Skip to main content

Resonance Energy Transfer in Hybrid Systems of Photoactive Dye Molecules and Layered Inorganics

  • Chapter
  • First Online:
Dyes and Photoactive Molecules in Microporous Systems

Part of the book series: Structure and Bonding ((STRUCTURE,volume 183))

Abstract

The phenomenon of Förster resonance energy transfer (FRET) commonly leads to significant changes in the photophysical properties of systems. FRET is very important for the functioning of photosynthesis, thus inspiring scientists to design new functional materials for the efficient use of light energy. This chapter summarizes existing knowledge about FRET in hybrid systems containing inorganic layered nanoparticles and organic luminescent dyes. The physical principles of the interaction between dye molecules leading to FRET and the effect on the spectral properties of the systems are briefly presented. The main part of the chapter covers the fundamental properties of layered nanoparticles, their interactions with organic dyes, and numerous examples of hybrid materials exhibiting FRET. The focus is on various hybrids including various types of assemblies, films, composites, and more complex systems, which can be synthesized from several luminescent species, such as ionic dyes, neutral dyes, luminescent polymeric substances, and complexes. Special attention is devoted to the effects of the dye surface concentration and distribution of the molecules, anisotropy, the types of inorganic host, and external stimuli on the controlled energy transfer. Some examples of applications and the relevance of FRET for future research are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

CRET:

Chemiluminescence resonance energy transfer

DET:

Dexter energy transfer

DNA:

Deoxyribonucleic acid

DOC:

3,3′-Diethyloxacarbocyanine

EA :

Energy acceptor

ED :

Energy donor

ET:

Energy transfer

FAM:

Fluorescein amidite

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Förster resonance energy transfer

GO:

Graphene oxide

IgE:

Antibody immunoglobulin E

Lap:

Laponite

LB:

Langmuir-Blodgett

LbL:

Layer-by-layer

LDH :

Layered double hydroxide

LUMO:

Lowest unoccupied molecular orbitals

Ox4:

Oxazine 4

PDF:

Probability density function

PVK:

Poly(vinylcarbazole)

R3B:

Rhodamine 3B

R6G:

Rhodamine 6G

RB:

Rhodamine B

rGO:

Reduced graphene oxide

Sap:

Saponite

UV:

Ultraviolet

vis:

Visible

VOC :

Volatile organic compounds

References

  1. Calzaferri G (2010) Artificial photosynthesis. Top Catal 53(3-4):130–140. https://doi.org/10.1007/s11244-009-9424-9

    Article  CAS  Google Scholar 

  2. Calzaferri G (2008) Energy transfer in nanochannels. Nuovo Cimento Soc Ital Fis B 123(10–11):1337–1367. https://doi.org/10.1393/ncb/i2008-10721-5

    Article  Google Scholar 

  3. Gartzia-Rivero L, Bañuelos J, López-Arbeloa I (2017) Photoactive nanomaterials inspired by nature: LTL zeolite doped with laser dyes as artificial light harvesting systems. Materials 10(5):495. https://doi.org/10.3390/ma10050495

    Article  CAS  PubMed Central  Google Scholar 

  4. Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46(7):1462–1473. https://doi.org/10.1021/ar300273v

    Article  CAS  PubMed  Google Scholar 

  5. Bujdák J (2018) The effects of layered nanoparticles and their properties on the molecular aggregation of organic dyes. J Photochem Photobiol C 35:108–133. https://doi.org/10.1016/j.jphotochemrev.2018.03.001

    Article  CAS  Google Scholar 

  6. Bujdák J (2017) Hybrids with photoactive dyes. In: Nakato T, Kawamata J, Takagi S (eds) Inorganic nanosheets and nanosheet-based materials: fundamentals and applications of two-dimensional systems. Springer, Tokyo

    Google Scholar 

  7. Bujdák J (2015) Hybrid systems based on organic dyes and clay minerals: fundamentals and potential applications. Clay Miner 50(5):549–571. https://doi.org/10.1180/claymin.2015.050.5.01

    Article  CAS  Google Scholar 

  8. Forster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33(6):166–175. https://doi.org/10.1007/BF00585226

    Article  CAS  Google Scholar 

  9. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26(2):161–193. https://doi.org/10.1016/S0006-3495(79)85243-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zwillinger D (2003) 7.1.8 geometric probability. In: Zwillinger D (ed) CRC standard mathematical tables and formulae, 31st edn. CRC Press, London, p equation 7.1.46

    Google Scholar 

  11. Belušáková S, Martı́nez-Martı́nez V, Arbeloa IL, Bujdák J (2017) Resonance energy transfer between dye molecules in colloids of a layered silicate. The effect of dye surface concentration. J Phys Chem C 121(15):8300–8309. https://doi.org/10.1021/acs.jpcc.7b00947

    Article  CAS  Google Scholar 

  12. Schoonheydt RA (2002) Smectite-type clay minerals as nanomaterials. Clays Clay Miner 50(4):411–420

    Article  CAS  Google Scholar 

  13. Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34(1-4):58–73. https://doi.org/10.1016/j.clay.2006.02.011

    Article  CAS  Google Scholar 

  14. Liu P, Zhang LX (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58:32–39. https://doi.org/10.1016/j.seppur.2007.07.007

    Article  CAS  Google Scholar 

  15. Chen Y (2015) Nanotubes and nanosheets: functionalization and applications of boron nitride and other nanomaterials. CRC Press, New York

    Book  Google Scholar 

  16. Auerbach SM, Carrado KA, Dutta PK (2004) Handbook of layered materials. CRC Press, New York

    Book  Google Scholar 

  17. Nakato T, Kawamata J, Takagi S (2017) Inorganic nanosheets and nanosheet-based materials: fundamentals and applications of two-dimensional systems. Springer, Tokyo

    Book  Google Scholar 

  18. Miyamoto N, Ohseda Y, Nakato T (2017) Colloidal nanosheets. In: Nakato T, Kawamata J, Takagi S (eds) Inorganic nanosheets and nanosheet-based materials: fundamentals and applications of two-dimensional systems. Springer, Tokyo

    Google Scholar 

  19. Nakato T (2017) Synthetic nanosheets from ion-exchangeable layered solids. In: Nakato T, Kawamata J, Takagi S (eds) Inorganic nanosheets and nanosheet-based materials: fundamentals and applications of two-dimensional systems. Springer, Tokyo

    Chapter  Google Scholar 

  20. Schoonheydt RA, Umemura Y (2017) Clay minerals as natural nanosheets. In: Nakato T, Kawamata J, Takagi S (eds) Inorganic nanosheets and nanosheet-based materials: fundamentals and applications of two-dimensional systems. Springer, Tokyo

    Google Scholar 

  21. Wang T, Hu XB, Zheng SD, Liu XX, Wang CY, Tong Z (2012) Adsorption of fluorophores and N-isopropylacrylamide on Laponite. Appl Clay Sci 58:102–107. https://doi.org/10.1016/j.clay.2012.01.021

    Article  CAS  Google Scholar 

  22. Li HY, Li QA (2003) Organic dye-layered silicate optical functional nanocomposites. Prog Chem 15(2):135–140

    Google Scholar 

  23. Arbeloa FL, Martinez VM, Arbeloa T, Arbeloa IL (2007) Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. J Photochem Photobiol C 8:85–108. https://doi.org/10.1016/j.jphotochemrev.2007.03.003

    Article  CAS  Google Scholar 

  24. Zhou CH, Shen ZF, Liu LH, Liu SM (2011) Preparation and functionality of clay-containing films. J Mater Chem 21(39):15132–15153

    Article  CAS  Google Scholar 

  25. Costa AL, Gomes AC, Pereira RC, Pillinger M, Gonçalves IS, Pineiro M, Seixas De Melo JS (2018) Interactions and supramolecular organization of sulfonated indigo and thioindigo dyes in layered hydroxide hosts. Langmuir 34(1):453–464. https://doi.org/10.1021/acs.langmuir.7b03735

    Article  CAS  PubMed  Google Scholar 

  26. Mandal S, Natarajan S, Raja S, Vijayalakshmi N, Muralidharan C, Mandal AB (2013) Adsorption of acid dyes on hydrotalcite-like anionic clays. In: Mishra T, Das N (eds) Layered clay materials for functional applications. Key engineering materials, vol 571, pp 57–69. https://doi.org/10.4028/www.scientific.net/KEM.571.57

    Chapter  Google Scholar 

  27. Ras RHA, van Duffel B, Van der Auweraer M, De Schryver FC, Schoonheydt RA (2003) Molecular and particulate organisation in dye-clay films prepared by the Langmuir-Blodgett method. In: 2001 – A clay odyssey. Elsevier, Amsterdam, pp 473–480

    Google Scholar 

  28. Czímerová A, Bujdák J, Iyi N (2007) Fluorescence resonance energy transfer between laser dyes in saponite dispersions. J Photochem Photobiol A 187(2-3):160–166. https://doi.org/10.1016/j.jphotochem.2006.10.011

    Article  CAS  Google Scholar 

  29. Yui T, Kameyama T, Sasaki T, Torimoto T, Takagi K (2007) Pyrene-to-porphyrin excited singlet energy transfer in LBL-deposited LDH nanosheets. J Porphyrins Phthalocyanines 11(5-6):428–433

    Article  CAS  Google Scholar 

  30. Czimerová A, Iyi N, Bujdák J (2008) Fluorescence resonance energy transfer between two cationic laser dyes in presence of the series of reduced-charge montmorillonites: effect of the layer charge. J Colloid Interface Sci 320(1):140–151. https://doi.org/10.1016/j.jcis.2007.10.055

    Article  CAS  PubMed  Google Scholar 

  31. Bujdák J, Chorvát D, Iyi N (2010) Resonance energy transfer between rhodamine molecules adsorbed on layered silicate particles. J Phys Chem C 114(2):1246–1252. https://doi.org/10.1021/jp9098107

    Article  CAS  Google Scholar 

  32. Hussain SA, Chakraborty S, Bhattacharjee D, Schoonheydt RA (2010) Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films. Spectrochim Acta A Mol Biomol Spectrosc 75(2):664–670. https://doi.org/10.1016/j.saa.2009.11.037

    Article  CAS  PubMed  Google Scholar 

  33. Hussain SA, Schoonheydt RA (2010) Langmuir-Blodgett monolayers of cationic dyes in the presence and absence of clay mineral layers: N,N′-dioctadecyl thiacyanine, octadecyl rhodamine B and laponite. Langmuir 26(14):11870–11877. https://doi.org/10.1021/la101078f

    Article  CAS  PubMed  Google Scholar 

  34. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133(36):14280–14286. https://doi.org/10.1021/ja204425u

    Article  CAS  PubMed  Google Scholar 

  35. Bujdák J, Czímerová A, Arbeloa FL (2011) Two-step resonance energy transfer between dyes in layered silicate films. J Colloid Interface Sci 364(2):497–504. https://doi.org/10.1016/j.jcis.2011.08.042

    Article  CAS  PubMed  Google Scholar 

  36. Ishida Y, Masui D, Tachibana H, Inoue H, Shimada T, Takagi S (2012) Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the “size-matching rule” for constructing an efficient energy transfer system. ACS Appl Mater Interfaces 4(2):811–816. https://doi.org/10.1021/am201465a

    Article  CAS  PubMed  Google Scholar 

  37. Dey D, Bhattacharjee D, Chakraborty S, Hussain SA (2013) Development of hard water sensor using fluorescence resonance energy transfer. Sensors Actuators B Chem 184:268–273. https://doi.org/10.1016/j.snb.2013.04.077

    Article  CAS  Google Scholar 

  38. Shimada T, Hamatani S, Onodera S, Ishida Y, Inoue H, Takagi S (2013) Investigation of adsorption behavior and energy transfer of cationic porphyrins on clay surface at low loading levels by picosecond time-resolved fluorescence measurement. Res Chem Intermed 39(1):269–278. https://doi.org/10.1007/s11164-012-0647-1

    Article  CAS  Google Scholar 

  39. Dey D, Bhattacharjee D, Chakraborty S, Hussain SA (2013) Effect of nanoclay laponite and pH on the energy transfer between fluorescent dyes. J Photochem Photobiol A 252:174–182

    Article  CAS  Google Scholar 

  40. Bujdák J (2014) Layer-by-layer assemblies composed of polycationic electrolyte, organic dyes, and layered silicates. J Phys Chem C 118(13):7152–7162. https://doi.org/10.1021/jp411155x

    Article  CAS  Google Scholar 

  41. Dey D, Saha J, Roy AD, Bhattacharjee D, Hussain SA (2014) Development of an ion-sensor using fluorescence resonance energy transfer. Sensors Actuators B Chem 195:382–388. https://doi.org/10.1016/j.snb.2014.01.065

    Article  CAS  Google Scholar 

  42. Sato H, Ochi M, Kato M, Tamura K, Yamagishi A (2014) Energy transfer in hybrid Langmuir-Blodgett films of iridium complexes and synthetic saponite: dependence of transfer efficiency on the interlayer distance. New J Chem 38(12):5715–5720. https://doi.org/10.1039/c4nj00818a

    Article  CAS  Google Scholar 

  43. Eguchi M, Watanabe Y, Ohtani Y, Shimada T, Takagi S (2014) Switching of energy transfer reaction by the control of orientation factor between porphyrin derivatives on the clay surface. Tetrahedron Lett 55(16):2662–2666. https://doi.org/10.1016/j.tetlet.2014.03.027

    Article  CAS  Google Scholar 

  44. Belušáková S, Lang K, Bujdák J (2015) Hybrid systems based on layered silicate and organic dyes for cascade energy transfer. J Phys Chem C 119:21784–21794. https://doi.org/10.1021/acs.jpcc.5b04982

    Article  CAS  Google Scholar 

  45. Belušáková S, Sola-Llano R, Arbeloa IL, Martínez-Martínez V, Bujdák J (2018) Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Appl Clay Sci 155:57–64. https://doi.org/10.1016/j.clay.2018.01.001

  46. Liu Q, Yan HJ, Su YM, Shi SK, Ye JP (2014) Energy transfer studies of dye chromophores in modified zirconium phosphate framework. J Lumin 152:238–240. https://doi.org/10.1016/j.jlumin.2014.01.077

    Article  CAS  Google Scholar 

  47. Saha J, Datta Roy A, Dey D, Chakraborty S, Bhattacharjee D, Paul PK, Hussain SA (2015) Investigation of fluorescence resonance energy transfer between fluorescein and rhodamine 6G. Spectrochim Acta A Mol Biomol Spectrosc 149:143. https://doi.org/10.1016/j.saa.2015.04.027

    Article  CAS  PubMed  Google Scholar 

  48. Rao KV, Datta KKR, Eswaramoorthy M, George SJ (2012) Light-harvesting hybrid assemblies. Chem Eur J 18(8):2184–2194. https://doi.org/10.1002/chem.201103601

    Article  CAS  PubMed  Google Scholar 

  49. Fujii K, Iyi N, Sasai R, Hayashi S (2008) Preparation of a novel luminous heterogeneous system: rhodamine/coumarin/phyllosilicate hybrid and blue shift in fluorescence emission. Chem Mater 20(9):2994–3002. https://doi.org/10.1021/cm0716452

    Article  CAS  Google Scholar 

  50. Czímerová A, Iyi N, Bujdák J (2007) Energy transfer between rhodamine 3B and oxazine 4 in synthetic-saponite dispersions and films. J Colloid Interface Sci 306(2):316–322. https://doi.org/10.1016/j.jcis.2006.10.040

    Article  CAS  PubMed  Google Scholar 

  51. Nakayama A, Mizuno J, Ohtani Y, Shimada T, Takagi S (2018) Elucidation of the adsorption distribution of cationic porphyrin on the inorganic surface by energy transfer as a molecular ruler. J Phys Chem C 122(8):4365–4371. https://doi.org/10.1021/acs.jpcc.7b12104

    Article  CAS  Google Scholar 

  52. Ishida Y, Kulasekharan R, Shimada T, Takagi S, Ramamurthy V (2013) Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet. Langmuir 29(6):1748–1753. https://doi.org/10.1021/la305148j

    Article  CAS  PubMed  Google Scholar 

  53. Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S (2014) Microstructures of the porphyrin/viologen mono layer on the clay surface: segregation or integration? J Phys Chem C 118(35):20504–20510. https://doi.org/10.1021/jp5076274

    Article  CAS  Google Scholar 

  54. Ghosh PK, Bard AJ (1984) Photochemistry of tris(2,2′-bipyridyl)ruthenium(II) in colloidal clay suspensions. J Phys Chem 88(23):5519–5526. https://doi.org/10.1021/j150667a012

    Article  CAS  Google Scholar 

  55. Kakegawa N, Ogawa M (2004) Effective luminescence quenching of tris(2,2-bipyridine)ruthenium(II) by methylviologen on clay by the aid of poly(vinylpyrrolidone). Langmuir 20(17):7004–7009. https://doi.org/10.1021/la036213u

    Article  CAS  PubMed  Google Scholar 

  56. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H, Eguchi M, Inoue H (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29(7):2108–2119. https://doi.org/10.1021/la3034808

    Article  CAS  PubMed  Google Scholar 

  57. Baranyaiová T, Bujdák J (2016) Reaction kinetics of molecular aggregation of rhodamine 123 in colloids with synthetic saponite nanoparticles. Appl Clay Sci 134:103–109. https://doi.org/10.1016/j.clay.2016.01.036

    Article  CAS  Google Scholar 

  58. Baranyaiová T, Bujdák J (2018) Effects of dye surface concentration on the molecular aggregation of xanthene dye in colloidal dispersions of montmorillonite. Clay Clay Miner 66(2):114–126. https://doi.org/10.1346/ccmn.2018.064089

    Article  CAS  Google Scholar 

  59. Leone G, Giovanella U, Porzio W, Botta C, Ricci G (2011) In situ synthesis of fluorescent poly(norbornene)/oxazine-1 dye loaded fluoromica hybrids: supramolecular control over dye arrangement. J Mater Chem 21(34):12901–12909. https://doi.org/10.1039/c1jm11281c

    Article  CAS  Google Scholar 

  60. Giovanella U, Leone G, Ricci G, Virgili T, Lopez IS, Rajendran SK, Botta C (2012) Oxazine-1 J-aggregates in polymer nanohybrids. Phys Chem Chem Phys 14(39):13646–13650. https://doi.org/10.1039/c2cp42361h

    Article  CAS  PubMed  Google Scholar 

  61. Sonotani A, Shimada T, Takagi S (2017) “Size-matching effect” in a cationic porphyrin-titania nanosheet complex. Chem Lett 46(4):499–501. https://doi.org/10.1246/cl.161146

    Article  CAS  Google Scholar 

  62. Takagi S, Aratake Y, Konno S, Masui D, Shimada T, Tachibana H, Inoue H (2011) Effects of porphyrin structure on the complex formation behavior with clay. Microporous Mesoporous Mater 141(1-3):38–42. https://doi.org/10.1016/j.micromeso.2009.11.011

    Article  CAS  Google Scholar 

  63. Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, Shimada T, Tachibana H, Yoshida H, Inoue H, Takagi S (2011) Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the “size-matching rule”. Langmuir 27(17):10722–10729. https://doi.org/10.1021/la202231k

    Article  CAS  PubMed  Google Scholar 

  64. Czímerová A, Čeklovský A (2017) Resonance energy transfer between rhodamine dyes in saponite thin films: a step towards novel photofunctional nanohybrids. Clay Miner 52(2):263–273. https://doi.org/10.1180/claymin.2017.052.2.06

  65. Felbeck T, Mundinger S, Lezhnina MM, Staniford M, Resch-Genger U, Kynast UH (2015) Multifold fluorescence enhancement in nanoscopic fluorophore-clay hybrids in transparent aqueous media. Chem Eur J 21(20):7582–7587. https://doi.org/10.1002/chem.201406416

    Article  CAS  PubMed  Google Scholar 

  66. Roy AD, Saha J, Dey D, Bhattacharjee D, Hussain SA (2016) Influence of clay and DNA on fluorescence resonance energy transfer between two laser dyes pyrene and acriflavine. Adv Sci Lett 22(1):149–153. https://doi.org/10.1166/asl.2016.6810

    Article  Google Scholar 

  67. Ishida Y, Kulasekharan R, Shimada T, Ramamurthy V, Takagi S (2014) Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J Phys Chem C 118(19):10198–10203. https://doi.org/10.1021/jp502816j

    Article  CAS  Google Scholar 

  68. Tsukamoto T, Ramasamy E, Shimada T, Takagi S, Ramamurthy V (2016) Supramolecular surface photochemistry: cascade energy transfer between encapsulated dyes aligned on a clay nanosheet surface. Langmuir 32(12):2920–2927. https://doi.org/10.1021/acs.langmuir.5b03962

    Article  CAS  PubMed  Google Scholar 

  69. Devaux A, Calzaferri G, Belser P, Cao P, Brühwiler D, Kunzmann A (2014) Efficient and robust host-guest antenna composite for light harvesting. Chem Mater 26(23):6878–6885. https://doi.org/10.1021/cm503761q

    Article  CAS  Google Scholar 

  70. Zhang Y, Chen Y, Li J, Liang L, Liu Y (2018) Construction and luminescent behavior of supramolecular hydrogel with white-light emission. Acta Chim Sin 76(8):622–626. https://doi.org/10.6023/A18040171

    Article  CAS  Google Scholar 

  71. Sas S, Danko M, Bizovská V, Lang K, Bujdák J (2017) Highly luminescent hybrid materials based on smectites with polyethylene glycol modified with rhodamine fluorophore. Appl Clay Sci 138:25–33. https://doi.org/10.1016/j.clay.2016.12.034

    Article  CAS  Google Scholar 

  72. Kuroda T, Fujii K, Sakoda K (2010) Ultrafast energy transfer in a multichromophoric layered silicate. J Phys Chem C 114(2):983–989. https://doi.org/10.1021/jp910341f

    Article  CAS  Google Scholar 

  73. Fujii K, Kuroda T, Sakoda K, Iyi N (2011) Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. J Photochem Photobiol A 225(1):125–134. https://doi.org/10.1016/j.jphotochem.2011.10.009

    Article  CAS  Google Scholar 

  74. Kunz DA, Schmid J, Feicht P, Erath J, Fery A, Breu J (2013) Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers. ACS Nano 7(5):4275–4280. https://doi.org/10.1021/nn400713e

    Article  CAS  PubMed  Google Scholar 

  75. Lee TW, Park OO, Yoon J, Kim JJ (2001) Polymer-layered silicate nanocomposite light-emitting devices. Adv Mater 13(3):211–213. https://doi.org/10.1002/1521-4095(200102)13:3<211::AID-ADMA211>3.0.CO;2-H

    Article  CAS  Google Scholar 

  76. Leone G, Giovanella U, Bertini F, Porzio W, Meinardi F, Botta C, Ricci G (2013) Poly(styrene)-graft−/rhodamine 6G-fluoromica hybrids: synthesis, characterization and photophysical properties. J Mater Chem C 1(7):1450–1460. https://doi.org/10.1039/c2tc00533f

    Article  CAS  Google Scholar 

  77. Chakraborty U, Singha T, Chianelli RR, Hansda C, Paul PK (2017) Organic-inorganic hybrid layer-by-layer electrostatic self-assembled film of cationic dye Methylene Blue and a clay mineral: spectroscopic and Atomic Force microscopic investigations. J Lumin 187:322–332. https://doi.org/10.1016/j.jlumin.2017.03.039

    Article  CAS  Google Scholar 

  78. Li Z, Liang R, Xu S, Liu W, Yan D, Wei M, Evans DG, Duan X (2016) Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Res 9(12):3828–3838. https://doi.org/10.1007/s12274-016-1252-1

    Article  CAS  Google Scholar 

  79. Tozoni JR, Guimarães FEG, Atvars TDZ, Nowacki B, Marlleta A, Akcelrud L, Bonagamba TJ (2011) De-aggregation of a polyfluorene derivative in clay nanocomposites: a photophysical study. Eur Polym J 47(12):2259–2265. https://doi.org/10.1016/j.eurpolymj.2011.09.023

    Article  CAS  Google Scholar 

  80. Vohra V, Calzaferri G, Destri S, Pasini M, Porzio W, Botta C (2010) Toward white light emission through efficient two-step energy transfer in hybrid nanofibers. ACS Nano 4(3):1409–1416. https://doi.org/10.1021/nn9017922

    Article  CAS  PubMed  Google Scholar 

  81. Olivero F, Carniato F, Bisio C, Marchese L (2014) Promotion of forster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye. Chem Asian J 9(1):158–165. https://doi.org/10.1002/asia.201300936

    Article  CAS  PubMed  Google Scholar 

  82. Aharon E, Albo A, Kalina M, Frey GL (2006) Stable blue emission from a polyfluorene/layered-compound guest/host nanocomposite. Adv Funct Mater 16(7):980–986. https://doi.org/10.1002/adfm.200500458

    Article  CAS  Google Scholar 

  83. Li Z, Lu J, Li S, Qin S, Qin Y (2012) Orderly ultrathin films based on perylene/poly(N-vinyl carbazole) assembled with layered double hydroxide nanosheets: 2d fluorescence resonance energy transfer and reversible fluorescence response for volatile organic compounds. Adv Mater 24(45):6053–6057. https://doi.org/10.1002/adma.201203040

    Article  CAS  PubMed  Google Scholar 

  84. Qin Y, Shi J, Gong X, Tian Z, Zhang P, Lu J (2016) A luminescent inorganic/organic composite ultrathin film based on a 2D cascade FRET process and its potential VOC selective sensing properties. Adv Funct Mater 26(37):6752–6759. https://doi.org/10.1002/adfm.201601087

    Article  CAS  Google Scholar 

  85. Qin Y, Lu J, Li S, Li Z, Zheng S (2014) Phosphorescent sensor based on iridium complex/poly(vinylcarbazole) orderly assembled with layered double hydroxide nanosheets: two-dimensional föster resonance energy transfer and reversible luminescence response for VOCs. J Phys Chem C 118(35):20538–20544. https://doi.org/10.1021/jp505448d

    Article  CAS  Google Scholar 

  86. Park CH, Lee S, Pornnoppadol G, Nam YS, Kim SH, Kim BJ (2018) Microcapsules containing pH-responsive, fluorescent polymer-integrated MoS2: an effective platform for in situ pH sensing and photothermal heating. ACS Appl Mater Interfaces 10(10):9023–9031. https://doi.org/10.1021/acsami.7b19468

    Article  CAS  PubMed  Google Scholar 

  87. Arbeloa FL, Martinez V, Arbeloa T, Arbeloa IL (2010) Fluorescence anisotropy to study the preferential orientation of fluorophores in ordered bi-dimensional systems: rhodamine 6G/laponite layered films. In: Geddes CD (ed) Reviews in fluorescence 2008. Reviews in fluorescence, vol 5. Kluwer Academic, New York, pp 1–35. https://doi.org/10.1007/978-1-4419-1260-2_1

    Chapter  Google Scholar 

  88. López Arbeloa F, Martínez Martínez V (2006) Orientation of adsorbed dyes in the interlayer space of clays. 2 fluorescence polarization of rhodamine 6G in laponite films. Chem Mater 18(6):1407–1416

    Article  Google Scholar 

  89. Martinez VM, Arbeloa FL, Prieto JB, Arbeloa IL (2005) Orientation of adsorbed dyes in the interlayer space of clays. 1. Anisotropy of Rhodamine 6G in Laponite films by Vis-absorption with polarized light. Chem Mater 17(16):4134–4141. https://doi.org/10.1021/cm050728k

    Article  CAS  Google Scholar 

  90. Iyi N, Sasai R, Fujita T, Deguchi T, Sota T, López Arbeloa F, Kitamura K (2002) Orientation and aggregation of cationic laser dyes in a fluoromica: polarized spectrometry studies. Appl Clay Sci 22(3):125–136

    Article  CAS  Google Scholar 

  91. Iyi N, Sasai R, Fujita T, Deguchi T, Sota T, Arbeloa FL, Kitamura K (2002) Orientation and aggregation of cationic laser dyes in a fluoromica: polarized spectrometry studies. Appl Clay Sci 22(3):125–136

    Article  CAS  Google Scholar 

  92. Bujdák J, Iyi N (2005) Molecular orientation of rhodamine dyes on surfaces of layered silicates. J Phys Chem B 109(10):4608–4615

    Article  Google Scholar 

  93. Hirose M, Ito F, Shimada T, Takagi S, Sasai R, Okada T (2017) Photoluminescence by intercalation of a fluorescent β-diketone dye into a layered silicate. Langmuir 33(47):13515–13521. https://doi.org/10.1021/acs.langmuir.7b03460

    Article  CAS  PubMed  Google Scholar 

  94. Kafunkova E, Taviot-Gueho C, Bezdicka P, Klementova M, Kovar P, Kubat P, Mosinger J, Pospisil M, Lang K (2010) Porphyrins intercalated in Zn/Al and Mg/Al layered double hydroxides: properties and structural arrangement. Chem Mater 22(8):2481–2490. https://doi.org/10.1021/cm903125v

    Article  CAS  Google Scholar 

  95. Saha J, Dey D, Roy AD, Bhattacharjee D, Hussain SA (2016) Multi step FRET among three laser dyes Pyrene, Acriflavine and Rhodamine B. J Lumin 172:168–174. https://doi.org/10.1016/j.jlumin.2015.12.004

    Article  CAS  Google Scholar 

  96. Ohtani Y, Kawaguchi S, Shimada T, Takagi S (2017) Energy transfer among three dye components in a nanosheet-dye complex: an approach to evaluating the performance of a light-harvesting system. J Phys Chem C 121(4):2052–2058. https://doi.org/10.1021/acs.jpcc.6b10372

    Article  CAS  Google Scholar 

  97. Zhuk A, Sukhishvili SA (2013) Stimuli-responsive layer-by-layer nanocomposites. Soft Matter 9(21):5149–5154

    Article  CAS  Google Scholar 

  98. Kehlbeck JD, Hagerman ME, Cohen BD, Eliseo J, Fox M, Hoek W, Karlin D, Leibner E, Nagle E, Nolan M, Schaefer I, Toney A, Topka M, Uluski R, Wood C (2008) Directed self-assembly in laponite/CdSe/polyaniline nanocomposites. Langmuir 24(17):9727–9738

    Article  CAS  Google Scholar 

  99. Hansda C, Chakraborty U, Hussain SA, Bhattacharjee D, Paul PK (2016) Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange. Spectrochim Acta A 157:79–87. https://doi.org/10.1016/j.saa.2015.12.006

    Article  CAS  Google Scholar 

  100. Chakraborty S, Bhattacharjee D, Hussain SA (2014) Formation and control of excimer of a coumarin derivative in Langmuir-Blodgett films. J Lumin 145:824–831. https://doi.org/10.1016/j.jlumin.2013.09.001

    Article  CAS  Google Scholar 

  101. Lewkowicz A, Synak A, Grobelna B, Kułak L, Bojarski P (2014) Spectroscopic properties of Rhodamine B entrapped in hybrid porous nanolayers at high dye concentration. Chem Phys 439:121–127. https://doi.org/10.1016/j.chemphys.2014.05.016

    Article  CAS  Google Scholar 

  102. Giovanella U, Leone G, Galeotti F, Mroz W, Meinardi F, Botta C (2014) FRET-assisted deep-blue electroluminescence in intercalated polymer hybrids. Chem Mater 26(15):4572–4578. https://doi.org/10.1021/cm501870e

    Article  CAS  Google Scholar 

  103. Cheng CH, Li Z, Hambarde A, Deotare PB (2018) Efficient energy transfer across organic-2D inorganic heterointerfaces. ACS Appl Mater Interfaces 10(45):39336–39342. https://doi.org/10.1021/acsami.8b12291

    Article  CAS  PubMed  Google Scholar 

  104. Akhavan S, Akgul MZ, Hernandez-Martinez PL, Demir HV (2017) Plasmon-enhanced energy transfer in photosensitive nanocrystal device. ACS Nano 11(6):5430–5439. https://doi.org/10.1021/acsnano.6b08392

    Article  CAS  PubMed  Google Scholar 

  105. Rangełowa-Jankowska S, Jankowski D, Bogdanowicz R, Grobelna B, Bojarski P (2012) Surface plasmon-coupled emission of rhodamine 110 aggregates in a silica nanolayer. J Phys Chem Lett 3(23):3626–3631. https://doi.org/10.1021/jz301728y

    Article  CAS  PubMed  Google Scholar 

  106. Li Z, Zhou Y, Yan D, Wei M (2017) Electrochemiluminescence resonance energy transfer (ERET) towards trinitrotoluene sensor based on layer-by-layer assembly of luminol-layered double hydroxides and CdTe quantum dots. J Mater Chem C 5(14):3473–3479. https://doi.org/10.1039/C7TC00100B

    Article  CAS  Google Scholar 

  107. Liang R, Xu S, Yan D, Shi W, Tian R, Yan H, Wei M, Evans DG, Duan X (2012) CdTe quantum dots/layered double hydroxide ultrathin films with multicolor light emission via layer-by-layer assembly. Adv Funct Mater 22(23):4940–4948. https://doi.org/10.1002/adfm.201201367

    Article  CAS  Google Scholar 

  108. Zhong J, Yuan Z, Lu C (2016) Layered-nanomaterial-amplified chemiluminescence systems and their analytical applications. Anal Bioanal Chem 408(30):8731–8746. https://doi.org/10.1007/s00216-016-9449-4

    Article  CAS  PubMed  Google Scholar 

  109. Wang Z, Teng X, Lu C (2013) Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix. Anal Chem 85(4):2436–2442. https://doi.org/10.1021/ac303487b

    Article  CAS  PubMed  Google Scholar 

  110. Cao Y, Sui D, Zhou W, Lu C (2016) Highly selective chemiluminescence detection of hydroxyl radical via increased π-electron densities of rhodamine B on montmorillonite matrix. Sensors Actuators B Chem 225:600–606. https://doi.org/10.1016/j.snb.2015.11.084

    Article  CAS  Google Scholar 

  111. Chen S, Zhou W, Cao Y, Xue C, Lu C (2014) Organo-modified montmorillonite enhanced chemiluminescence via inactivation of halide counterions in a micellar solution. J Phys Chem C 118(5):2851–2856. https://doi.org/10.1021/jp411290z

    Article  CAS  Google Scholar 

  112. Rozen H, Margulies L (1991) Photostabilization of tetrahydro-2-(nitromethylene)-2H-1,3-thiazine adsorbed on clays. J Agric Food Chem 39(7):1320–1325

    Article  CAS  Google Scholar 

  113. Margulies L, Rozen H, Stern T, Rytwo G, Rubin B, Ruzo LO, Nir S, Cohen E (1993) Photostabilization of pesticides by clays and chromophores. Arch Insect Biochem Physiol 22(3-4):467–486

    Article  CAS  Google Scholar 

  114. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184(1):203–210. https://doi.org/10.1007/s00604-016-2011-4

    Article  CAS  Google Scholar 

  115. Yan D, Lu J, Wei M, Han J, Ma J, Li F, Evans DG, Duan X (2009) Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-by-layer assembly. Angew Chem Int Ed Engl 48(17):3073–3076. https://doi.org/10.1002/anie.200900178

    Article  CAS  PubMed  Google Scholar 

  116. Yan D, Lu J, Ma J, Wei M, Evans DG, Duan X (2011) Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew Chem Int Ed Engl 50(3):720–723. https://doi.org/10.1002/anie.201003015

    Article  CAS  PubMed  Google Scholar 

  117. Hu K, Yang H, Zhou J, Zhao S, Tian J (2012) Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide. Luminescence 28(5):662–666. https://doi.org/10.1002/bio.2412

    Article  CAS  PubMed  Google Scholar 

  118. Chang HX, Tang LH, Wang Y, Jiang JH, Li JH (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346. https://doi.org/10.1021/ac9025384

    Article  CAS  PubMed  Google Scholar 

  119. Chi-Ming Leung F, Wing-Wah Yam V (2018) Covalent and non-covalent conjugation of few-layered graphene oxide and ruthenium(II) complex hybrids and their energy transfer modulation via enzymatic hydrolysis. ACS Appl Mater Interfaces 10(18):15582–15590. https://doi.org/10.1021/acsami.7b18663

    Article  CAS  PubMed  Google Scholar 

  120. Swaminathan H, Balasubramanian K (2018) Forster resonance energy transfer between MoS2 quantum dots and polyaniline for turn-on bovine serum albumin sensing. Sensors Actuators B Chem 264:337–343. https://doi.org/10.1016/j.snb.2018.02.182

    Article  CAS  Google Scholar 

  121. Becker W (2012) Fluorescence lifetime imaging – techniques and applications. J Microsc 247(2):119–136. https://doi.org/10.1111/j.1365-2818.2012.03618.x

    Article  CAS  PubMed  Google Scholar 

  122. Tsukamoto T, Shimada T, Takagi S (2013) Photochemical properties of mono-, tr-, and penta-cationic antimony(V) metalloporphyrin derivatives on a clay layer surface. J Phys Chem A 117(33):7823–7832. https://doi.org/10.1021/jp405767s

    Article  CAS  PubMed  Google Scholar 

  123. Tsukamoto T, Shimada T, Takagi S (2018) Artificial photosynthesis model: photochemical reaction system with efficient light-harvesting function on inorganic nanosheets. ACS Omega 3(12):18563–18571. https://doi.org/10.1021/acsomega.8b02594

    Article  CAS  Google Scholar 

  124. Gartzia-Rivero L, Bañuelos J, López-Arbeloa I (2015) Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. Int Rev Phys Chem 34(4):515–556. https://doi.org/10.1080/0144235X.2015.1075279

    Article  CAS  Google Scholar 

  125. Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics 9(9):601–607. https://doi.org/10.1038/nphoton.2015.142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract No. APVV-15-0347, APVV-15-0741, and APVV-18-0075. Support from the VEGA grant agency (1/0227/20) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Bujdák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bujdák, J. (2020). Resonance Energy Transfer in Hybrid Systems of Photoactive Dye Molecules and Layered Inorganics. In: Martínez-Martínez, V., López Arbeloa, F. (eds) Dyes and Photoactive Molecules in Microporous Systems. Structure and Bonding, vol 183. Springer, Cham. https://doi.org/10.1007/430_2020_55

Download citation

Publish with us

Policies and ethics