA, McDonald WH, Yates JR 3rd, Mayfield SP (2003) Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70 S ribosome. J Biol Chem 278:33774–33785

    Article  PubMed  CAS  Google Scholar 

  125. Yamaguchi K, Prieto S, Beligni MV, Haynes PA, McDonald WH, Yates JR 3rd, Mayfield SP (2002) Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5. Plant Cell 14:2957–2974

    Article  PubMed  CAS  Google Scholar 

  126. Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482

    Article  PubMed  CAS  Google Scholar 

  127. Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  PubMed  CAS  Google Scholar 

  128. Yan B, Pan C, Olman VN, Hettich RL, Xu Y (2005) A graph-theoretic approach for the separation of b and y ions in tandem mass spectra. Bioinformatics 21:563–574

    Article  PubMed  CAS  Google Scholar 

  129. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  130. Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S (2005) Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics 5:961–972

    Article  PubMed  CAS  Google Scholar 

  131. Zolla L, Rinalducci S, Timperio AM, Huber CG (2002) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem I. Plant Physiol 130:1938–1950

    Article  PubMed  CAS  Google Scholar 

  132. Zolla L, Timperio AM (2000) High performance liquid chromatography-electrospray mass spectrometry for the simultaneous resolution and identification of intrinsic thylakoid membrane proteins. Proteins 41:398–406

    Article  PubMed  CAS  Google Scholar 

  133. Zolla L, Timperio AM, Walcher W, Huber CG (2003) Proteomics of light-harvesting proteins in different plant species. Analysis and comparison by liquid chromatography-electrospray ionization mass spectrometry. Photosystem II. Plant Physiol 131:198–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hippler .

Editor information

Ralph Bock

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naumann, B., Hippler, M. (2007). Insights into chloroplast proteomics: from basic principles to new horizons. In: Bock, R. (eds) Cell and Molecular Biology of Plastids. Topics in Current Genetics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0224

Download citation

Publish with us

Policies and ethics