Skip to main content

Other Photoactive Inorganic Supramolecular Systems: Self-Assembly and Intercomponent Processes

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

Abstract

An overview of a range of topics in inorganic supramolecular photochemistry/photophysics is presented, which are complementary to other chapters in this section, with particular emphasis on interacting discrete molecular species. These topics include noncovalent assemblies and interactions of photoactive molecules and the consequence of interaction on their properties. Photoinduced processes in supramolecular systems are considered, notably energy (uni- and bidirectional) and electron transfer, which are of particular relevance in the understanding of biological processes or in new manifestations of photoinduced charge separation in the framework of artificial photosynthesis and smart materials. Other topics briefly discussed include mechanochromism, aggregation induced emission, and supramolecular transfer of chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehn, J.-M.: Supramolecular Chemistry: Concepts and Perpectives. Wiley-VCH, Weinheim (1995)

    Book  Google Scholar 

  2. Hunter, C.A.: Quantifying intermolecular interactions: Guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43, 5310–5324 (2004)

    Google Scholar 

  3. Balzani, V., Scandola, F.: Supramolecular Photochemistry. Horwood, Chichester, U.K (1991)

    Google Scholar 

  4. Balzani, V.: Supramolecular photochemistry. Tetrahedron. 48, 10443–10514 (1992)

    Google Scholar 

  5. Uhlenheuer, D.A., Petkau, K., Brunsveld, L.: Combining supramolecular chemistry with biology. Chem. Soc. Rev. 39, 2817–2826 (2010)

    Google Scholar 

  6. Kiessling, L.L., Lamanna, A.C.: Multivalency in biological systems. In: Schneider, M.P. (ed.) Chemical Probes in Biology. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 129, pp. 345–357. Springer, Dordrecht (2003)

    Google Scholar 

  7. Philp, D., Stoddart, J.F.: Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35, 1154–1196 (1996)

    Google Scholar 

  8. Natale, D., Mareque-Rivas, J.C.: The combination of transition metal ions and hydrogen-bonding interactions. Chem. Commun. 425–437 (2008)

    Google Scholar 

  9. Rau, S., Schäfer, B., Schebesta, S., Grüßing, A., Poppitz, W., Walther, D., Duati, M., Browne, W.R., Vos, J.G.: Efficient energy transfer in supramolecular, hydrogen-bonded polypyridylruthenium-osmium complexes. Eur. J. Inorg. Chem. 1503–1513 (2003)

    Google Scholar 

  10. de Rege, P.J.F., Williams, S.A., Therien, M.J.: Direct evaluation of electronic coupling mediated by hydrogen bonds: implications for biological electron transfer. Science 269, 1409–1413 (1995)

    Google Scholar 

  11. White, C.M., Gonzalez, M.F., Bardwell, D.A., Rees, L.H., Jeffery, J.C., Ward, M.D., Armaroli, N., Calogero, G., Barigelletti, F.: Derivatives of luminescent metal–polypyridyl complexes with pendant adenine or thymine groups: building blocks for supramolecular assemblies based on hydrogen bonding. J. Chem. Soc, Dalton Trans. 727–736 (1997)

    Google Scholar 

  12. Sauvage, J.-P., Collin, J.-P., Chambron, J.-C., Guillerez, S., Coudret, C., Balzani, V., Barigelletti, F., De Cola, L., Flamigni, L.: Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: Synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 94, 993–1019 (1994)

    Google Scholar 

  13. Balzani, V., Juris, A., Venturi, M., Campagna, S., Serroni, S.: Luminescent and redox-active polynuclear transition metal complexes. Chem. Rev. 96, 759–833 (1996)

    Google Scholar 

  14. Bountis, T. (ed.): Proton Transfer in Hydrogen Bonded Systems. Plenum, New York (1992)

    Google Scholar 

  15. Krasilnikov, P.M., Mamonov, P.A., Knox, P.P., Paschenko, V.Z., Rubin, A.B.: The influence of hydrogen bonds on electron transfer rate in photosynthetic RCs. Biochim. Biophys. Acta. 1767, 541–549 (2007)

    Google Scholar 

  16. Mayer, J.M.: Proton-coupled electron transfer: A reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363–390 (2004)

    Google Scholar 

  17. Roberts, J.A., Kirby, J.P., Nocera, D.G.: Photoinduced electron transfer within a donor-acceptor pair juxtaposed by a salt bridge. J. Am. Chem. Soc. 117, 8051–8052 (1995)

    Google Scholar 

  18. Turro, C., Chang, C.K., Leroi, G.E., Cukier, R.I., Nocera, D.G.: Photoinduced electron transfer mediated by a hydrogen-bonded interface. J. Am. Chem. Soc. 114, 4013–4015 (1992)

    Google Scholar 

  19. Kirby, J.P., van Dantzig, N.A., Chang, C.K., Nocera, D.G.: Formation of porphyrin donor-acceptor complexes via an amidinium-carboxylate salt bridge. Tetrahedron Lett. 36, 3477–3480 (1995)

    Google Scholar 

  20. Cukier, R.I.: Mechanism for proton-coupled electron-transfer reactions. J. Phys. Chem. 98, 2377–2381 (1994)

    Google Scholar 

  21. Cukier, R.I.: Proton-coupled electron transfer reactions:  Evaluation of rate constants. J. Phys. Chem. 100, 15428–15443 (1996)., and refs. therein

    Google Scholar 

  22. de Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Google Scholar 

  23. Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)

    Google Scholar 

  24. Li, X.H., Gao, X.H., Shi, W., Ma, H.M.: Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114, 590–659 (2014)

    Google Scholar 

  25. Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G.M., Kruger, P.E., Pfeffer, F.M.: Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev. 250, 23–24, 3094–3117 (2006)

    Google Scholar 

  26. Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108, 3443–3480 (2008)

    Google Scholar 

  27. Gale, P.A., Caltagirone, C.: Fluorescent and colorimetric sensors for anionic species. Coord. Chem. Rev. 354, 2–27 (2018)

    Google Scholar 

  28. Beer, P.D., Szemes, F., Balzani, V., Salá, C.M., Drew, M.G.B., Dent, S.W., Maestri, M.: Anion selective recognition and sensing by novel macrocyclic transition metal receptor systems. 1H NMR, electrochemical and photophysical investigations. J. Am. Chem. Soc. 119, 11864–11875 (1997)

    Google Scholar 

  29. Sun, S., Lees, A.J.: Anion recognition through hydrogen bonding: A simple, yet highly sensitive, luminescent metal-complex receptor. Chem. Commun., 1687–1688 (2000)

    Google Scholar 

  30. Chatterjee, A., Santra, M., Won, N., Kim, S., Kim, J.K., Kim, S., Ahn, K.M.: Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc. 131, 2040–2041 (2009)

    Google Scholar 

  31. Hitomi, Y., Takeyasu, T., Funabiki, T., Kodera, M.: Detection of enzymatically generated hydrogen peroxide by metal-based fluorescent probe. Anal. Chem. 83, 9213–9216 (2011)

    Google Scholar 

  32. Whitesides, G.M., Mathias, J.P., Seto, C.T.: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991)

    Google Scholar 

  33. Aida, T., Meijer, E.W., Stupp, S.I.: Functional supramolecular polymers. Science 335, 813–817 (2012)

    Google Scholar 

  34. Lehn, J.-M.: Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. U. S. A. 99, 4763–4768 (2002)

    Google Scholar 

  35. Lehn, J.-M.: Perspectives in supramolecular chemistry—From molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Eng. 29, 1304–1319 (1990)

    Google Scholar 

  36. Mauro, M., Aliprandi, A., Septiadi, D., Seda Kehra, N., De Cola, L.: When self-assembly meets biology: Luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 43, 4144–4166 (2014)

    Google Scholar 

  37. Muñiz, J., Wang, C., Pyykkö, P.: Aurophilicity: The effect of the neutral ligand L on [{ClAuL}2] systems. Chem.–Eur. J. 17, 368–377 (2011)

    Google Scholar 

  38. Houlding, V.H., Miskowski, V.M.: The effect of linear chain structure on the electronic structure of Pt(II) diimine complexes. Coord. Chem. Rev. 111, 145–152 (1991)

    Google Scholar 

  39. Miskowski, V.M., Houlding, V.H.: Electronic spectra and photophysics of platinum(II) complexes with α-diimine ligands. Solid-state effects. 2. Metal-metal interaction in double salts and linear chains. Inorg. Chem. 30, 4446–4452 (1991)

    Google Scholar 

  40. Strassert, C.A., Mauro, M., De Cola, L.: Photophysics of soft and hard molecular assemblies based on luminescent complexes. Adv. Inorg. Chem. 63, 47–103 (2011)

    Google Scholar 

  41. Sluch, I.M., Miranda, A.J., Elbjeirami, O., Omary, M.A., Slaughter, L.M.: Interplay of metallophilic interactions, π–π stacking, and ligand substituent effects in the structures and luminescence properties of neutral Pt(II) and Pd(II) aryl isocyanide complexes. Inorg. Chem. 51, 10728–10746 (2012)

    Google Scholar 

  42. Ma, B., Li, J., Djurovich, P.I., Yousufuddin, M., Bau, R., Thompson, M.E.: Synthetic control of Pt···Pt separation and photophysics of binuclear platinum complexes. J. Am. Chem. Soc. 127, 28–29 (2005)

    Google Scholar 

  43. Kim, D., Brédas, J.L.: Triplet excimer formation in platinum-based phosphors: A theoretical study of the roles of Pt–Pt bimetallic interactions and interligand π–π interactions. J. Am. Chem. Soc. 131, 11371–11380 (2009)

    Google Scholar 

  44. Kato, M., Kosuge, C., Morii, K., Ahn, J.S., Kitagawa, H., Mitani, T., Matsushita, M., Kato, T., Yano, S., Kimura, M.: Luminescence properties and crystal structures of dicyano(diimine)platinum(II) complexes controlled by Pt···Pt and π–π interactions. Inorg. Chem. 38, 1638–1641 (1999)

    Google Scholar 

  45. Gray, H.B., Maverick, A.W.: Solar chemistry of metal complexes. Science 214, 1201–1205 (1981)

    Google Scholar 

  46. Gliemann, G., Yersin, H.: Spectroscopic properties of the quasi one-dimensional tetracyanoplatinate(II) compounds. Struct. Bonding 62, 87–153 (1985) and references therein

    Google Scholar 

  47. Leung, S.Y.-L., Lam, W.H., Yam, V.W.-W.: Dynamic scaffold of chiral binaphthol derivatives with the alkynylplatinum(II) terpyridine moiety. Proc. Natl. Acad. Sci. U. S. A. 11, 7986–7991 (2013)

    Google Scholar 

  48. Yam, V.W.-W., Wong, K.M.-C., Zhu, N.: Solvent-induced aggregation through metal···metal/π···π interactions:  Large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes. J. Am. Chem. Soc. 124, 6506–6507 (2002)

    Google Scholar 

  49. Zhang, X., Cao, B., Valente, E.J., Hollis, T.K.: Synthesis, characterization, photoluminescence, and simulations of a CCC-NHC-supported Pt2Ag2 mixed-metal cluster containing a PtAg2 metallacyclopropane. Organometallics. 32, 752–761 (2013)

    Google Scholar 

  50. Tanaka, Y., Wong, K.M.-C., Yam, V.W.-W.: Phosphorescent molecular tweezers based on alkynylplatinum(ii) terpyridine system: Turning on of NIR emission via heterologous Pt···M interactions (M = PtII, PdII, AuIII and AuI). Chem. Sci. 3, 1185–1191 (2012)

    Google Scholar 

  51. Zhang, L.-Y., Xu, L.-J., Zhang, X., Wang, J.-Y., Li, J., Chen, Z.N.: Spectroscopic and phosphorescent modulation in triphosphine-supported PtAg2 heterotrinuclear alkynyl complexes. Inorg. Chem. 52, 5167–5175 (2013)

    Google Scholar 

  52. Sun, Y., Ye, K., Zhang, H., Zhang, J., Zhao, L., Li, B., Yang, G., Yang, B., Wang, Y., Lai, S.-W., Che, C.-M.: Luminescent one-dimensional nanoscale materials with PtII···PtII interactions. Angew. Chem. Int. Ed. 118, 5738–5741 (2006)

    Google Scholar 

  53. Zhang, W., Jin, W., Fukushima, T., Ishii, N., Aida, T.: Metal-ion-coated graphitic nanotubes: Controlled self-assembly of a pyridyl-appended gemini-shaped hexabenzocoronene amphiphile. Angew. Chem. Int. Ed. 48, 4747–4750 (2009)

    Google Scholar 

  54. Kozhevnikov, V.N., Donnio, B., Bruce, D.W.: Phosphorescent, terdentate, liquid-crystalline complexes of platinum(II): Stimulus-dependent emission. Angew. Chem. Int. Ed. 47, 6286–6289 (2008)

    Google Scholar 

  55. Li, Y., Lam, E.S.-H., Tam, A.Y.-Y., Wong, K.M.-C., Lam, W.H., Wu, L., Yam, V.W.-W.: Single-turn helix–coil strands stabilized by metal···metal and π–π interactions of the alkynylplatinum(II) terpyridyl moieties in meta-phenylene ethynylene foldamers. Chem.–Eur. J. 19, 9987–9994 (2013)

    Google Scholar 

  56. Allampally, N.K., Strassert, C.A., De Cola, L.: Luminescent gels by self-assembling platinum complexes. Dalton Trans. 41, 13132–13137 (2012)

    Google Scholar 

  57. Tam, A.Y.-Y., Yam, V.W.-W.: Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013)

    Google Scholar 

  58. Cardolaccia, T., Li, Y., Schanze, K.S.: Phosphorescent platinum acetylide organogelators. J. Am. Chem. Soc. 130, 2535–2545 (2008)

    Google Scholar 

  59. Chen, L.J., Zhang, J., He, J., Xu, X.D., Wu, N.W., Wang, D.X., Abliz, Z., Yang, H.B.: Synthesis of platinum acetylide derivatives with different shapes and their gel formation behavior. Organometallics 30, 5590–5594 (2011)

    Google Scholar 

  60. Zhang, J., Xu, X.D., Chen, L.J., Luo, Q., Wu, N.W., Wang, D.X., Zhao, X.L., Yang, H.B.: Platinum acetylide complexes containing iptycene as cores: A new family of unexpected efficient organometallic gelators. Organometallics 30, 4032–4038 (2011)

    Google Scholar 

  61. Strassert, C.A., Chien, C.-H., Galvez Lopez, M.D., Kourkoulos, D., Hertel, D., Meerholz, K., De Cola, L.: Switching on luminescence by the self-assembly of a platinum(II) complex into gelating nanofibers and electroluminescent films. Angew. Chem. Int. Ed. 50, 946–950 (2011)

    Google Scholar 

  62. Leung, S.Y.-L., Yam, V.W.-W.: Hierarchical helices of helices directed by Pt…Pt and π–π stacking interactions: Reciprocal association of multiple helices of dinuclear alkynylplatinum(II) complex with luminescence enhancement behavior. Chem. Sci. 4, 4228–4234 (2013)

    Google Scholar 

  63. Yuen, M.-Y., Roy, V.A.L., Lu, W., Kui, S.C.F., Tong, G.S.M., So, M.-H., Chui, S.S.-Y., Muccini, M., Ning, J.Q., Xu, S.J., Che, C.-M.: Semiconducting and electroluminescent nanowires self-assembled from organoplatinum(II) complexes. Angew. Chem. Int. Ed. 47, 9895–9899 (2008)

    Google Scholar 

  64. Yeung, M.C.-L., Yam, V.W.-W.: Phosphate derivative-induced supramolecular assembly and NIR-emissive behaviour of alkynylplatinum(II) terpyridine complexes for real-time monitoring of enzymatic activities. Chem. Sci. 4, 2928–2935 (2013)

    Google Scholar 

  65. Yam, V.W.-W., Chan, K.H.-Y., Wong, K.M.-C., Zhu, N.: Luminescent platinum(II) terpyridyl complexes: Effect of counter ions on solvent-induced aggregation and color changes. Chem.–Eur. J. 11, 4535–4543 (2005)

    Google Scholar 

  66. Che, C.-M., Chow, C.-F., Yuen, M.-Y., Roy, V.A.L., Lu, W., Chen, Y., Chui, S.S.-Y., Zhu, N.: Single microcrystals of organoplatinum(II) complexes with high charge-carrier mobility. Chem. Sci. 2, 216–222 (2011)

    Google Scholar 

  67. Yu, C., Chan, K.H.-Y., Wong, K.M.-C., Yam, V.W.-W.: Single-stranded nucleic acid-induced helical self-assembly of alkynylplatinum(II) terpyridyl complexes. Proc. Natl. Acad. Sci. U. S. A. 103, 19652–19657 (2006)

    Google Scholar 

  68. Yu, C., Chan, K.H.-Y., Wong, K.M.-C., Yam, V.W.-W.: Polyelectrolyte-induced self-assembly of positively charged alkynylplatinum(II)–terpyridyl complexes in aqueous media. Chem.–Eur. J. 14, 4577–4584 (2008)

    Google Scholar 

  69. Wong, K.M.-C., Yam, V.W.-W.: Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: Modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 44, 424–434 (2011)

    Google Scholar 

  70. Mauro, M., Aliprandi, A., Cebrián, C., Wang, D., Kübel, C., De Cola, L.: Self-assembly of a neutral platinum(II) complex into highly emitting microcrystalline fibers through metallophilic interactions. Chem. Commun. 50, 7269–7272 (2014)

    Google Scholar 

  71. Aliprandi, A., Mauro, M., De Cola, L.: Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2015)

    Google Scholar 

  72. Chardon, E., Dahm, G., Guichard, G., Bellemin-Laponnaz, S.: Derivatization of preformed platinum N-heterocyclic carbene complexes with amino acid and peptide ligands and cytotoxic activities toward human cancer cells. Organometallics 31, 7618–7621 (2012)

    Google Scholar 

  73. Johnstone, T.C., Wilson, J.J., Lippard, S.J.: Monofunctional and higher-valent platinum anticancer agents. Inorg. Chem. 52, 12234–12249 (2013)

    Google Scholar 

  74. Arnesano, F., Losacco, M., Natile, G.: An updated view of cisplatin transport. Eur. J. Inorg. Chem. 2701–2711 (2013)

    Google Scholar 

  75. Vreshch, V., Shen, W., Nohra, B., Yip, S.K., Yam, V.W.-W., Lescop, C., Réau, R.: Aurophilicity versus mercurophilicity: Impact of d10–d10 metallophilic interactions on the structure of metal-rich supramolecular assemblies. Chem.–Eur. J. 18, 466–477 (2012) and references therein

    Google Scholar 

  76. Yam, V.W.-W., Cheng, E.C.-C.: Highlights on the recent advances in gold chemistry—a photophysical perspective. Chem. Soc. Rev. 37, 1806–1813 (2008)

    Google Scholar 

  77. Yam, V.W.-W., Lo, K.K.-W.: Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 28, 323–334 (1999)

    Google Scholar 

  78. Doerrer, L.H.: Steric and electronic effects in metallophilic double salts. Dalton Trans. 39, 3543–3553 (2010)

    Google Scholar 

  79. Lefebvre, J., Batchelor, R.J., Leznoff, D.B.: Cu[Au(CN)2]2(DMSO)2: Golden polymorphs that exhibit vapochromic behavior. J. Am. Chem. Soc. 126, 16117–16125 (2004)

    Google Scholar 

  80. Patel, U., Singh, H.B., Wolmershuäser, G.: Synthesis of a metallophilic metallamacrocycle: A HgII···CuI···HgII···HgII···CuI···HgII interaction. Angew. Chem. Int. Ed. 44, 1715–1717 (2005)

    Google Scholar 

  81. Goshe, A.J., Steele, I.M., Bosnich, B.: Supramolecular recognition. Terpyridyl palladium and platinum molecular clefts and their association with planar platinum complexes. J. Am. Chem. Soc. 125, 444–451 (2003)

    Google Scholar 

  82. Mayoral, M.J., Rest, C., Stepanenko, V., Schellheimer, J., Albuquerque, R.Q., Fernandez, G.: Cooperative supramolecular polymerization driven by metallophilic Pd···Pd interactions. J. Am. Chem. Soc. 135, 2148–2151 (2013)

    Google Scholar 

  83. Lima, J.C., Rodríguez, L.: Applications of gold(I) alkynyl systems: A growing field to explore. Chem. Soc. Rev. 40, 5442–5456 (2011)

    Google Scholar 

  84. Yam, V.W.-W., Au, V.K.-M., Leung, S.Y.-L.: Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 115, 7589–7728 (2015)

    Google Scholar 

  85. Beyer, M.K., Clausen-Schaumann, H.: Mechanochemistry:  The mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005)

    Google Scholar 

  86. Zhang, X., Chi, Z., Zhang, Y., Liu, S., Xu, J.: Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C. 1, 3376–3390 (2013)

    Google Scholar 

  87. Chi, Z., Zhang, X., Xu, B., Zhou, X., Ma, C., Zhang, Y., Liu, S., Xu, J.: Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 41, 3878–3896 (2012)

    Google Scholar 

  88. Sagara, Y., Kato, T.: Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009)

    Google Scholar 

  89. Pucci, A., Ruggeri, G.: Mechanochromic polymer blends. J. Mater. Chem. 21, 8282–8291 (2011)

    Google Scholar 

  90. Caruso, M.M., Davis, D.A., Shen, Q., Odom, S.A., Sottos, N.R., White, S.R., Moore, J.S.: Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009)

    Google Scholar 

  91. Ariga, K., Mori, T., Hill, J.P.: Mechanical control of nanomaterials and nanosystems. Adv. Mater. 24, 158–176 (2012)

    Google Scholar 

  92. Tsukuda, T., Kawase, M., Dairiki, A., Matsumoto, K., Tsubomura, T.: Brilliant reversible luminescent mechanochromism of silver(I) complexes containing o-bis(diphenylphosphino)benzene and phosphinesulfide. Chem. Commun. 46, 1905–1907 (2010)

    Google Scholar 

  93. Babashkina, M., Safin, D., Bolte, M., Garcia, Y.: Mechanochromism of AgI complexes with iPrNHC(S)NHP(S)(OiPr)2. Dalton Trans. 40, 8523–8526 (2011)

    Google Scholar 

  94. Perruchas, S., Le Goff, X., Maron, S., Maurin, I., Guillen, F., Garcia, A., Gacoin, T., Boilot, J.: Mechanochromic and thermochromic luminescence of a copper iodide cluster. J. Am. Chem. Soc. 132, 10967–10969 (2010)

    Google Scholar 

  95. Benito, Q., Maurin, I., Cheisson, T., Nocton, G., Fargues, A., Garcia, A., Martineau, C., Gacoin, T., Boilot, J.-P., Perruchas, S.: Mechanochromic luminescence of copper iodide clusters. Chem.–Eur. J. 21, 5892–5897 (2015)

    Google Scholar 

  96. Bi, H., Chen, D., Li, D., Yuan, Y., Xia, D., Zhang, Z., Zhang, H., Wang, Y.: A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder. Chem. Commun. 47, 4135–4137 (2011)

    Google Scholar 

  97. Szerb, E., Talarico, A., Aiello, I., Crispini, A., Godbert, N., Pucci, D., Pugliese, T., Ghedini, M.: Red to green switch driven by order in an ionic IrIII liquid-crystalline complex. Eur. J. Inorg. Chem. 3270–3277 (2010)

    Google Scholar 

  98. Mizukami, S., Houjou, H., Sugaya, K., Koyama, E., Tokuhisa, H., Sasaki, T., Kanesato, M.: Fluorescence color modulation by intramolecular and intermolecular π–π interactions in a helical zinc(II) complex. Chem. Mater. 17, 50–56 (2005)

    Google Scholar 

  99. Ito, H., Saito, T., Oshima, N., Kitamura, N., Ishizaka, S., Hinatsu, Y., Wakeshima, M., Kato, M., Tsuge, K., Sawamura, M.: Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J. Am. Chem. Soc. 130, 10044–10045 (2008)

    Google Scholar 

  100. Liang, J., Hu, F., Lv, X., Chen, Z., Chen, Z., Yin, J., Yu, G., Liu, S.: Synthesis, characterization and mechanochromic behavior of binuclear gold (I) complexes with various diisocyano bridges. Dyes & Pigments 95, 485–490 (2012)

    Google Scholar 

  101. Ni, J., Zhang, X., Wu, Y., Zhang, L., Chen, Z.: Vapor- and mechanical-grinding-triggered color and luminescence switches for bis(σ-fluorophenylacetylide) platinum(II) complexes. Chem.–Eur. J. 17, 1171–1183 (2011)

    Google Scholar 

  102. Genovese, D., Aliprandi, A., Prasetyanto, E.A., Mauro, M., Hirtz, M., Fuchs, H., Fujita, Y., Uji-I, H., Lededkin, S., Kappes, M., De Cola, L.: Mechano- and photochromism from bulk to nanoscale: Data storage on individual self-assembled ribbons. Adv. Funct. Mat. 26, 5271–5278 (2016)

    Google Scholar 

  103. Hong, Y., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011)

    Google Scholar 

  104. Xu, B., Chi, Z., Zhang, X., Li, H., Chen, C., Liu, S., Zhang, Y., Xu, J.: A new ligand and its complex with multi-stimuli-responsive and aggregation-induced emission effects. Chem. Commun. 47, 11080–11082 (2011)

    Google Scholar 

  105. Shan, G.G., Li, H.B., Qin, J.S., Zhu, D.X., Liao, Y., Su, Z.M.: Piezochromic luminescent (PCL) behavior and aggregation-induced emission (AIE) property of a new cationic iridium(III) complex. Dalton Trans. 41, 9590–9593 (2012)

    Google Scholar 

  106. Scholes, G.D., Fleming, G.R., Olaya-Castro, A., van Grondelle, R.: Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011)

    Google Scholar 

  107. Scholes, G.D.: Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003)

    Google Scholar 

  108. Sundström, V., Pullerits, T., van Grondelle, R.: Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B. 103, 2327–2346 (1999)

    Google Scholar 

  109. Gust, D., Moore, T.A., Moore, A.L.: Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009)

    Google Scholar 

  110. Choi, M.S., Yamazaki, T., Yamazaki, I., Aida, T.: Bioinspired molecular design of light-harvesting multiporphyrin arrays. Angew. Chem. Int. Ed. 43, 150–158 (2004)

    Google Scholar 

  111. Nakamura, Y., Aratani, N., Osuka, A.: Cyclic porphyrin arrays as artificial photosynthetic antenna: Synthesis and excitation energy transfer. Chem. Soc. Rev. 36, 831–845 (2007)

    Google Scholar 

  112. Raymo, F.M., Stoddart, J.F.: Second-sphere coordination. Chem. Ber. 129, 981–990 (1996)

    Google Scholar 

  113. Speiser, S.: Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: Solution and supersonic jet studies. Chem. Rev. 96, 1953–1976 (1996)

    Google Scholar 

  114. De Cola, L., Belser, P.: Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes. Coord. Chem. Rev. 177, 301–346 (1998)

    Google Scholar 

  115. Harriman, A., Sauvage, J.-P.: A strategy for constructing photosynthetic models: Porphyrin-containing modules assembled around transition metals. Chem. Soc. Rev. 25, 41–48 (1996)

    Google Scholar 

  116. Tanner, P.A., Zhou, L., Duan, C., Wong, K.-L.: Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chem. Soc. Rev. 47, 5234–5265 (2018)

    Google Scholar 

  117. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H., Tsien, R.Y.: The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006)

    Google Scholar 

  118. Teunissen, A.J.P., Pérez-Medina, C., Meijerink, A., Mulder, W.J.M.: Investigating supramolecular systems using Förster resonance energy transfer. Chem. Soc. Rev. 47, 7027–7044 (2018)

    Google Scholar 

  119. Stryer, L.: Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978)

    Google Scholar 

  120. Valeur, B.: Molecular Fluorescence: Principles and Applications. Wiley-VCH Verlag GmbH (2001)

    Book  Google Scholar 

  121. Tyagi, S., Kramer, F.R.: Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996)

    Google Scholar 

  122. Okamoto, A.: ECHO probes: A concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev. 40, 5815–5828 (2011)

    Google Scholar 

  123. Dexter, D.L., Schulman, J.H.: Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954)

    Google Scholar 

  124. Kainmüller, E.K., Ollé, E.P., Bannwarth, W.: Synthesis of a new pair of fluorescence resonance energy transfer donor and acceptor dyes and its use in a protease assay. Chem. Commun., 5459–5461 (2005)

    Google Scholar 

  125. Li, M.-J., Wong, K.M.-C., Yi, C., Yam, V.W.-W.: New ruthenium(II) complexes functionalized with coumarin derivatives: Synthesis, energy-transfer-based sensing of esterase, cytotoxicity, and imaging studies. Chem.-Eur. J. 18, 8724–8730 (2012)

    Google Scholar 

  126. Takakusa, H., Kikuchi, K., Urano, Y., Sakamoto, S., Yamaguchi, K., Nagano, T.: Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J. Am. Chem. Soc. 124, 1653–1657 (2002)

    Google Scholar 

  127. Zhang, L.-S., Mummert, M.E.: Development of a fluorescent substrate to measure hyaluronidase activity. Anal. Biochem. 379, 80–85 (2008)

    Google Scholar 

  128. Zhang, J., Shen, Y., May, S.L., Nelson, D.C., Li, S.: Ratiometric fluorescence detection of pathogenic bacteria resistant to broad-spectrum β-lactam antibiotics. Angew. Chem. Int. Ed. 51, 1865–1868 (2012)

    Google Scholar 

  129. Yan, Y., Marriott, G.: Analysis of protein interactions using fluorescence technologies. Curr. Opn. Chem. Biol. 7, 635–640 (2003)

    Google Scholar 

  130. Hemmilä, I., Laitala, V.: Progress in lanthanides as luminescent probes. J. Fluorescence. 15, 529–542 (2005)

    Google Scholar 

  131. Morrison, L.E.: Time-resolved detection of energy transfer: Theory and application to immunoassays. Anal. Biochem. 174, 101–120 (1988)

    Google Scholar 

  132. Mathis, G.: Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959 (1993)

    Google Scholar 

  133. Heyduk, T., Heyduk, E.: Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes. Anal. Biochem. 289, 60–67 (2001)

    Google Scholar 

  134. Jones, S.G., Lee, D.Y., Wright, J.F., Jones, J.N., Teear, M.L., Gregory, S.J., Burns, D.D.: Improvements in the sensitivity of time resolved fluorescence energy transfer assays. J. Fluorescence 11, 13–21 (2001)

    Google Scholar 

  135. Maurel, D., Kniazeff, J., Mathis, G., Trinquet, E., Pin, J.P., Ansanay, H.: Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem. 329, 253–262 (2004)

    Google Scholar 

  136. Kokko, L., Sandberg, K., Lôvgren, T., Soukka, T.: Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol. Anal. Chim. Acta. 503, 155–162 (2004)

    Google Scholar 

  137. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Google Scholar 

  138. Li, M., Selvin, P.R.: Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconjugate Chem. 8, 127–132 (1997)

    Google Scholar 

  139. Selvin, P.R., Rana, T.M., Hearst, J.E.: Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029–6030 (1994)

    Google Scholar 

  140. Blomberg, K., Hurskainen, P., Hemmilä, I.: Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the β subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861 (1999)

    Google Scholar 

  141. Hildebrandt, N., Wegner, K.D., Algar, W.R.: Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord. Chem. Rev. 273–274, 125–138 (2014)

    Google Scholar 

  142. Karvinen, J., Hurskainen, P., Gopalakrishnan, S., Burns, D., Warrior, U., Hemmilä, I.: Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. J. Biomol. Screen. 7, 223–231 (2002)

    Google Scholar 

  143. Karvinen, J., Laitala, V., Makinen, M.L., Mulari, O., Tamminen, J., Hermonen, J., Hurskainen, P., Hemmilä, I.: Fluorescence quenching-based assays for hydrolyzing enzymes. Application of time-resolved fluorometry in assays for caspase, helicase, and phosphatase. Anal. Chem. 76, 1429–1436 (2004)

    Google Scholar 

  144. Earnshaw, D.L., Moore, K.J., Greenwood, C.J., Djaballah, H., Jurewicz, A.J., Murray, K.J., Pope, A.J.: Time-resolved fluorescence energy transfer DNA helicase assays for high throughput screening. J. Biomol. Screen. 4, 239–248 (2004)

    Google Scholar 

  145. Karvinen, J., Elomaa, A., Makinen, M.L., Hakala, H., Mukkala, V.M., Peuralahti, J., Hurskainen, P., Hovinen, J., Hemmilä, I.: Caspase multiplexing: Simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal. Biochem. 325, 317–325 (2004)

    Google Scholar 

  146. Skourtis, S.S., Liu, C., Antoniou, P., Virshup, A.M., Beratan, D.N.: Dexter energy transfer pathways. Proc. Natl. Acad. Sci. U. S. A. 113, 8115–8120 (2016)

    Google Scholar 

  147. Förster, T.:10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959)

    Google Scholar 

  148. Barigelletti, F., Flamigni, L.: Photoactive molecular wires based on metal complexes. Chem. Soc. Rev. 29, 1–12 (2000)

    Google Scholar 

  149. Schlicke, B., Belser, P., De Cola, L., Sabbioni, E., Balzani, V.: Photonic wires of nanometric dimensions. Electronic energy transfer in rigid rodlike Ru(bpy)32+-(ph)n-Os(bpy)32+ compounds (ph=1,4-phenylene, n=3, 5, 7). J. Am. Chem. Soc. 121, 4207–4214 (1999)

    Google Scholar 

  150. Barigelletti, F., Flamigni, L., Guardigli, M., Juris, A., Beley, M., Chodorowski Kimmes, S., Collin, J.-P., Sauvage, J.-P.: Energy transfer in rigid Ru(II)/Os(II) dinuclear complexes with biscyclometalating bridging ligands containing a variable number of phenylene units. Inorg. Chem. 35, 136–142 (1996)

    Google Scholar 

  151. Hammarström, L., Barigelletti, F., Flamigni, L., Armaroli, N., Sour, A., Collin, J.-P., Sauvage, J.-P.: Temperature independent Ru → Os electronic energy transfer in a rodlike dinuclear complex with a 2.4 nm intermetal separation. J. Am. Chem. Soc. 118, 11972–11973 (1996)

    Google Scholar 

  152. Isaac, M., Denisov, S.A., Roux, A., Imbert, D., Jonusauskas, G., McClenaghan, N.D., Sénèque, O.: Lanthanide luminescence modulation by cation–π interaction in a bioinspired scaffold: Selective detection of copper(I). Angew. Chem. Int. Ed. 54, 11453–11456 (2015)

    Google Scholar 

  153. Delmar, J.A., Su, C.-C., Yu, E.W.: Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Biometals 26, 593–607 (2013)

    Google Scholar 

  154. Loftin, I.R., Franke, S., Blackburn, N.J., McEvoy, M.M.: Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Sci. 16, 2287–2293 (2007)

    Google Scholar 

  155. Xue, Y., Davis, A.V., Balakrishnan, G., Stasser, J.P., Staehlin, B.M., Focia, P., Spiro, T.G., Penner-Hahn, J.E., O’Halloran, T.V.: Cu(I) recognition via cation-π and methionine interactions in CusF. Nat. Chem. Biol. 4, 107–109 (2008)

    Google Scholar 

  156. Masuhara, H., Shioyama, H., Saito, T., Hamada, K., Yasoshima, S., Mataga, N.: Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions. J. Phys. Chem. 88, 5868–5873 (1984)

    Google Scholar 

  157. Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M., Castellano, F.N.: Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 6271, 369–371 (2016)

    Google Scholar 

  158. Amelia, M., Lavie-Cambot, A., McClenaghan, N.D., Credi, A.: A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. Chem. Commun. 47, 325–327 (2011)

    Google Scholar 

  159. Ford, W.E., Rodgers, M.A.J.: Reversible triplet-triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96, 2917–2920 (1992)

    Google Scholar 

  160. Hissler, M., Harriman, A., Khatyr, A., Ziessel, R.: Intramolecular triplet energy transfer in pyrene–metal polypyridine dyads: A strategy for extending the triplet lifetime of the metal complex. Chem.–Eur. J. 5, 3366–3381 (1999)

    Google Scholar 

  161. Simon, J.A., Curry, S.L., Schmehl, R.H., Schatz, T.R., Piotrowiak, P., Jin, X., Thummel, R.P.: Intramolecular electronic energy transfer in ruthenium (II) diimine donor/pyrene acceptor complexes linked by a single C–C bond. J. Am. Chem. Soc. 119, 11012–11022 (1997)

    Google Scholar 

  162. Wilson, G.J., Launikonis, A., Sasse, W.H.F., Mau, A.W.H.: Chromophore-specific quenching of ruthenium trisbipyridine–arene bichromophores by methyl viologen. J. Phys. Chem. A. 102, 5150–5156 (1998)

    Google Scholar 

  163. Wang, X.-y., Del Guerzo, A., Schmehl, R.H.: Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states. J. Photochem. Photobiol. C. 5, 55–77 (2004)

    Google Scholar 

  164. McClenaghan, N.D., Leydet, Y., Maubert, B., Indelli, M.T., Campagna, S.: Excited-state equilibration: A process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coord. Chem. Rev. 249, 1336–1350 (2005)

    Google Scholar 

  165. Lavie-Cambot, A., Lincheneau, C., Cantuel, M., Leydet, Y., McClenaghan, N.D.: Reversible electronic energy transfer: A means to govern excited-state properties of supramolecular systems. Chem. Soc. Rev. 39, 506–515 (2010)

    Google Scholar 

  166. Denisov, S., Yu, S., Jonusauskas, G., Pozzo, J.-L., McClenaghan, N.D.: Harnessing reversible electronic energy transfer: From molecular dyads to molecular machines. ChemPhysChem. 17, 1794–1804 (2016)

    Google Scholar 

  167. Maubert, B., McClenaghan, N.D., Indelli, M.T., Campagna, S.: Absorption spectra and photophysical properties of a series of polypyridine ligands containing appended pyrenyl and anthryl chromophores and of their ruthenium(II) and osmium(II) complexes. J. Phys. Chem. A. 107, 447–455 (2003)

    Google Scholar 

  168. Solarski, J., Angulo, G., Kapturkiewicz, A.: Time-resolved luminescence investigations of the reversible energy transfer from the excited 3*MLCT states to organic acceptors—An alternative method for the determination of triplet state energies and lifetimes. J. Photochem. Photobiol. 218, 58–63 (2011)

    Google Scholar 

  169. Solarski, J., Angulo, G., Kapturkiewicz, A.: Energy transfer from the excited 3*MLCT states to organic acceptors—solvent effect studies. J. Photochem. Photobiol. 274, 73–82 (2014)

    Google Scholar 

  170. McClenaghan, N.D., Barigelletti, F., Maubert, B., Campagna, S.: Towards ruthenium(II) polypyridine complexes with prolonged and predetermined excited state lifetimes. Chem. Commun. 602–603 (2002)

    Google Scholar 

  171. Tyson, D.S., Castellano, F.N.: Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J. Phys. Chem. A. 103, 10955 (1999)

    Google Scholar 

  172. Hofmeiera, H., Schubert, U.S.: Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem. Soc. Rev. 33, 373–399 (2004)

    Google Scholar 

  173. Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., Balzani, V.: In: Balzani, V., Campagna, S. (eds.) Photochemistry and Photophysics of Coordination Compounds I, vol. 280, pp. 117–214, Top. Curr. Chem. Springer, Berlin (2007)

    Chapter  Google Scholar 

  174. Fang, Y.-Q., Taylor, N.J., Laverdière, F., Hanan, G.S., Loiseau, F., Nastasi, F., Campagna, S., Nierengarten, H., Leize-Wagner, E., Van Dorsselaer, A.: Ruthenium(II) complexes with improved photophysical properties based on planar 4′-(2-pyrimidinyl)-2,2′:6′,2′′-terpyridine ligands. Inorg. Chem. 46, 2854–2863 (2007)

    Google Scholar 

  175. Passalacqua, R., Loiseau, F., Campagna, S., Fang, Y.-Q., Hanan, G.S.: In search of ruthenium(II) complexes based on tridentate polypyridine ligands that feature long-lived room-temperature luminescence: The multichromophore approach. Angew. Chem. Int. Ed. 42, 1608–1611 (2003)

    Google Scholar 

  176. Abrahamsson, M., Jäger, M., Kumar, R.J., Österman, T., Persson, P., Becker, H.-C., Johansson, O., Hammarström, L.: Bistridentate ruthenium(II)polypyridyl-type complexes with microsecond 3MLCT state lifetimes: Sensitizers for rod-like molecular arrays. J. Am. Chem. Soc. 130, 15533–15542 (2008)

    Google Scholar 

  177. Ragazzon, G., Verwilst, P., Denisov, S.A., Credi, A., Jonusauskas, G., McClenaghan, N.D.: Ruthenium (II) complexes based on tridentate polypyridine ligands that feature long-lived room-temperature luminescence. Chem. Commun. 49, 9110–9112 (2013)

    Google Scholar 

  178. Denisov, S.A., Gan, Q., Wang, X., Scarpantonio, L., Ferrand, Y., Kauffmann, B., Jonusauskas, G., Huc, I., McClenaghan, N.D.: Electronic energy transfer modulation in a dynamic foldaxane: Proof-of-principle of a lifetime-based conformation probe. Angew. Chem. Int. Ed. 55, 1328–1333 (2016)

    Google Scholar 

  179. Morales, A.F., Accorsi, G., Armaroli, N., Barigelletti, F., Pope, S.J.A., Ward, M.D.: Interplay of light antenna and excitation “energy reservoir” effects in a bichromophoric system based on ruthenium–polypyridine and pyrene units linked by a long and flexible poly(ethylene glycol) chain. Inorg. Chem. 41, 6711–6719 (2002)

    Google Scholar 

  180. Kerzig, C., Wenger, O.S.: Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem. Sci. 9, 6670–6678 (2018)

    Google Scholar 

  181. Singh-Rachford, T.N., Castellano, F.N.: Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)

    Google Scholar 

  182. Mongin, C., Moroz, P., Zamkov, M., Castellano, F.N.: Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10, 225–230 (2018)

    Google Scholar 

  183. La Rosa, M., Denisov, S.A., Jonusauskas, G., McClenaghan, N.D., Credi, A.: Designed long-lived emission from CdSe quantum dots through reversible electronic energy transfer with a surface-bound chromophore. Angew. Chem. Int. Ed. 57, 3104–3107 (2018)

    Google Scholar 

  184. Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., Xu, J., Chi, Z., Aldred, M.P.: Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017)

    Google Scholar 

  185. Czerwieniec, R., Yu, J., Yersin, H.: Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg. Chem. 50, 8293–8301 (2011)

    Google Scholar 

  186. Lavie-Cambot, A., Cantuel, M., Leydet, Y., Jonusauskas, G., Bassani, D.M., McClenaghan, N.D.: Improving the photophysical properties of copper(I) bis(phenanthroline) complexes. Coord. Chem. Rev. 252, 2572–2584 (2008)

    Google Scholar 

  187. Gray, H.B., Winkler, J.R.: Long-range electron transfer. Proc. Natl. Acad. Sci. U. S. A. 102, 3534–3539 (2005)

    Google Scholar 

  188. Fox, M.A., Chanon, M.: Photoinduced Electron Transfer Part A: Conceptual Basis. Elsevier, Amsterdam (1988)

    Google Scholar 

  189. Balzani, V.: Electron Transfer in Chemistry. Wiley-VCH, Weinheim (2001)

    Book  Google Scholar 

  190. Reece, S.Y., Nocera, D.G.: Proton-coupled electron transfer in biology: Results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009)

    Google Scholar 

  191. Natali, M., Campagna, S., Scandola, F.: Photoinduced electron transfer across molecular bridges: Electron- and hole-transfer superexchange pathways. Chem. Soc. Rev. 43, 4005–4018 (2014)

    Google Scholar 

  192. Oevering, H., Paddon-Row, M.N., Heppener, H., Oliver, A.M., Cotsaris, E., Verhoeven, J.W., Hush, N.S.: Long-range photoinduced through bond electron transfer and radiative recombination via rigid nonconjugated bridges: Distance and solvent dependence. J. Am. Chem. Soc. 109, 3258–3269 (1987)

    Google Scholar 

  193. Paddon-Row, M.N., Oliver, A.M., Warman, J.M., Smit, K.Y., De Haas, M.P., Oevering, H., Verhoeven, J.W.: Factors affecting charge separation and recombination in photoexcited rigid donor-insulator-acceptor compounds. J. Chem. Phys. 92, 6958–6967 (1988)

    Google Scholar 

  194. Oliver, A.M., Craig, D.C., Paddon-Row, M.N., Kroon, J., Verhoeven, J.W.: Strong effects of the bridge configuration on photoinduced charge separation in rigidly linked donor-acceptor systems. Chem. Phys. Lett. 150, 366–373 (1988)

    Google Scholar 

  195. Lawson, J.M., Craig, D.C., Paddon-Row, M.N., Kroon, J., Verhoeven, J.W.: Through-bond modulation of intramolecular electron-transfer in rigidly linked donor-acceptor systems. Chem. Phys. Lett. 164, 120–125 (1989)

    Google Scholar 

  196. Wasielewski, M.R., Niemczyk, M.P., Svec, W.A., Pewitt, E.B.: High-quantum-yield long-lived charge separation in a photosynthetic reaction center model. J. Am. Chem. Soc. 107, 5562–5563 (1985)

    Google Scholar 

  197. Collin, J.P., Guillerez, S., Sauvage, J.-P.: Ruthenium and osmium complexes of 2,2′ : 6′,2″-terpyridine covalently linked to electron acceptor and electron donor groups. J. Chem. Soc., Chem. Commun. 776–778 (1989)

    Google Scholar 

  198. Collin, J.P., Guillerez, S., Sauvage, J.-P., Barigelletti, F., De Cola, L., Flamigni, L., Balzani, V.: Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups. Inorg. Chem. 30, 4230–4238 (1991)

    Google Scholar 

  199. Hoffman, R., Inamura, A., Hehre, W.J.: Benzynes, dehydroconjugated molecules, and the Interaction of orbitals separated by a number of intervening σ bonds. J. Am. Chem. Soc. 90, 1499–1509 (1968)

    Google Scholar 

  200. Paddon-Row, M.N., Oliver, A.M., Symons, M.C.R., Cotsaris, E.: S. S. Wong and J. W. Verhoeven. In: Hall, D.O., Grassi, G. (eds.) Photoconversion Processes for Energy and Chemicals, p. 79. Elsevier, Amsterdam (1989)

    Google Scholar 

  201. Rehm, D., Weller, A.: Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–271 (1970)

    Google Scholar 

  202. Song, B., Wang, G.L., Tan, M.Q., Yuan, J.L.: A europium(III) complex as an efficient singlet oxygen luminescence probe. J. Am. Chem. Soc. 128, 13442–13450 (2006)

    Google Scholar 

  203. Mathonière, C.: Metal-to-metal electron transfer: A powerful tool for the design of switchable coordination compounds. Eur. J. Inorg. Chem., 248–258 (2018)

    Google Scholar 

  204. Aguila, D., Pardo, Y., Koumousi, E., Mathonière, C., Clérac, R.: Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016)

    Google Scholar 

  205. Bleuzen, A., Marvaud, V., Mathonière, C., Sieklucka, B., Verdaguer, M.: Photomagnetism in clusters and extended molecule-based magnets. Inorg. Chem. 48, 3453–3466 (2009)

    Google Scholar 

  206. Ohkoshi, S.-i., Tokoro, H.: Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012)

    Google Scholar 

  207. Shimamoto, N., Ohkoshi, S.-i., Sato, O., Hashimoto, K.: Control of charge-transfer-induced spin transition temperature on cobalt–iron Prussian blue analogues. Inorg. Chem. 41, 678–684 (2002)

    Google Scholar 

  208. Zhang, Y., Li, D., Clérac, R., Kalisz, M., Mathonière, C., Holmes, S.M.: Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex. Angew. Chem. Int. Ed. 49, 3752–3756 (2010)

    Google Scholar 

  209. D’Alessandro, D.M., Keene, F.R.: Intervalence charge transfer (IVCT) in trinuclear and tetranuclear complexes of iron, ruthenium, and osmium. Chem. Rev. 106, 2270–2298 (2006)

    Google Scholar 

  210. Silvi, S., Credi, A.: Luminescent sensors based on quantum dot–molecule conjugates. Chem. Soc. Rev. 44, 4275–4289 (2015)

    Google Scholar 

  211. Crassous, J.: Transfer of chirality from ligands to metal centers: Recent examples. Chem. Commun. 48, 9684–9692 (2012)

    Google Scholar 

  212. Crassous, J.: Chiral transfer in coordination complexes: towards molecular materials. Chem. Soc. Rev. 38, 830–845 (2009)

    Google Scholar 

Download references

Acknowledgments

V. M-C. thanks the European Union for the MSCA-IF and Generalitat Valenciana (CIDEGENT/2020/031). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 796612. N. McC. thanks the CNRS for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. McClenaghan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martí-Centelles, V., McClenaghan, N.D. (2022). Other Photoactive Inorganic Supramolecular Systems: Self-Assembly and Intercomponent Processes. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_26

Download citation

Publish with us

Policies and ethics