Skip to main content

Photofunctions of Dye-Clay Hybrids: Recent Developments

  • Chapter
  • First Online:
Dyes and Photoactive Molecules in Microporous Systems

Part of the book series: Structure and Bonding ((STRUCTURE,volume 183))

Abstract

Precise design of hybrid nanostructures based on dyes in hybrid materials toward controlled photochemical reactions and novel photoinduced phenomena is overviewed with the emphasis on the recent developments. Various clays and clay minerals with different origins and characteristics have been used as hosts to control the location, orientation, and aggregation as well as the dynamic states (rotation and diffusion) of the dyes. The designed nanostructures affect photochemical properties such as efficiency, selectivity, and the rate of some photochemical reactions. Using the photochemical reactions in nanospaces, unique photoinduced phenomena such as nanostructural/morphological change and adsorption/desorption triggered by irradiation have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[Ru(bpy)3]2+:

Tris(2,2-bipyridine)ruthenium(II)

AFM:

Atomic force microscopy

ATR:

Attenuated total reflection

AZ:

Azobenzene

C12TMA:

Dodecyltrimethylammonium ion

C16TMA:

Hexadecyltrimethylammonium ion

CEC:

Cation exchange capacity

CT :

Charge transfer

DMSO:

Dimethylsulfoxide

HE:

A synthetic hectorite (Sumecton SWF)

KF:

A natural montmorillonite (Kunipia F)

LB:

Langmuir-Blodgett

LbL:

Layer-by-layer deposition

LDH:

Layered double hydroxide

LP-RD:

A synthetic hectorite (Laponite RD)

LP-XLG:

A synthetic hectorite (Laponite XLG)

MC:

Merocyanine

MV2+:

Methyl viologen

PEMA:

Poly(ethyl methacrylate)

PIC :

Pseudoisocyanine

PMMA:

Poly(methyl methacrylate)

PSS:

Poly(styrene sulfonate)

PVP:

Poly(vinyl pyrrolidone)

R6G:

Rhodamine 6G

SA:

A synthetic saponite (Sumecton SA)

SP:

Spiropyran

STN+:

Stilbazolium ion

SWy-1:

A Na-montmorillonite from Wyoming, USA

SYn-1:

A synthetic mica-montmorillonite

TEOS:

Tetraethoxysilane

TMA:

Tetramethylammonium ion

TPP:

Tetraphenylporphine

TSM:

Fluoro-tetrasilicic mica

References

  1. Matsuura T, Anpo M (eds) (1989) Photochemistry on solid surfaces. Elsevier Science, Amsterdam

    Google Scholar 

  2. Anpo M (ed) (1996) Surface photochemistry. Wiley, Chichester

    Google Scholar 

  3. Klafter J, Drake J (eds) (1989) Molecular dynamics in restricted geometries. Wiley Interscience, New York

    Google Scholar 

  4. Ramamurthy V (ed) (1991) Photochemistry in organized and constrained media. VCH Publishers, New York

    Google Scholar 

  5. Ramamurthy V, Schanze KS (eds) (2000) Solid state and surface photochemistry. Marcel Dekker, New York

    Google Scholar 

  6. Fendler JH (ed) (1994) Membrane-mimetic approach to advanced materials. Springer-Verlag, Berlin

    Google Scholar 

  7. Yamaguchi T, Ogawa M (2019) Photochromic reactions in nanospace; host-guest interactions and opportunity. In: Douhal A, Anpo M (eds) Chemistry of silica and zeolite-based materials Synthesis, characterization and applications. Elsevier, Amsterdam, pp 163–177

    Google Scholar 

  8. Sohmiya M, Saito K, Ogawa M (2015) Host–guest chemistry of Mesoporous Silicas: precise Design of Location, density and orientation of molecular guests in Mesopores. Sci Technol Adv Mater 16:54201. https://doi.org/10.1088/1468-6996/16/5/054201

    Article  CAS  Google Scholar 

  9. Ogawa M, Kuroda K (1995) Photofunctions of intercalation compounds. Chem Rev 95:399–438

    Article  CAS  Google Scholar 

  10. Ogawa M, Saito K, Sohmiya M (2015) Possible roles of the spatial distribution of organic guest species in mesoporous silicas to control the properties of the hybrids. Eur J Inorg Chem:1126–1136. https://doi.org/10.1002/ejic.201402651

  11. Ogawa M (2002) Photoprocesses in mesoporous silicas prepared by a supramolecular templating approach. J Photochem Photobiol C: Photochem Rev 3:129–146. https://doi.org/10.1016/S1389-5567(02)00023-0

    Article  CAS  Google Scholar 

  12. Alberti G, Bein T (eds) (1996) Solid-state supramolecular chemistry: two- and three-dimensional inorganic networks. Pergamon, Oxford

    Google Scholar 

  13. Thomas JK (1987) Characterization of surfaces by excited states. J Phys Chem 91:267–276. https://doi.org/10.1021/j100286a008

    Article  CAS  Google Scholar 

  14. Thomas JK (1993) Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on silica, gamma-alumina, zeolites, and clays. Chem Rev 93:301–320. https://doi.org/10.1021/cr00017a014

    Article  CAS  Google Scholar 

  15. Turro NJ, Grätzel M, Braun AM (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed 19:675–696. https://doi.org/10.1002/anie.198006751

    Article  Google Scholar 

  16. Thomas JK (1988) Photophysical and photochemical processes on clay surfaces. Acc Chem Res 21:275–280. https://doi.org/10.1021/ar00151a004

    Article  CAS  Google Scholar 

  17. Fujimura T, Shimada T, Hamatani S, Onodera S, Sasai R, Inoue H, Takagi S (2013) High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir 29:5060–5065. https://doi.org/10.1021/la4003737

    Article  CAS  PubMed  Google Scholar 

  18. Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S (2014) Microstructures of the porphyrin/viologen monolayer on the clay surface: segregation or integration? J Phys Chem C 118:20504–20510. https://doi.org/10.1021/jp5076274

    Article  CAS  Google Scholar 

  19. Nakayama A, Mizuno J, Ohtani Y, Shimada T, Takagi S (2018) Elucidation of the adsorption distribution of cationic porphyrin on the inorganic surface by energy transfer as a molecular ruler. J Phys Chem C 122:4365–4371. https://doi.org/10.1021/acs.jpcc.7b12104

    Article  CAS  Google Scholar 

  20. Sohmiya M, Nakamura T, Sugahara Y, Ogawa M (2018) Distribution control-oriented intercalation of a cationic metal complex into layered silicates modified with organosulfonic-acid moieties. Langmuir 34:4762–4773. https://doi.org/10.1021/acs.langmuir.8b00547

    Article  CAS  PubMed  Google Scholar 

  21. Eguchi M, Takagi S, Inoue H (2006) The orientation control of dicationic porphyrins on clay surfaces by solvent polarity. Chem Lett 35:14–15. https://doi.org/10.1246/cl.2006.14

    Article  CAS  Google Scholar 

  22. Sasai R, Shichi T, Gekko K, Takagi K (2000) Continuously changing the conformational dependence of saponite hybrid materials on the intercalation degree: electric linear dichroism of stilbazolium derivatives intercalated in saponite clay. Bull Chem Soc Jpn 73:1925–1931. https://doi.org/10.1246/bcsj.73.1925

    Article  CAS  Google Scholar 

  23. Neumann MG, Gessner F, Schmitt CC, Sartori R (2002) Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. J Colloid Interface Sci 255:254–259. https://doi.org/10.1006/jcis.2002.8654

    Article  CAS  PubMed  Google Scholar 

  24. Okada T, Ide Y, Ogawa M (2012) Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chem Asian J 7:1980–1992. https://doi.org/10.1002/asia.201101015

    Article  CAS  PubMed  Google Scholar 

  25. Okada T, Seki Y, Ogawa M (2014) Designed nanostructures of clay for controlled adsorption of organic compounds. J Nanosci Nanotechnol 14:2121–2134. https://doi.org/10.1166/jnn.2014.8597

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz-Hitzky E, Aranda P, Akkari M, Khaorapapong N, Ogawa M (2019) Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J Nanotechnol 10:1140–1156. https://doi.org/10.3762/bjnano.10.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deepracha S, Vibulyaseak K, Ogawa M (2019) Complexation of TiO2 with clays and clay minerals for hierarchically designed functional hybrids. In: Advanced supramolecular nanoarchitectonics. Elsevier, Amsterdam, pp 125–150

    Chapter  Google Scholar 

  28. Intasa-ard SG, Ogawa M (2018) Layered silicates as a possible drug carrier. In: Tamanoi F (ed) Mesoporous silica-based Nanomaterials and biomedical applications, part B. Elsevier, Amsterdam, pp 117–136

    Chapter  Google Scholar 

  29. Ogawa M (1998) Organized molecular assemblies on the surfaces of inorganic solids-photofunctional inorganic-organic supramolecular systems. Annu Rep Prog Chem Sect C Phys Chem 94:209. https://doi.org/10.1039/pc094209

    Article  CAS  Google Scholar 

  30. Lagaly G, Ogawa M, Dékány I (2006) Chapter 7.3 clay mineral organic interactions. Dev Clay Sci 1:309–377

    Article  CAS  Google Scholar 

  31. Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photochem Photobiol C: Photochem Rev 1:113–130. https://doi.org/10.1016/S1389-5567(00)00008-3

    Article  CAS  Google Scholar 

  32. Granquist WT, Pollack SS (1960) A study of the synthesis of hectorite. Pergamon Press, Oxford

    Google Scholar 

  33. Ogawa M, Wada T, Kuroda K (1995) Intercalation of pyrene into alkylammonium-exchanged swelling layered silicates: the effects of the arrangements of the interlayer alkylammonium ions on the states of adsorbates. Langmuir 11:4598–4600. https://doi.org/10.1021/la00011a068

    Article  CAS  Google Scholar 

  34. Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectite clay minerals: a critical review. Clay Clay Miner 47:529–554. https://doi.org/10.1346/CCMN.1999.0470501

    Article  CAS  Google Scholar 

  35. Ogawa M, Handa T, Kuroda K, Kato C (1990) Formation of organoammonium-montmorillonites by solid-solid reaction. Chem Lett 19:71–74

    Google Scholar 

  36. Intasa-ard SG, Imwiset K, Bureekaew S, Ogawa M (2018) Mechanochemical methods for the preparation of intercalation compounds, from intercalation to the formation of layered double hydroxides. Dalton Trans 47:2896–2916. https://doi.org/10.1039/C7DT03736H

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura T, Ogawa M (2013) Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing Smectite. Appl Clay Sci 83–84:469–473. https://doi.org/10.1016/j.clay.2013.05.005

    Article  CAS  Google Scholar 

  38. Yariv S, Ghosh DK, Hepler LG (1991) Metachromasy in clay-mineral systems: adsorption of cationic dyes crystal violet and ethyl violet by kaolinite from aqueous and organic solutions. J Chem Soc Faraday Trans 87:1201–1207. https://doi.org/10.1039/FT9918701201

    Article  CAS  Google Scholar 

  39. Yariv S, Nasser A, Bar-on P (1990) Metachromasy in clay minerals. Spectroscopic study of the adsorption of crystal violet by laponite. J Chem Soc Faraday Trans 86(1593). https://doi.org/10.1039/ft9908601593

  40. Bergmann K, O’Konski CT (1963) A spectroscopic study of methylene blue monomer, dimer, and complexes with Montmorillonite. J Phys Chem 67:2169–2177. https://doi.org/10.1021/j100804a048

    Article  CAS  Google Scholar 

  41. Yariv S, Lurie D (1971) Metachromasy in clay minerals. Part I. Sorption of methylene-blue by montmorillonite. Isr J Chem 9:537–552. https://doi.org/10.1002/ijch.197100070

    Article  CAS  Google Scholar 

  42. Samuels M, Mor O, Rytwo G (2013) Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals. J Photochem Photobiol B Biol 121:23–26. https://doi.org/10.1016/j.jphotobiol.2013.02.004

    Article  CAS  Google Scholar 

  43. Hang PT (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner 18:203–212. https://doi.org/10.1346/CCMN.1970.0180404

    Article  Google Scholar 

  44. Brindley GW, Thompson TD (1970) Methylene blue absorption by montmorillonites. Determinations of surface areas and exchange capacities with different initial cation saturations (clay-organic studies XIX). Isr J Chem 8:409–415. https://doi.org/10.1002/ijch.197000047

    Article  CAS  Google Scholar 

  45. Hepler LG, Yariv S, Dobrogowska C (1987) Calorimetric investigation of adsorption of an aqueous metachromic dye (crystal-violet) on montmorillonite. Thermochim Acta 121:373–379. https://doi.org/10.1016/0040-6031(87)80187-9

    Article  CAS  Google Scholar 

  46. Schramm LL, Yariv S, Ghosh DK, Hepler LG (1997) Electrokinetic study of the adsorption of ethyl violet and crystal violet by montmorillonite clay particles. Can J Chem 75:1868–1877. https://doi.org/10.1139/v97-620

    Article  CAS  Google Scholar 

  47. Lapides I, Yariv S, Golodnitsky D (2002) Simultaneous DTA-TG study of montmorillonite mechanochemically treated with crystal-violet. J Therm Anal Calorim 67:99–112. https://doi.org/10.1023/A:1013737914178

    Article  CAS  Google Scholar 

  48. Grauer Z, Malter AB, Yariv S, Avnir D (1987) Sorption of rhodamine B by montmorillonite and laponite. Colloids Surf 25:41–65. https://doi.org/10.1016/0166-6622(87)80268-8

    Article  CAS  Google Scholar 

  49. Grauer Z, Grauer GL, Avnir D, Yariv S (1987) Metachromasy in clay minerals. Sorption of pyronin Y by montmorillonite and laponite. J Chem Soc Faraday Trans 1 83:1685. https://doi.org/10.1039/f19878301685

    Article  CAS  Google Scholar 

  50. Bose IS, Sunwar CB, Chakravarti SK (1987) Metachromasy of thiazine dyes when sorbed onto clay minerals (Montmorillonite). Indian J Chem 26:944–946

    Google Scholar 

  51. Sunwar CB, Bose H (1990) Effect of clay minerals on the visible spectra of thiazine dyes. J Colloid Interface Sci 136:54–60. https://doi.org/10.1016/0021-9797(90)90077-2

    Article  CAS  Google Scholar 

  52. Breen C, Rock B (1994) The competitive adsorption of methylene blue on to montmorillonite from binary solution wih thioflavin T, proflavine and acridine yellow, steady-state and dynamic studies. Clay Miner 29:179–189. https://doi.org/10.1180/claymin.1994.029.2.04

    Article  CAS  Google Scholar 

  53. Figueras F (1988) Pillared clays as catalysts. Catal Rev 30:457–499. https://doi.org/10.1080/01614948808080811

    Article  CAS  Google Scholar 

  54. Gil A, Korili SA, Trujillano R, Vicente MA (eds) (2010) Pillared clays and related catalysts. Springer, New York

    Google Scholar 

  55. Ogawa M, Takahashi M, Kato C, Kuroda K (1994) Oriented microporous film of tetramethylammonium pillared saponite. J Mater Chem 4:519–523. https://doi.org/10.1039/jm9940400519

    Article  CAS  Google Scholar 

  56. Ogawa M, Kuroda K (1997) Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull Chem Soc Jpn 70:2593–2618

    Google Scholar 

  57. Imwiset KJ, Hayakawa T, Fukushima Y, Yamada T, Ogawa M (2019) Novel flexible supramolecular assembly of dioleyldimethylammonium ion in a two-dimensional nanospace studied by neutron scattering. Langmuir 35:13977–13982. https://doi.org/10.1021/acs.langmuir.9b02504

    Article  CAS  PubMed  Google Scholar 

  58. Ogawa M (1997) Preparation of layered silica−dialkyldimethylammonium bromide nanocomposites. Langmuir 13:1853–1855. https://doi.org/10.1021/la9608775

    Article  CAS  Google Scholar 

  59. Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22:43–51. https://doi.org/10.1016/0167-2738(86)90057-3

    Article  CAS  Google Scholar 

  60. Kanoh T, Shichi T, Takagi K (1999) Mono- and bilayer equilibria of stearate self-assembly formed in hydrotalcite interlayers by changing the intercalation temperature. Chem Lett 28:117–118. https://doi.org/10.1246/cl.1999.117

    Article  Google Scholar 

  61. Burgentzlé D, Duchet J, Gérard JF, Jupin A, Fillon B (2004) Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents. J Colloid Interface Sci 278:26–39. https://doi.org/10.1016/j.jcis.2004.05.015

    Article  CAS  PubMed  Google Scholar 

  62. Ogawa M (1996) Preparation of a cationic azobenzene derivative-montmorillonite intercalation compound and the photochemical behavior. Chem Mater 8:15–17. https://doi.org/10.1021/cm950602v

    Article  Google Scholar 

  63. Valandro SR, Poli AL, Neumann MG, Schmitt CC (2015) Photophysics of auramine O adsorbed on solid clays. J Lumin 161:209–213. https://doi.org/10.1016/j.jlumin.2015.01.023

    Article  CAS  Google Scholar 

  64. Takahashi N, Kuroda K (2011) Materials design of layered silicates through covalent modification of interlayer surfaces. J Mater Chem 21:14336–14353. https://doi.org/10.1039/c1jm10460h

    Article  CAS  Google Scholar 

  65. Wijitwongwan RP, Intasa-ard SG, Ogawa M (2019) Preparation of layered double hydroxides toward precisely designed hierarchical organization. ChemEngineering 3:68. https://doi.org/10.3390/chemengineering3030068

    Article  CAS  Google Scholar 

  66. Taviot-Guého C, Prévot V, Forano C, Renaudin G, Mousty C, Leroux F (2018) Tailoring hybrid layered double hydroxides for the development of innovative applications. Adv Funct Mater 28:1–33. https://doi.org/10.1002/adfm.201703868

    Article  CAS  Google Scholar 

  67. Intasa-Ard S, Bureekaew S, Ogawa M (2019) Efficient production of MgAl layered double hydroxide nanoparticle. J Ceram Soc Jpn:11–17. https://doi.org/10.2109/jcersj2.18140

  68. Park DH, Hwang SJ, Oh JM, Yang JH, Choy JH (2013) Polymer-inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38:1442–1486. https://doi.org/10.1016/j.progpolymsci.2013.05.007

    Article  CAS  Google Scholar 

  69. Li W, Yan D, Gao R, Lu J, Wei M, Duan X (2013) Recent advances in stimuli-responsive photofunctional materials based on accommodation of chromophore into layered double hydroxide nanogallery. J Nanomater 2013. https://doi.org/10.1155/2013/586462

  70. Akkari M, Aranda P, Ben Rhaiem H, Ben Haj Amara A, Ruiz-Hitzky E (2016) ZnO/clay Nanoarchitectures: synthesis, characterization and evaluation as photocatalysts. Appl Clay Sci 131:131–139. https://doi.org/10.1016/j.clay.2015.12.013

    Article  CAS  Google Scholar 

  71. Aranda P, Kun R, Martín-Luengo MA, Letaïef S, Dékány I, Ruiz-Hitzky E (2008) Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route. Chem Mater 20:84–91. https://doi.org/10.1021/cm702251f

    Article  CAS  Google Scholar 

  72. Hayakawa T, Minase M, Fujita K, Ogawa M (2016) Green synthesis of Organophilic clays; solid-state reaction of acidic clay with organoamine. Ind Eng Chem Res 55:6325–6330. https://doi.org/10.1021/acs.iecr.5b03344

    Article  CAS  Google Scholar 

  73. Ide Y, Matsuoka M, Ogawa M (2012) Controlled photocatalytic oxidation of benzene in aqueous clay suspension. ChemCatChem 4:628–630. https://doi.org/10.1002/cctc.201200043

    Article  CAS  Google Scholar 

  74. Hayakawa T, Oya M, Minase M, Fujita K, Teepakakorn AP, Ogawa M (2019) Preparation of sodium-type bentonite with useful swelling property by a mechanochemical reaction from a weathered bentonite. Appl Clay Sci 175:124–129. https://doi.org/10.1016/j.clay.2019.04.009

    Article  CAS  Google Scholar 

  75. Ogawa M, Kanaoka N, Kuroda K (1998) Preparation of smectite/dodecyldimethylamine N-oxide intercalation compounds. Langmuir 14:6969–6973. https://doi.org/10.1021/la980173q

    Article  CAS  Google Scholar 

  76. Minase M, Hayakawa T, Oya M, Fujita K, Ogawa M (2019) Improved rheological properties of organophilic-clay suspensions by a simple pretreatment with a wet type jet mill. Bull Chem Soc Jpn 92:1329–1334. https://doi.org/10.1246/bcsj.20190051

    Article  CAS  Google Scholar 

  77. Tetsuka H, Ebina T, Tsunoda T, Nanjo H, Mizukami F (2007) Flexible organic electroluminescent devices based on transparent clay films. Nanotechnology 18:355701. https://doi.org/10.1088/0957-4484/18/35/355701

    Article  CAS  Google Scholar 

  78. Deepracha S, Bureekaew S, Ogawa M (2019) Synergy effects of the complexation of a titania and a smectite on the film formation and its photocatalyst’ performance. Appl Clay Sci 169:129–134. https://doi.org/10.1016/j.clay.2018.12.005

    Article  CAS  Google Scholar 

  79. Isayama M, Sakata K, Kunitake T (1993) Preparation of a self-supporting, multilayered film of montmorillonite. Chem Lett 22:1283–1286. https://doi.org/10.1246/cl.1993.1283

    Article  Google Scholar 

  80. Hotta Y, Taniguchi M, Inukai K, Yamagishi A (1997) Clay-modified electrodes prepared by the Langmuir-Blodgett method. Clay Miner 32:79–88. https://doi.org/10.1180/claymin.1997.032.1.09

    Article  CAS  Google Scholar 

  81. Suzuki Y, Tenma Y, Nishioka Y, Kawamata J (2012) Efficient nonlinear optical properties of dyes confined in interlayer nanospaces of clay minerals. Chem Asian J 7:1170–1179. https://doi.org/10.1002/asia.201200049

    Article  CAS  PubMed  Google Scholar 

  82. Kleinfeld ER, Ferguson GS (1994) Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265:370–373. https://doi.org/10.1126/science.265.5170.370

    Article  CAS  PubMed  Google Scholar 

  83. Kleinfeld ER, Ferguson GS (1996) Healing of defects in the stepwise formation of polymer/silicate multilayer films. Chem Mater 8:1575–1578. https://doi.org/10.1021/cm960073a

    Article  CAS  Google Scholar 

  84. Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Formation of ultrathin multilayer and hydrated gel from montmorillonite and linear polycations. Langmuir 12:3038–3044. https://doi.org/10.1021/la951002d

    Article  CAS  Google Scholar 

  85. Lotsch BV, Ozin GA (2008) Clay Bragg stack optical sensors. Adv Mater 20:4079–4084. https://doi.org/10.1002/adma.200800914

    Article  CAS  Google Scholar 

  86. Ariga K, Ji Q, McShane MJ, Lvov YM, Vinu A, Hill JP (2012) Inorganic nanoarchitectonics for biological applications. Chem Mater 24:728–737. https://doi.org/10.1021/cm202281m

    Article  CAS  Google Scholar 

  87. Nakamura T, Ogawa M (2012) Attachment of the sulfonic acid group in the interlayer space of a layered alkali silicate, octosilicate. Langmuir 28:7505–7511. https://doi.org/10.1021/la300390s

    Article  CAS  PubMed  Google Scholar 

  88. Leodopoulos C, Doulia D, Gimouhopoulos K (2014) Adsorption of cationic dyes onto Bentonite. Sep Purif Rev 44:74–107. https://doi.org/10.1080/15422119.2013.823622

    Article  CAS  Google Scholar 

  89. Kukkadapu RK, Boyd SA (1995) Tetramethylphosphonium- and tetramethylammonium-smectites as adsorbents of aromatic and chlorinated hydrocarbons: effect of water on adsorption efficiency. Clay Clay Miner 43:318–323. https://doi.org/10.1346/CCMN.1995.0430306

    Article  CAS  Google Scholar 

  90. Lawrence MAM, Kukkadapu RK, Boyd SA (1998) Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethylphosphonium-exchanged montmorillonite. Appl Clay Sci 13:13–20. https://doi.org/10.1016/S0169-1317(98)00009-X

    Article  CAS  Google Scholar 

  91. Deng Y, Dixon JB, White GN (2006) Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym Sci 284:347–356. https://doi.org/10.1007/s00396-005-1388-0

    Article  CAS  Google Scholar 

  92. Guégan R (2010) Intercalation of a nonionic surfactant (C10E3) bilayer into a Na-montmorillonite clay. Langmuir 26:19175–19180. https://doi.org/10.1021/la1039267

    Article  CAS  PubMed  Google Scholar 

  93. Guégan R, Veron E, Le Forestier L, Ogawa M, Cadars S (2017) Structure and dynamics of nonionic surfactant aggregates in layered materials. Langmuir 33:9759–9771. https://doi.org/10.1021/acs.langmuir.7b01831

    Article  CAS  PubMed  Google Scholar 

  94. Van Olphen H (1977) An introduction to clay colloid chemistry. Wiley-Interscience, New York

    Google Scholar 

  95. Auerbach SM, Carrado KA, Dutta PK (2004) Clay-organic interactions: organoclay complexes and polymer-clay nanocomposites. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Marcel Dekker, New York, pp 91–154

    Chapter  Google Scholar 

  96. Galarneau A, Barodawalla A, Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529–531. https://doi.org/10.1038/374529a0

    Article  CAS  Google Scholar 

  97. Michot LJ, Barrès O, Hegg EL, Pinnavaia TJ (1993) Cointercalation of Al13 polycations and nonionic surfactants in montmorillonite clay. Langmuir 9:1794–1800. https://doi.org/10.1021/la00031a030

    Article  CAS  Google Scholar 

  98. Nakatsuji M, Ishii R, Wang ZM, Ooi K (2004) Preparation of porous clay minerals with organic-inorganic hybrid pillars using solvent-extraction route. J Colloid Interface Sci 272:158–166. https://doi.org/10.1016/j.jcis.2003.11.039

    Article  CAS  PubMed  Google Scholar 

  99. Malla PB, Ravindranathan P, Komarneni S, Roy R (1991) Intercalation of copper metal clusters in montmorillonite. Nature 353:412–414

    Article  Google Scholar 

  100. Yamauchi Y, Itagaki T, Yokoshima T, Kuroda K (2012) Preparation of Ni nanoparticles between montmorillonite layers utilizing dimethylaminoborane as reducing agent. Dalton Trans 41:1210–1215. https://doi.org/10.1039/c1dt11395j

    Article  CAS  PubMed  Google Scholar 

  101. Seki Y, Ogawa M (2010) The removal of 2-phenylphenol from aqueous solution by adsorption onto organoclays. Bull Chem Soc Jpn 83:712–715. https://doi.org/10.1246/bcsj.20090191

    Article  CAS  Google Scholar 

  102. Ogawa M, Takee R, Okabe Y, Seki Y (2017) Bio-Geo Hybrid Pigment; Clay-Anthocyanin Complex Which Changes Color Depending on the Atmosphere. Dye Pigment 139:561–565. https://doi.org/10.1016/j.dyepig.2016.12.054

    Article  CAS  Google Scholar 

  103. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592. https://doi.org/10.1039/b509097k

    Article  CAS  Google Scholar 

  104. Parola S, Julián-López B, Carlos LD, Sanchez C (2016) Optical properties of hybrid organic-inorganic materials and their applications. Adv Funct Mater 26:6506–6544. https://doi.org/10.1002/adfm.201602730

    Article  CAS  Google Scholar 

  105. Bujdák J (2017) Hybrids with functional dyes. In: Nakato T, Kawamata J, Takagi S (eds) Inorganic nanosheets and nanosheet-based materials. Springer, Tokyo, pp 419–465

    Chapter  Google Scholar 

  106. Ngulube T, Gumbo JR, Masindi V, Maity A (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manag 191:35–57. https://doi.org/10.1016/j.jenvman.2016.12.031

    Article  CAS  Google Scholar 

  107. Okada T, Konno T, Ogawa M (2008) Luminescence quenching of tris(2,2′-bipyridine)ruthenium(II) in the interlayer space of saponite by sulfur dioxide. Clay Sci 14:43–47. https://doi.org/10.11362/jcssjclayscience.14.1_43

    Article  CAS  Google Scholar 

  108. Jaynes WF, Boyd SA (1991) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clay Clay Miner 39:428–436. https://doi.org/10.1346/CCMN.1991.0390412

    Article  CAS  Google Scholar 

  109. Jaynes WF (1999) Sorption of benzene, toluene, Ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations. Clay Clay Miner 47:358–365. https://doi.org/10.1346/CCMN.1999.0470312

    Article  CAS  Google Scholar 

  110. Kakegawa N, Ogawa M (2002) The intercalation of β-carotene into the organophilic interlayer space of dialkyldimethylammonium-montmorillonites. Appl Clay Sci 22:137–144. https://doi.org/10.1016/S0169-1317(02)00145-X

    Article  CAS  Google Scholar 

  111. Kohno Y, Asai S, Shibata M, Fukuhara C, Maeda Y, Tomita Y, Kobayashi K (2014) Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. J Phys Chem Solids 75:945–950. https://doi.org/10.1016/j.jpcs.2014.04.010

    Article  CAS  Google Scholar 

  112. Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58:32–39. https://doi.org/10.1016/j.seppur.2007.07.007

    Article  CAS  Google Scholar 

  113. Elmoubarki R, Mahjoubi FZ, Tounsadi H, Moustadraf J, Abdennouri M, Zouhri A, El Albani A, Barka N (2015) Adsorption of textile dyes on raw and decanted moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour Ind 9:16–29. https://doi.org/10.1016/j.wri.2014.11.001

    Article  Google Scholar 

  114. Meral K, Ylmaz N, Kaya M, Tabak A, Onganer Y (2011) The molecular aggregation of pyronin Y in natural bentonite clay suspension. J Lumin 131:2121–2127. https://doi.org/10.1016/j.jlumin.2011.05.023

    Article  CAS  Google Scholar 

  115. Bujdák J (2001) Methylene blue interactions with reduced-charge smectites. Clay Clay Miner 49:244–254. https://doi.org/10.1346/CCMN.2001.0490307

    Article  Google Scholar 

  116. Teepakakorn AP, Yamaguchi T, Ogawa M (2019) The improved stability of molecular guests by the confinement into nanospaces. Chem Lett 48:398–409. https://doi.org/10.1246/cl.181026

    Article  CAS  Google Scholar 

  117. Van Olphen H (1966) Maya blue: a clay-organic pigment? Science 154:645–646. https://doi.org/10.1126/science.154.3749.645

    Article  PubMed  Google Scholar 

  118. Teixeira-Neto ÂA, Izumi CMS, Temperini MLA, Ferreira AMDC, Constantino VRL (2012) Hybrid materials based on smectite clays and nutraceutical anthocyanins from the Açaí fruit. Eur J Inorg Chem:5411–5420. https://doi.org/10.1002/ejic.201200702

  119. Chiari G, Giustetto R, Ricchiardi G (2003) Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur J Mineral 15:21–33. https://doi.org/10.1127/0935-1221/2003/0015-0021

    Article  CAS  Google Scholar 

  120. Tilocca A, Fois E (2009) The color and stability of Maya Blue: TDDFT calculations. J Phys Chem C 113:8683–8687. https://doi.org/10.1021/jp810945a

    Article  CAS  Google Scholar 

  121. Fuentes ME, Peña B, Contreras C, Montero AL, Chianelli R, Alvarado M, Olivas R, Rodríguez LM, Camacho H, Montero-Cabrera LA (2008) Quantum mechanical model for Maya Blue. Int J Quantum Chem 108:1664–1673. https://doi.org/10.1002/qua.21646

    Article  CAS  Google Scholar 

  122. Leitão IMV, Seixas De Melo JS (2013) Maya Blue, an ancient guest-host pigment: synthesis and models. J Chem Educ 90:1493–1497. https://doi.org/10.1021/ed300425c

    Article  CAS  Google Scholar 

  123. Sánchez-Ochoa F, Cocoletzi GH, Canto G (2017) Trapping and diffusion of organic dyes inside of palygorskite clay: the ancient Maya blue pigment. Microporous Mesoporous Mater 249:111–117. https://doi.org/10.1016/j.micromeso.2017.04.060

    Article  CAS  Google Scholar 

  124. Bernardino ND, Constantino VRL, De Faria DLA (2018) Probing the indigo molecule in Maya Blue simulants with resonance Raman spectroscopy. J Phys Chem C 122:11505–11515. https://doi.org/10.1021/acs.jpcc.8b01406

    Article  CAS  Google Scholar 

  125. Ribeiro HL, de Oliveira AV, Brito ESd, Ribeiro PRV, Souza Filho MM, Azeredo HMC (2018) Stabilizing effect of montmorillonite on Acerola juice anthocyanins. Food Chem 245:966–973. https://doi.org/10.1016/j.foodchem.2017.11.076

    Article  CAS  PubMed  Google Scholar 

  126. Marangoni R, Bouhent M, Taviot-Guého C, Wypych F, Leroux F (2009) Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: a physico-chemical characterization. J Colloid Interface Sci 333:120–127. https://doi.org/10.1016/j.jcis.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  127. Raha S, Ivanov I, Quazi NH, Bhattacharya SN (2009) Photo-stability of rhodamine-B/montmorillonite nanopigments in polypropylene matrix. Appl Clay Sci 42:661–666. https://doi.org/10.1016/j.clay.2008.06.008

    Article  CAS  Google Scholar 

  128. Smitha VS, Manjumol KA, Ghosh S, Brahmakumar M, Pavithran C, Perumal P, Warrier KG (2011) Rhodamine 6G intercalated montmorillonite nanopigments-polyethylene composites: facile synthesis and ultravioletstability study. J Am Ceram Soc 94:1731–1736. https://doi.org/10.1111/j.1551-2916.2010.04326.x

    Article  CAS  Google Scholar 

  129. Yang L, Qian L, Feng Y, Tang P, Li D (2014) Acid blue 129 and salicylate cointercalated layered double hydroxides: assembly, characterization, and photostability. Ind Eng Chem Res 53:17961–17967. https://doi.org/10.1021/ie502893f

    Article  CAS  Google Scholar 

  130. Guo S, Evans DG, Li D (2006) Preparation of C.I. Pigment 52:1 anion-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material. J Phys Chem Solids 67:1002–1006. https://doi.org/10.1016/j.jpcs.2006.01.017

    Article  CAS  Google Scholar 

  131. Liu P, Liu P, Zhao K, Li L (2015) Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide. Opt Laser Technol 74:23–28. https://doi.org/10.1016/j.optlastec.2015.05.008

    Article  CAS  Google Scholar 

  132. Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337:117–121. https://doi.org/10.1016/j.jcis.2009.04.065

    Article  CAS  PubMed  Google Scholar 

  133. Ogawa M, Sohmiya M, Watase Y (2011) Stabilization of photosensitizing dyes by complexation with clay. Chem Commun 47:8602–8604. https://doi.org/10.1039/c1cc12392k

    Article  CAS  Google Scholar 

  134. Kohno Y, Hoshino R, Matsushima R, Tomita Y, Kobayashi K (2015) Stabilization of flavylium dyes by incorporation in the clay interlayer. J Jpn Soc Colour Mater 80:6–12. https://doi.org/10.4011/shikizai1937.80.6

    Article  Google Scholar 

  135. Ambrogi V, Nocchetti M, Latterini L (2014) Promethazine-montmorillonite inclusion complex to enhance drug photostability. Langmuir 30:14612–14620. https://doi.org/10.1021/la5033898

    Article  CAS  PubMed  Google Scholar 

  136. Chakraborty C, Dana K, Malik S (2012) Lamination of cationic perylene in montmorillonite nano-gallery: induced J-aggregated nanostructure with enhanced PHOTOPHYSICAL AND THERMOGRAVIMETRIC aspect. J Phys Chem C 116:21116–21123. https://doi.org/10.1021/jp307293r

    Article  CAS  Google Scholar 

  137. Fahn R, Fenderl K (1983) Reaction products of organic dye molecules with acid-treated montmorillonite. Clay Miner 18:447–458. https://doi.org/10.1180/claymin.1983.018.4.10

    Article  CAS  Google Scholar 

  138. Chakraborty C, Dana K, Malik S (2011) Intercalation of perylenediimide dye into LDH clays: enhancement of photostability. J Phys Chem C 115:1996–2004. https://doi.org/10.1021/jp110486r

    Article  CAS  Google Scholar 

  139. Kohno Y, Kinoshita R, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Stabilization of natural anthocyanin by intercalation into montmorillonite. Appl Clay Sci 42:519–523. https://doi.org/10.1016/j.clay.2008.06.012

    Article  CAS  Google Scholar 

  140. Turro NJ, Ramamurthy V, Scaiano JC (2010) Modern molecular photochemistry of organic molecules. University Science Books, Carifornia

    Google Scholar 

  141. Soderquist CJ, Crosby DG, Moilanen KW, Seiber JN, Woodrow JE (1975) Occurrence of trifluralin and its photoproducts in air. J Agric Food Chem 23:304–309. https://doi.org/10.1021/jf60198a003

    Article  CAS  PubMed  Google Scholar 

  142. Margulies L, Margulies L, Stern T, Ruzo LO, Rubin B (1992) Photostabilization of trifluralin adsorbed on a clay matrix. J Agric Food Chem 40:152–155. https://doi.org/10.1021/jf00013a030

    Article  CAS  Google Scholar 

  143. Teepakakorn AP, Bureekaew S, Ogawa M (2018) Adsorption induced dye stability of cationic dyes on clay nanosheet. Langmuir 34:14069–14075. https://doi.org/10.1021/acs.langmuir.8b02978

    Article  CAS  PubMed  Google Scholar 

  144. Sohmiya M, Omata S, Ogawa M (2012) Two dimensional size controlled confinement of poly(vinyl pyrrolidone) in the interlayer space of swelling clay mineral. Polym Chem 3:1069. https://doi.org/10.1039/c2py00465h

    Article  CAS  Google Scholar 

  145. Sackett DD, Fox MA (1990) Adsorption of alkyl-substituted phenols onto montmorillonite: investigation of adsorbed intermediates via visible absorption spectroscopy and product analysis. Langmuir 6:1237–1245. https://doi.org/10.1021/la00097a008

    Article  CAS  Google Scholar 

  146. Grigoryan L, Yakushi K, Liu CJ, Takano S, Wakata M, Yamauchi H (1993) Evolution of optical absorption and superconductivity in bi-2212 and 2223 oxides intercalated by metal-phthalocyanines. A systematical study as a function of intercalation level. Phys C Superconduct Appl 218:153–163. https://doi.org/10.1016/0921-4534(93)90278-X

    Article  CAS  Google Scholar 

  147. Mao Y, Zhang G, Thomas JK (1993) Surface complexes as precursors of photoinduced radical cations of biphenyl and subsequent hydroxylation on laponite. Langmuir 9:1299–1305. https://doi.org/10.1021/la00029a024

    Article  CAS  Google Scholar 

  148. Lee JH, Chang J, Cha JH, Jung DY, Kim SS, Kim JM (2010) Anthraquinone sulfonate modified, layered double hydroxide nanosheets for dye-sensitized solar cells. Chem A Eur J 16:8296–8299. https://doi.org/10.1002/chem.201000703

    Article  CAS  Google Scholar 

  149. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374. https://doi.org/10.1038/nature10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kandori H, Ichioka T, Sasaki M (2002) Photoisomerization of the rhodopsin chromophore in clay interlayers at 77 K. Chem Phys Lett 354:251–255. https://doi.org/10.1016/S0009-2614(02)00096-9

    Article  CAS  Google Scholar 

  151. Furutani Y, Ido K, Sasaki M, Ogawa M, Kandori H (2007) Clay mimics color tuning in visual pigments. Angew Chem Int Ed 46:8010–8012. https://doi.org/10.1002/anie.200702368

    Article  CAS  Google Scholar 

  152. Margulies L, Rozen H (1986) Adsorption of methyl green on montmorillonite. J Mol Struct 141:219–226. https://doi.org/10.1016/0022-2860(86)80326-X

    Article  CAS  Google Scholar 

  153. Kovar L, DellaGuardia R, Thomas JK (1984) Reaction of radical cations of tetramethylbenzidine with colloidal clays. J Phys Chem 88:3595–3599. https://doi.org/10.1021/j150660a043

    Article  CAS  Google Scholar 

  154. Bujdák J, Iyi N (2006) Spectral and structural characteristics of oxazine 4/ hexadecyltrimethylammonium montmorillonite films. Chem Mater 18:2618–2624. https://doi.org/10.1021/cm052715c

    Article  CAS  Google Scholar 

  155. Bujdák J, Ratulovská J, Donauerová A, Bujdáková H (2016) Hybrid materials based on luminescent alkaloid berberine and saponite. J Nanosci Nanotechnol 16:7801–7804. https://doi.org/10.1166/jnn.2016.12550

    Article  CAS  Google Scholar 

  156. Hirose M, Ito F, Shimada T, Takagi S, Sasai R, Okada T (2017) Photoluminescence by intercalation of a fluorescent β-diketone dye into a layered silicate. Langmuir 33:13515–13521. https://doi.org/10.1021/acs.langmuir.7b03460

    Article  CAS  PubMed  Google Scholar 

  157. Cohen R, Yariv S (1984) Metachromasy in clay minerals. sorption of acridine orange by montmorillonite. J Chem Soc Faraday Trans 1 80:1705. https://doi.org/10.1039/f19848001705

    Article  CAS  Google Scholar 

  158. Taniguchi M, Yamagishi A, Iwamoto T (1990) Effects of alkyl chain length on the adsorption of an N-alkylated acridine orange cation by colloidally dispersed zirconium phosphate. J Phys Chem 94:2534–2537. https://doi.org/10.1021/j100369a057

    Article  CAS  Google Scholar 

  159. Yamagishi A, Soma M (1981) Aliphatic tail effects on adsorption of acridine orange cation on a colloidal surface of montmorillonite. J Phys Chem 3398:3090–3092

    Article  Google Scholar 

  160. Valenty SJ (1979) Monolayer films of surfactant derivatives of methylene blue. J Colloid Interface Sci 68:486–491. https://doi.org/10.1016/0021-9797(79)90306-0

    Article  CAS  Google Scholar 

  161. Ogawa M, Ishikawa A (1998) Controlled microstructures of amphiphilic cationic azobenzene-montmorillonite intercalation compounds. J Mater Chem 8:463–467. https://doi.org/10.1039/a706507h

    Article  CAS  Google Scholar 

  162. Ogawa M, Hama M, Kuroda K (1999) Photochromism of azobenzene in the hydrophobic interlayer spaces of dialkyldimethylammonium-fluor-tetrasilicic mica films. Clay Miner 34:213–220. https://doi.org/10.1180/000985599546127

    Article  CAS  Google Scholar 

  163. Ogawa M, Goto R, Kanegawa N (2000) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of clays. Clay Sci 11:231–241. https://doi.org/10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  164. Ogawa M, Yamamoto M, Kuroda K (2001) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Miner 36:263–266. https://doi.org/10.1180/000985501750177988

    Article  CAS  Google Scholar 

  165. Ogawa M (2002) Photoisomerization of azobenzene in the interlayer space of magadiite. J Mater Chem 12:3304–3307. https://doi.org/10.1039/B204031J

    Article  CAS  Google Scholar 

  166. Okada T, Watanabea Y, Ogawa M (2004) Photocontrol of the adsorption behavior of phenol for an azobenzene-montmorillonite intercalation compound. Chem Commun 1:320–321

    Article  Google Scholar 

  167. Okada T, Watanabe Y, Ogawa M (2005) Photoregulation of the intercalation behavior of phenol for azobenzene-clay intercalation compounds. J Mater Chem 15:987. https://doi.org/10.1039/b412707b

    Article  CAS  Google Scholar 

  168. Roulia M, Vassiliadis AA (2005) Interactions between C.I. basic blue 41 and aluminosilicate sorbents. J Colloid Interface Sci 291:37–44. https://doi.org/10.1016/j.jcis.2005.04.085

    Article  CAS  PubMed  Google Scholar 

  169. Giustetto R, Wahyudi O (2011) Sorption of red dyes on palygorskite: synthesis and stability of red/purple Mayan nanocomposites. Microporous Mesoporous Mater 142:221–235. https://doi.org/10.1016/j.micromeso.2010.12.004

    Article  CAS  Google Scholar 

  170. Takagi K, Kurematsu T, Sawaki Y (1991) Intercalation and photochromism of spiropyrans on clay interlayers. J Chem Soc Perkin Trans 2:1517. https://doi.org/10.1039/p29910001517

    Article  Google Scholar 

  171. Tomioka H, Itoh T (1991) Photochromism of spiropyrans in organized molecular assemblies. Formation of J- and H-aggregates of photomerocyanines in bilayers-clay matrices. J Chem Soc Chem Commun:532–533. https://doi.org/10.1039/C39910000532

  172. Martínez VM, Arbeloa FL, Prieto JB, Arbeloa IL (2005) Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 fluorescence spectroscopy. J Phys Chem B 109:7443–7450. https://doi.org/10.1021/jp050440i

    Article  CAS  Google Scholar 

  173. Martínez Martínez V, López Arbeloa F, Bañuelos Prieto J, Arbeloa López T, López Arbeloa I (2004) Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 1. absorption spectroscopy. J Phys Chem B 108:20030–20037. https://doi.org/10.1021/jp047552e

    Article  CAS  Google Scholar 

  174. Tapia Estévez MJ, López Arbeloa F, López Arbeloa T, López Arbeloa I, Schoonheydt RA (1994) Spectroscopic study of the adsorption of rhodamine 6G on laponite B for low loadings. Clay Miner 29:105–113. https://doi.org/10.1180/claymin.1994.029.1.12

    Article  Google Scholar 

  175. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1994) On the monomeric and dimeric states of rhodamine 6G adsorbed on laponite B surfaces. J Colloid Interface Sci 162:412–417. https://doi.org/10.1006/jcis.1994.1055

    Article  Google Scholar 

  176. Grauer Z, Avnir D, Yariv S (1984) Adsorption characteristics of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can J Chem 62:1889–1894. https://doi.org/10.1139/v84-324

    Article  CAS  Google Scholar 

  177. Baranyaiová T, Bujdák J (2018) Effects of dye surface concentration on the molecular aggregation of xanthene dye in colloidal dispersions of montmorillonite. Clay Clay Miner 66:114–126. https://doi.org/10.1346/CCMN.2018.064089

    Article  Google Scholar 

  178. Fujii K, Iyi N, Sasai R, Hayashi S (2008) Preparation of a novel luminous heterogeneous system: rhodamine/coumarin/phyllosilicate hybrid and blue shift in fluorescence emission. Chem Mater 20:2994–3002. https://doi.org/10.1021/cm0716452

    Article  CAS  Google Scholar 

  179. Huang M, He S, Liu W, Yao Y, Miao S (2015) Spectral inspections on molecular configurations of Nile blue a adsorbed on the elementary clay sheets. J Phys Chem B 119:13302–13308. https://doi.org/10.1021/acs.jpcb.5b05188

    Article  CAS  PubMed  Google Scholar 

  180. Banik S, Bhattacharjee J, Hussain SA, Bhattacharjee D (2015) Clay induced aggregation of a tetra-cationic metalloporphyrin in layer by layer self assembled film. J Phys Chem Solids 87:128–135. https://doi.org/10.1016/j.jpcs.2015.08.008

    Article  CAS  Google Scholar 

  181. Park IY, Kuroda K, Kato C (1989) Preparation of a layered double hydroxide–porphyrin intercalation compound. Chem Lett 18:2057–2058. https://doi.org/10.1246/cl.1989.2057

    Article  Google Scholar 

  182. Kameyama H, Suzuki H, Amano A (1988) Intercalation of co(II) meso-tetrakis(1-methyl-4-pyridyl)porphyrin into montmorillonite. Chem Lett 17:1117–1120. https://doi.org/10.1246/cl.1988.1117

    Article  Google Scholar 

  183. Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34:58–73. https://doi.org/10.1016/j.clay.2006.02.011

    Article  CAS  Google Scholar 

  184. Bujdák J (2018) The effects of layered nanoparticles and their properties on the molecular aggregation of organic dyes. J Photochem Photobiol C: Photochem Rev 35:108–133. https://doi.org/10.1016/j.jphotochemrev.2018.03.001

    Article  CAS  Google Scholar 

  185. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392. https://doi.org/10.1351/pac196511030371

    Article  CAS  Google Scholar 

  186. Ogawa M, Ishii T, Miyamoto N, Kuroda K (2001) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound. Adv Mater 13:1107–1109. https://doi.org/10.1002/1521-4095(200107)13:14<1107::AID-ADMA1107>3.0.CO;2-O

    Article  CAS  Google Scholar 

  187. Kuykendall VG, Thomas JK (1991) Photophysical investigation of the degree of dispersion of aqueous colloidal clay. Langmuir 7:610–610. https://doi.org/10.1021/la00051a036

    Article  CAS  Google Scholar 

  188. Quites FJ, Germino JC, Atvars TDZ (2014) Improvement in the emission properties of a luminescent anionic dye intercalated between the lamellae of zinc hydroxide-layered. Colloids Surf A Physicochem Eng Asp 459:194–201. https://doi.org/10.1016/j.colsurfa.2014.07.009

    Article  CAS  Google Scholar 

  189. Hestand NJ, Spano FC (2018) Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem Rev 118:7069–7163. https://doi.org/10.1021/acs.chemrev.7b00581

    Article  CAS  PubMed  Google Scholar 

  190. Schoonheydt RA, Cenens J, De Schrijver FC (1986) Spectroscopy of proflavine adsorbed on clays. J Chem Soc Faraday Trans 1 82:281. https://doi.org/10.1039/f19868200281

    Article  CAS  Google Scholar 

  191. Hill EH, Zhang Y, Whitten DG (2015) Aggregation of cationic p-phenylene ethynylenes on laponite clay in aqueous dispersions and solid films. J Colloid Interface Sci 449:347–356. https://doi.org/10.1016/j.jcis.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  192. Jelley EE (1936) Spectral absorption and fluorescence of dyes in the molecular state. Nature 138:1009–1010. https://doi.org/10.1038/1381009a0

    Article  CAS  Google Scholar 

  193. Ogawa M, Kawai R, Kuroda K (1996) Adsorption and aggregation of a cationic cyanine dye on smectites. J Phys Chem 100:16218–16221. https://doi.org/10.1021/jp960261o

    Article  CAS  Google Scholar 

  194. Bricks JL, Slominskii YL, Panas ID, Demchenko AP (2018) Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods Appl Fluoresc 6. https://doi.org/10.1088/2050-6120/aa8d0d

  195. Miyamoto N, Kawai R, Kuroda K, Ogawa M (2000) Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Appl Clay Sci 16:161–170. https://doi.org/10.1016/S0169-1317(99)00051-4

    Article  CAS  Google Scholar 

  196. Valandro SR, Poli AL, Correia TFA, Lombardo PC, Schmitt CC (2017) Photophysical behavior of isocyanine/clay hybrids in the solid state. Langmuir 33:891–899. https://doi.org/10.1021/acs.langmuir.6b03898

    Article  CAS  PubMed  Google Scholar 

  197. Boháč P, Czímerová A, Bujdák J (2016) Enhanced luminescence of 3,3′-Diethyl-2,2’-thiacyanine cations adsorbed on saponite particles. Appl Clay Sci 127–128:64–69. https://doi.org/10.1016/j.clay.2016.04.008

    Article  CAS  Google Scholar 

  198. Sato N, Fujimura T, Shimada T, Tani T, Takagi S (2015) J-aggregate formation behavior of a cationic cyanine dye on inorganic layered material. Tetrahedron Lett 56:2902–2905. https://doi.org/10.1016/j.tetlet.2015.04.084

    Article  CAS  Google Scholar 

  199. Debnath P, Chakraborty S, Deb S, Nath J, Dey B, Bhattacharjee D, Soda H, Tominaga M, Suzuki Y, Kawamata J, Hussain SA (2017) Effect of nano clay laponite on stability of SHG active J-aggregate of a thiacyanine dye onto LB films. Appl Clay Sci 147:105–116. https://doi.org/10.1016/j.clay.2017.07.013

    Article  CAS  Google Scholar 

  200. Mekhzoum MEM, Essassi EM, Qaiss A, Bouhfid R (2016) Fluorescent bio-nanocomposites based on chitosan reinforced hemicyanine dye-modified montmorillonite. RSC Adv 6:111472–111481. https://doi.org/10.1039/c6ra23320a

    Article  CAS  Google Scholar 

  201. Miyamoto N, Kawai R, Kuroda K, Ogawa M (2001) Intercalation of a cationic cyanine dye into the layer silicate magadiite. Appl Clay Sci 19:39–46. https://doi.org/10.1016/S0169-1317(01)00054-0

    Article  CAS  Google Scholar 

  202. Chakraborty S, Debnath P, Dey D, Bhattacharjee D, Hussain SA (2014) Formation of fluorescent H-aggregates of a cyanine dye in ultrathin film and its effect on energy transfer. J Photochem Photobiol A Chem 293:57–64. https://doi.org/10.1016/j.jphotochem.2014.07.018

    Article  CAS  Google Scholar 

  203. Chakraborty S, Bhattacharjee D, Soda H, Tominaga M, Suzuki Y, Kawamata J, Hussain SA (2015) Temperature and concentration dependence of J-aggregate of a cyanine dye in a Laponite film fabricated by Langmuir-Blodgett technique. Appl Clay Sci 104:245–251. https://doi.org/10.1016/j.clay.2014.11.039

    Article  CAS  Google Scholar 

  204. Matejdes M, Himeno D, Suzuki Y, Kawamata J (2017) Controlled formation of pseudoisocyanine J-aggregates in the interlayer space of synthetic saponite. Appl Clay Sci 140:119–123. https://doi.org/10.1016/j.clay.2017.02.007

    Article  CAS  Google Scholar 

  205. Estévez MJT, Arbeloa FL, Arbeloa TL, Arbeloa IL (1993) Absorption and fluorescence properties of rhodamine 6G adsorbed on aqueous suspensions of Wyoming montmorillonite. Langmuir 9:3629–3634. https://doi.org/10.1021/la00036a045

    Article  Google Scholar 

  206. Sasai R, Itoh H, Iyi N, Fujita T, Arbeloa FL, Martínez VM, Takagi K (2004) Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir 20:4715–4719. https://doi.org/10.1021/la049584z

    Article  CAS  PubMed  Google Scholar 

  207. Wu L, Lv G, Liu M, Li Z, Liao L, Pan C (2015) Adjusting the layer charges of host phyllosilicates to prevent luminescence quenching of fluorescence dyes. J Phys Chem C 119:22625–22631. https://doi.org/10.1021/acs.jpcc.5b07243

    Article  CAS  Google Scholar 

  208. Kaya M, Meral K, Onganer Y (2015) Molecular aggregates of merocyanine 540 in aqueous suspensions containing natural and CTAB-modified bentonite. J Mol Struct 1083:101–105. https://doi.org/10.1016/j.molstruc.2014.11.046

    Article  CAS  Google Scholar 

  209. Giannelis EP (1990) Highly organized molecular assemblies of porphyrin guest molecules in mica-type silicates: influence of guest–host interactions on molecular organization. Chem Mater 2:627–629. https://doi.org/10.1021/cm00012a002

    Article  CAS  Google Scholar 

  210. Carrado KA, Winans RE (1990) Interactions of water-soluble porphyrins and metalloporphyrins with smectite clay surfaces. Chem Mater 2:328–335. https://doi.org/10.1021/cm00009a027

    Article  CAS  Google Scholar 

  211. Bergaya F, Van Damme H (1982) Stability of metalloporphyrins adsorbed on clays: a comparative study. Geochim Cosmochim Acta 46:349–360. https://doi.org/10.1016/0016-7037(82)90226-5

    Article  CAS  Google Scholar 

  212. Carrado KA, Thiyagarajan P, Winans RE, Botto RE (1991) Hydrothermal crystallization of porphyrin-containing layer silicates. Inorg Chem 30:794–799. https://doi.org/10.1021/ic00004a034

    Article  CAS  Google Scholar 

  213. Grando SR, Santos FDS, Gallas MR, Costa TMH, Benvenutti EV, Rodembusch FS (2012) Photophysics of aminobenzazole dyes in silica-based hybrid materials. J Sol-Gel Sci Technol 63:235–241. https://doi.org/10.1007/s10971-012-2720-z

    Article  CAS  Google Scholar 

  214. Kudo N, Tsukamoto T, Tokieda D, Shimada T, Takagi S (2018) Fluorescence enhancement behavior of hemicyanine derivatives on the clay nanosheets: aggregation induced emission (AIE) vs. surface-fixation induced emission (S-FIE). Chem Lett 47:636–639. https://doi.org/10.1246/cl.180043

    Article  CAS  Google Scholar 

  215. Tokieda D, Tsukamoto T, Ishida Y, Ichihara H, Shimada T, Takagi S (2017) Unique fluorescence behavior of dyes on the clay minerals surface: surface fixation induced emission (S-FIE). J Photochem Photobiol A Chem 339:67–79. https://doi.org/10.1016/j.jphotochem.2017.01.013

    Article  CAS  Google Scholar 

  216. Kawamata J, Suzuki Y, Tominaga M (2018) From adsorbed dyes to optical materials. In: Developments in clay science. Elsevier, Amsterdam, pp 361–375

    Google Scholar 

  217. Zhang X, Hong H, Li Z, Guan J, Schulz L (2009) Removal of azobenzene from water by kaolinite. J Hazard Mater 170:1064–1069. https://doi.org/10.1016/j.jhazmat.2009.05.073

    Article  CAS  PubMed  Google Scholar 

  218. van Damme H, Crespin M, Obrecht F, Cruz MI, Fripiat JJ (1978) Acid-base and complexation behavior of porphyrins on the intracrystal surface of swelling clays: meso-tetraphenylporphyrin and meso-tetra(4-pyridyl)porphyrin on montmorillonites. J Colloid Interface Sci 66:43–54. https://doi.org/10.1016/0021-9797(78)90182-0

    Article  Google Scholar 

  219. Takagi S, Shimada T, Yui T, Inoue H (2001) High density adsorption of porphyrins onto clay layer without aggregation: characterization of smectite-cationic porphyrin complex. Chem Lett 30:128–129. https://doi.org/10.1246/cl.2001.128

    Article  Google Scholar 

  220. Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA, Inoue H (2002) High-density adsorption of cationic porphyrins on clay layer surfaces without aggregation: the size-matching effect. Langmuir 18:2265–2272. https://doi.org/10.1021/la011524v

    Article  CAS  Google Scholar 

  221. Ishida Y, Masui D, Shimada T, Tachibana H, Inoue H, Takagi S (2012) The mechanism of the porphyrin spectral shift on inorganic nanosheets: the molecular flattening induced by the strong host–guest interaction due to the “size-matching rule”. J Phys Chem C 116:7879–7885. https://doi.org/10.1021/jp300842f

    Article  CAS  Google Scholar 

  222. Ogawa M, Handa T, Kuroda K, Kato C, Tani T (1992) Photochemical hole burning of 1,4-dihydroxyanthraquinone intercalated in a pillered layered clay mineral. J Phys Chem 96:8116–8119

    Article  CAS  Google Scholar 

  223. Ferreira AUC, Poli AL, Gessner F, Neumann MG, Schmitt Cavalheiro CC (2013) Interaction of auramine O with montmorillonite clays. J Lumin 136:63–67. https://doi.org/10.1016/j.jlumin.2012.11.022

    Article  CAS  Google Scholar 

  224. Tsukamoto T, Shimada T, Takagi S (2013) Unique photochemical properties of p-substituted cationic triphenylbenzene derivatives on a clay layer surface. J Phys Chem C 117:2774–2779. https://doi.org/10.1021/jp3092144

    Article  CAS  Google Scholar 

  225. Tsukamoto T, Shimada T, Takagi S (2013) Photochemical properties of mono-, tri-, and penta-cationic antimony(V) metalloporphyrin derivatives on a clay layer surface. J Phys Chem A 117:7823–7832. https://doi.org/10.1021/jp405767s

    Article  CAS  PubMed  Google Scholar 

  226. Tsukamoto T, Shimada T, Takagi S (2015) Structure resembling effect of clay surface on photochemical properties of meso-phenyl or pyridyl-substituted monocationic antimony(V) porphyrin derivatives. RSC Adv 5:8479–8485. https://doi.org/10.1039/C4RA15650A

    Article  CAS  Google Scholar 

  227. Villemure G, Detellier C, Szabo AG (1986) Fluorescence of clay-intercalated methylviologen. J Am Chem Soc 108:4658–4659. https://doi.org/10.1021/ja00275a071

    Article  CAS  Google Scholar 

  228. Miyata H, Sugahara Y, Kuroda K, Kato C (1987) Synthesis of montmorillonite-viologen intercalation compounds and their photochromic behaviour. J Chem Soc Faraday Trans 1 83:1851–1858. https://doi.org/10.1039/F19878301851

    Article  CAS  Google Scholar 

  229. Raupach M, Emerson WW, Slade PG (1979) The arrangement of paraquat bound by vermiculite and montmorillonite. J Colloid Interface Sci 69:398–408. https://doi.org/10.1016/0021-9797(79)90129-2

    Article  CAS  Google Scholar 

  230. Hayes MHB, Pick ME, Toms BA (1978) The influence of organocation structure on the adsorption of mono- and of bipyridinium cations by expanding lattice clay minerals. J Colloid Interface Sci 65:254–265. https://doi.org/10.1016/0021-9797(78)90156-X

    Article  CAS  Google Scholar 

  231. Villemure G, Detellier C, Szabo AG (1991) Fluorescence of methylviologen intercalated into montmorillonite and hectorite aqueous suspensions. Langmuir 7:1215–1221. https://doi.org/10.1021/la00054a032

    Article  CAS  Google Scholar 

  232. Okada T, Ogawa M (2003) 1,1′-dimethyl-4,4′-bipyridinium-smectites as a novel adsorbent of phenols from water through charge-transfer interactions. Chem Commun:1378–1379. https://doi.org/10.1039/b302144k

  233. Kakegawa N, Kondo T, Ogawa M (2003) Variation of electron-donating ability of smectites as probed by photoreduction of methyl viologen. Langmuir 19:3578–3582. https://doi.org/10.1021/la020763v

    Article  CAS  Google Scholar 

  234. Miyata H, Sugahara Y, Kuroda K, Kato C (1988) Synthesis of a viologen-tetratitanate intercalation compound and its photochemical behaviour. J Chem Soc Faraday Trans 84:2677–2682. https://doi.org/10.1039/F19888402677

    Article  CAS  Google Scholar 

  235. Nakato T, Kuroda K, Kato C (1989) Photoreduction of methylviologen in the interlayer of K4Nb6O17. J Chem Soc Chem Commun 1144. https://doi.org/10.1039/c39890001144

  236. Nakato T, Kuroda K, Kato C (1992) Syntheses of intercalation compounds of layered niobates with methylviologen and their photochemical behavior. Chem Mater 4:128–132. https://doi.org/10.1021/cm00019a027

    Article  CAS  Google Scholar 

  237. Nakato T, Ito K, Kuroda K, Kato C (1993) Photochemical behavior of perovskite-related layered niobates HA2Nb3O10 (a = Ca, Sr) intercalated with methylviologen. Microporous Mater 1:283–286. https://doi.org/10.1016/0927-6513(93)80071-2

    Article  CAS  Google Scholar 

  238. Nakato T, Miyata H, Kuroda K, Kato C (1988) Synthesis of methylviologen-HTiNbO5 intercalation compound and its photochemical behavior. React Solids 6:231–238. https://doi.org/10.1016/0168-7336(88)80063-9

    Article  CAS  Google Scholar 

  239. Vermeulen LA, Snover JL, Sapochak LS, Thompson ME (1993) Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J Am Chem Soc 115:11767–11774. https://doi.org/10.1021/ja00078a015

    Article  CAS  Google Scholar 

  240. Vermeulen LA, Thompson ME (1992) Stable photoinduced charge separation in layered viologen compounds. Nature 358:656–658. https://doi.org/10.1038/358656a0

    Article  CAS  Google Scholar 

  241. Liu X, Iu KK, Thomas JK (1992) Studies of surface properties of clay Laponite using pyrene as a photophysical probe molecule. 2. Photoinduced electron transfer. Langmuir 8:539–545. https://doi.org/10.1021/la00038a038

    Article  CAS  Google Scholar 

  242. Viaene K, Caigui J, Schoonheydt RA, De Schryver FC (1987) Study of the adsorption on clay particles by means of a fluorescent probe. Langmuir 3:107–111. https://doi.org/10.1021/la00073a019

    Article  CAS  Google Scholar 

  243. Viaene K, Schoonheydt RA, Crutzen M, Kunyima B, De Schryver FC (1988) Study of the adsorption on clay particles by means of fluorescent probes. Langmuir 4:749–752. https://doi.org/10.1021/la00081a044

    Article  CAS  Google Scholar 

  244. Labbé P, Reverdy G (1988) Adsorption characteristics of polycyclic aromatic compounds on clay: pyrene as a photophysical probe on Laponite. Langmuir 4:419–425. https://doi.org/10.1021/la00080a028

    Article  Google Scholar 

  245. Kunyima B, Viaene K, Khalil MMH, Schoonheydt RA, Crutzen M, De Schryver FC (1990) Study of the adsorption and polymerization of functionalized organic ammonium derivatives on a clay surface. Langmuir 6:482–486. https://doi.org/10.1021/la00092a031

    Article  CAS  Google Scholar 

  246. Liu X, Thomas JK (1991) Study of surface properties of clay Laponite using pyrene as a photophysical probe molecule. Langmuir 7:2808–2816. https://doi.org/10.1021/la00059a065

    Article  CAS  Google Scholar 

  247. Ikeda M, Yoshii T, Matsui T, Tanida T, Komatsu H, Hamachi I (2011) Montmorillonite−supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J Am Chem Soc 133:1670–1673. https://doi.org/10.1021/ja109692z

    Article  CAS  PubMed  Google Scholar 

  248. Kavanagh RJ, Iu KK, Thomas JK (1992) Spectroscopic determination of refractive index and dielectric constant at interfaces, using photophysical probe molecules. Langmuir 8:3008–3013. https://doi.org/10.1021/la00048a026

    Article  CAS  Google Scholar 

  249. Nakamura T, Thomas JK (1986) The interaction of alkylammonium salts with synthetic clays. A fluorescence and laser excitation study. J Phys Chem 90:641–644. https://doi.org/10.1021/j100276a032

    Article  CAS  Google Scholar 

  250. Nakamura T, Thomas JK (1987) Formation of surfactant double layers on Laponite clay colloids. Langmuir 3:234–239. https://doi.org/10.1021/la00074a016

    Article  CAS  Google Scholar 

  251. Dellaguardia RA, Thomas JK (1983) Photoprocesses on colloidal clay systems. 2. Quenching studies and the effect of surfactants on the luminescent properties of pyrene and pyrene derivatives adsorbed on clay colloids. J Phys Chem 87:3550–3557

    Article  CAS  Google Scholar 

  252. DellaGuardia RA, Thomas JK (1984) Photoprocesses on colloidal clay systems. 3. Interaction of dodecanol and its micelles with colloidal montmorillonite. J Phys Chem 88:964–970. https://doi.org/10.1021/j150649a024

    Article  CAS  Google Scholar 

  253. Wang T, Hu X, Zheng S, Liu X, Wang C, Tong Z (2012) Adsorption of fluorophores and N-isopropylacrylamide on Laponite. Appl Clay Sci 58:102–107. https://doi.org/10.1016/j.clay.2012.01.021

    Article  CAS  Google Scholar 

  254. Kawamata J, Suzuki Y, Tenma Y (2010) Fabrication of clay mineral-dye composites as nonlinear optical materials. Philos Mag 90:2519–2527. https://doi.org/10.1080/14786430903581304

    Article  CAS  Google Scholar 

  255. Tominaga M, Oniki Y, Mochida S, Kasatani K, Tani S, Suzuki Y, Kawamata J (2016) Clay-organic hybrid films exhibiting reversible fluorescent color switching induced by swelling and drying of a clay mineral. J Phys Chem C 120:23813–23822. https://doi.org/10.1021/acs.jpcc.6b07537

    Article  CAS  Google Scholar 

  256. Barloy L, Battioni P, Mansuy D (1990) Manganese porphyrins supported on montmorillonite as hydrocarbon mono-oxygenation catalysts: particular efficacy for linear alkane hydroxylation. J Chem Soc Chem Commun:1365–1367. https://doi.org/10.1039/C39900001365

  257. Gaillon L, Bedioui F, Devynck J, Battioni P (1993) Electrochemical characterization of manganese Porphyrins fixed onto silica and layered Dihydroxide matrices. J Electroanal Chem 347:435–442. https://doi.org/10.1016/0022-0728(93)80108-T

    Article  CAS  Google Scholar 

  258. Liu J, Zhang G (2014) Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys Chem Chem Phys 16:8178–8192. https://doi.org/10.1039/c3cp54146k

    Article  CAS  PubMed  Google Scholar 

  259. Kameyama H, Narumi F, Hattori T, Kameyama H (2006) Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. J Mol Catal A Chem 258:172–177. https://doi.org/10.1016/j.molcata.2006.05.022

    Article  CAS  Google Scholar 

  260. Tsukamoto T, Shimada T, Takagi S (2018) Artificial photosynthesis model: photochemical reaction system with efficient light-harvesting function on inorganic nanosheets. ACS Omega 3:18563–18571. https://doi.org/10.1021/acsomega.8b02594

    Article  CAS  Google Scholar 

  261. Remello SN, Kuttassery F, Mathew S, Thomas A, Yamamoto D, Nabetani Y, Sano K, Tachibana H, Inoue H (2018) Two-electron oxidation of water to form hydrogen peroxide catalysed by silicon-porphyrins. Sustain Energy Fuels 2:1966–1973. https://doi.org/10.1039/c8se00102b

    Article  CAS  Google Scholar 

  262. Tatsumi D, Tsukamoto T, Honna R, Hoshino S, Shimada T, Takagi S (2017) Highly selective photochemical epoxidation of cyclohexene sensitized by Ru(II) porphyrinclay hybrid catalyst. Chem Lett 46:1311–1314. https://doi.org/10.1246/cl.170521

    Article  CAS  Google Scholar 

  263. Jain A, Achari A, Eswaramoorthy M, George SJ (2016) Light induced: in situ post-modification of clay-chromophore hybrids for multiple white light emissions. J Mater Chem C 4:2748–2751. https://doi.org/10.1039/c5tc03319e

    Article  CAS  Google Scholar 

  264. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133:14280–14286. https://doi.org/10.1021/ja204425u

    Article  CAS  PubMed  Google Scholar 

  265. Takagi S, Eguchi M, Shimada T, Hamatani S, Inoue H (2007) Energy transfer reaction of cationic porphyrin complexes on the clay surface: effect of sample preparation method. Res Chem Intermed 33:177–189. https://doi.org/10.1163/156856707779160889

    Article  CAS  Google Scholar 

  266. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H, Eguchi M, Inoue H (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29:2108–2119. https://doi.org/10.1021/la3034808

    Article  CAS  PubMed  Google Scholar 

  267. Rao KV, Datta KKR, Eswaramoorthy M, George SJ (2013) Highly pure solid-state white-light emission from solution-processable soft-hybrids. Adv Mater 25:1713–1718. https://doi.org/10.1002/adma.201204407

    Article  CAS  PubMed  Google Scholar 

  268. Sato K, Matsubara K, Hagiwara S, Saito K, Yagi M, Takagi S, Yui T (2015) Remarkable stimulation of emission quenching on a clay surface. Langmuir 31:27–31. https://doi.org/10.1021/la504597t

    Article  CAS  PubMed  Google Scholar 

  269. Takagi S, Eguchi M, Tryk DA, Inoue H (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J Photochem Photobiol C: Photochem Rev 7:104–126. https://doi.org/10.1016/j.jphotochemrev.2006.04.002

    Article  CAS  Google Scholar 

  270. Nakato T, Iwata Y, Kuroda K, Kaneko M, Kato C (1993) Intercalation of a free-base porphyrin into layered tetratitanic acid. J Chem Soc Dalt Trans:1405–1409. https://doi.org/10.1039/DT9930001405

  271. Sasai R, Kato Y, Soontornchaiyakul W, Usami H, Masumori A, Norimatsu W, Fujimura T, Takagi S (2017) Photoinduced electron transfer in layer-by-layer thin solid films containing cobalt oxide nanosheets, porphyrin, and methyl viologen. Phys Chem Chem Phys 19:5611–5616. https://doi.org/10.1039/c6cp07250j

    Article  CAS  PubMed  Google Scholar 

  272. Gu Z, Gao M, Lu L, Liu Y, Yang S (2015) Montmorillonite functionalized with zwitterionic surfactant as a highly efficient adsorbent for herbicides. Ind Eng Chem Res 54:4947–4955. https://doi.org/10.1021/acs.iecr.5b00438

    Article  CAS  Google Scholar 

  273. Si Y, Zhou J, Chen H, Zhou D (2004) Photostabilization of the herbicide bensulfuron-methyl by using organoclays. Chemosphere 54:943–950. https://doi.org/10.1016/j.chemosphere.2003.09.033

    Article  CAS  PubMed  Google Scholar 

  274. El-Nahhal Y, Nir S, Margulies L, Rubin B (1999) Reduction of photodegradation and volatilization of herbicides in Organo-clay formulations. Appl Clay Sci 14:105–119. https://doi.org/10.1016/S0169-1317(98)00053-2

    Article  CAS  Google Scholar 

  275. Margulies L, Rozen H, Cohen E (1985) Energy transfer at the surface of clays and protection of pesticides from photodegradation. Nature 315:658–659. https://doi.org/10.1038/315658a0

    Article  CAS  Google Scholar 

  276. Undabeytia T, Nir S, Tel-Or E, Rubin B (2000) Photostabilization of the herbicide norflurazon by using organoclays. J Agric Food Chem 48:4774–4779. https://doi.org/10.1021/jf9912405

    Article  CAS  PubMed  Google Scholar 

  277. Goto T, Ogawa M (2015) Visible-light-responsive photocatalytic flow reactor composed of Titania film photosensitized by metal complex-clay hybrid. ACS Appl Mater Interfaces 7:12631–12634. https://doi.org/10.1021/acsami.5b03128

    Article  CAS  PubMed  Google Scholar 

  278. Goto T, Ogawa M (2016) Efficient photocatalytic oxidation of benzene to phenol by metal complex-clay/TiO2 hybrid photocatalyst. RSC Adv 6:23794–23797. https://doi.org/10.1039/c5ra25430b

    Article  CAS  Google Scholar 

  279. Kakegawa N, Ogawa M (2004) Effective luminescence quenching of Tris (2,2-bipyridine) ruthenium (II) by methylviologen on clay by the aid of poly (vinylpyrrolidone). Langmuir 20:7004–7009

    Article  CAS  Google Scholar 

  280. Lu L, Jones RM, McBranch D, Whitten D (2002) Surface-enhanced superquenching of cyanine dyes as J-aggregates on Laponite clay nanoparticles. Langmuir 18:7706–7713. https://doi.org/10.1021/la0259306

    Article  CAS  Google Scholar 

  281. Kanegawa N, Ogawa M (2003) The synthesis of dihexadecylviologen- intercalation compounds and the photochemical reactions. Clay Sci 12:153–157

    Google Scholar 

  282. Okada T, Ogawa M (2002) Adsorption of phenols onto 1,1′-dimethyl-4,4′-bipyridinium-smectites. Chem Lett 31:812–813

    Article  Google Scholar 

  283. Yui T, Tsuchino T, Itoh T, Ogawa M, Fukushima Y, Takagi K (2005) Photoinduced one-electron reduction of MV2+ in titania nanosheets using porphyrin in mesoporous silica thin films. Langmuir 21:2644–2646. https://doi.org/10.1021/la047385+

    Article  CAS  PubMed  Google Scholar 

  284. Yui T, Kobayashi Y, Yamada Y, Yano K, Fukushima Y, Torimoto T, Takagi K (2011) Photoinduced electron transfer between the anionic porphyrins and viologens in titania nanosheets and monodisperse mesoporous silica hybrid films. ACS Appl Mater Interfaces 3:931–935. https://doi.org/10.1021/am101281n

    Article  CAS  PubMed  Google Scholar 

  285. Okada T, Matsutomo T, Ogawa M (2010) Nanospace engineering of methylviologen modified hectorite-like layered silicates with varied layer charge density for the adsorbents design. J Phys Chem C 114:539–545. https://doi.org/10.1021/jp9089886

    Article  CAS  Google Scholar 

  286. Ogawa M, Matsutomo T, Okada T (2008) Preparation of hectorite-like swelling silicate with controlled layer charge density. J Ceram Soc Jpn 116:1309–1313. https://doi.org/10.2109/jcersj2.116.1309

    Article  CAS  Google Scholar 

  287. Takagi S, Tryk DA, Inoue H (2002) Photochemical energy transfer of cationic porphyrin complexes on clay surface. J Phys Chem B 106:5455–5460. https://doi.org/10.1021/jp0200977

    Article  CAS  Google Scholar 

  288. Fujimura T, Ramasamy E, Ishida Y, Shimada T, Takagi S, Ramamurthy V (2016) Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet. Phys Chem Chem Phys 18:5404–5411. https://doi.org/10.1039/c5cp06984j

    Article  CAS  PubMed  Google Scholar 

  289. Miyamoto N, Kuroda K, Ogawa M (2004) Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. J Mater Chem 14:165. https://doi.org/10.1039/b308800f

    Article  CAS  Google Scholar 

  290. Eguchi M, Tachibana H, Takagi S, Tryk DA, Inoue H (2007) Dichroic measurements on dicationic and tetracationic porphyrins on clay surfaces with visible-light-attenuated total reflectance. Bull Chem Soc Jpn 80:1350–1356. https://doi.org/10.1246/bcsj.80.1350

    Article  CAS  Google Scholar 

  291. Takenawa R, Komori Y, Hayashi S, Kawamata J, Kuroda K (2001) Intercalation of nitroanilines into kaolinite and second harmonic generation. Chem Mater 13:3741–3746. https://doi.org/10.1021/cm010095j

    Article  CAS  Google Scholar 

  292. Yan D, Lu J, Wei M, Evans DG, Duan X (2011) Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives. J Mater Chem 21:13128–13139. https://doi.org/10.1039/c1jm11594d

    Article  CAS  Google Scholar 

  293. Yan D, Lu J, Wei M, Qin S, Chen L, Zhang S, Evans DG, Duan X (2011) Heterogeneous transparent ultrathin films with tunable-color luminescence based on the assembly of photoactive organic molecules and layered double hydroxides. Adv Funct Mater 21:2497–2505. https://doi.org/10.1002/adfm.201002446

    Article  CAS  Google Scholar 

  294. López Arbeloa F, Martínez Martínez V (2006) Orientation of adsorbed dyes in the interlayer space of clays. 2 fluorescence polarization of rhodamine 6G in Laponite films. Chem Mater 18:1407–1416. https://doi.org/10.1021/cm051518a

    Article  CAS  Google Scholar 

  295. López Arbeloa F, Martínez Martínez V, Arbeloa T, López Arbeloa I (2007) Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. J Photochem Photobiol C: Photochem Rev 8:85–108. https://doi.org/10.1016/j.jphotochemrev.2007.03.003

    Article  CAS  Google Scholar 

  296. Yan D, Lu J, Wei M, Evans DG, Duan X (2009) Sulforhodamine B intercalated layered double hydroxide thin film with polarized photoluminescence. J Phys Chem B 113:1381–1388. https://doi.org/10.1021/jp8084217

    Article  CAS  PubMed  Google Scholar 

  297. Wang Z, Teng X, Lu C (2013) Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix. Anal Chem 85:2436–2442. https://doi.org/10.1021/ac303487b

    Article  CAS  PubMed  Google Scholar 

  298. Shi W, Lin Y, Kong X, Zhang S, Jia Y, Wei M, Evans DG, Duan X (2011) Fabrication of pyrenetetrasulfonate/layered double hydroxide ultrathin films and their application in fluorescence chemosensors. J Mater Chem 21:6088–6094. https://doi.org/10.1039/c1jm00073j

    Article  CAS  Google Scholar 

  299. Yan D, Lu J, Ma J, Wei M, Li S, Evans DG, Duan X (2011) Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J Phys Chem C 115:7939–7946. https://doi.org/10.1021/jp2002029

    Article  CAS  Google Scholar 

  300. Zhao Y, Lin H, Chen M, Yan D (2014) Niflumic anion intercalated layered double hydroxides with Mechano-induced and solvent-responsive luminescence. Ind Eng Chem Res 53:3140–3147. https://doi.org/10.1021/ie404054v

    Article  CAS  Google Scholar 

  301. Yan D, Lu J, Chen L, Qin S, Ma J, Wei M, Evans DG, Duan X (2010) A strategy to the ordered assembly of functional small cations with layered double hydroxides for luminescent ultra-thin films. Chem Commun 46:5912–5914. https://doi.org/10.1039/c0cc00522c

    Article  CAS  Google Scholar 

  302. Li S, Lu J, Ma H, Xu J, Yan D, Wei M, Evans DG, Duan X (2011) Ordered blue luminescent ultrathin films by the effective coassembly of tris(8-hydroxyquinolate-5-sulfonate)aluminum and polyanions with layered double hydroxides. Langmuir 27:11501–11507. https://doi.org/10.1021/la202139f

    Article  CAS  PubMed  Google Scholar 

  303. Yan D, Lu J, Ma J, Wei M, Wang X, Evans DG, Duan X (2010) Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study. Langmuir 26:7007–7014. https://doi.org/10.1021/la904228b

    Article  CAS  PubMed  Google Scholar 

  304. Yan D, Lu J, Ma J, Wei M, Evans DG, Duan X (2011) Fabrication of an anionic polythiophene/layered double hydroxide ultrathin film showing red luminescence and reversible pH photoresponse. AICHE J 57:1926–1935. https://doi.org/10.1002/aic.12400

    Article  CAS  Google Scholar 

  305. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  306. Yan D, Zhao Y, Wei M, Liang R, Lu J, Evans DG, Duan X (2013) Regular assembly of 9-fluorenone-2,7-dicarboxylate within layered double hydroxide and its solid-state photoluminescence: a combined experiment and computational study. RSC Adv 3:4303. https://doi.org/10.1039/c3ra23064c

    Article  CAS  Google Scholar 

  307. Jain A, Achari A, Mothi N, Eswaramoorthy M, George SJ (2015) Shining light on clay-Chromophore hybrids: layered templates for accelerated ring closure photo-oxidation. Chem Sci 6:6334–6340. https://doi.org/10.1039/c5sc02215k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Hartley GS (1938) 113. The cis-form of azobenzene and the velocity of the thermal cistrans-conversion of azobenzene and some derivatives. J Chem Soc:633–642. https://doi.org/10.1039/JR9380000633

  309. Ciccone S, Halpern J (1959) Catalysis of the cis - trans isomerization of azobenzene by acids and cupric salts. Can J Chem 37:1903–1910. https://doi.org/10.1139/v59-278

    Article  CAS  Google Scholar 

  310. Siampiringue N, Guyot G, Monti S, Bortolus P (1987) The cistrans photoisomerization of azobenzene: an experimental re-examination. J Photochem 37:185–188. https://doi.org/10.1016/0047-2670(87)85039-6

    Article  CAS  Google Scholar 

  311. Bortolus P, Monti S (1979) Cis-trans photoisomerization of azobenzene.solvent and triplet donors effects. J Phys Chem 83:648–652. https://doi.org/10.1021/j100469a002

    Article  CAS  Google Scholar 

  312. Saremi F, Tieke B (1998) Photoinduced switching in self-assembled multilayers of an azobenzene bolaamphiphile and polyelectrolytes. Adv Mater 10:389–391. https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<389::AID-ADMA388>3.0.CO;2-9

    Article  Google Scholar 

  313. Kojima M, Takagi T, Goshima T (2000) Photoisomerization of Azobenzene in zeolite cavities. Mol Cryst Liq Cryst Sci Technol Sect A 344:179–184. https://doi.org/10.1080/10587250008023833

    Article  CAS  Google Scholar 

  314. Fischer E, Frankel M, Wolovsky R (1955) Wavelength dependence of photoisomerization equilibria in azocompounds. J Chem Phys 23:1367–1367. https://doi.org/10.1063/1.1742302

    Article  CAS  Google Scholar 

  315. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825. https://doi.org/10.1039/c1cs15179g

    Article  CAS  PubMed  Google Scholar 

  316. Ueda M, Kim HB, Ikeda T, Ichimura K (1992) Photoisomerization of an azobenzene in sol-gel glass films. Chem Mater 4:1229–1233. https://doi.org/10.1021/cm00024a022

    Article  CAS  Google Scholar 

  317. Suzuki I, Ishizaki T, Hoshi T, Anzai J (2002) Fully reversible isomerization of azobenzene chromophores in polyelectrolyte layered assemblies. Macromolecules 35:577–580. https://doi.org/10.1021/ma010388y

    Article  CAS  Google Scholar 

  318. Beattie MS, Jackson C, Jaycox GD (1998) Azobenzene modified poly(aryl ether ketone amide)s. 2. Photo- and thermo-responsive behaviour in dilute solution. Polymer 39:2597–2605. https://doi.org/10.1016/S0032-3861(97)00559-4

    Article  CAS  Google Scholar 

  319. Gegiou D, Muszkat KA, Fischer E (1968) Temperature dependence of Photoisomerization. V the effect of substituents on the photoisomerization of stilbenes and azobenzenes. J Am Chem Soc 90:3907–3918. https://doi.org/10.1021/ja01017a002

    Article  CAS  Google Scholar 

  320. Yabe A, Kawabata Y, Niino H, Tanaka M, Ouchi A, Takahashi H, Tamura S, Tagaki W, Nakahara H, Fukuda K (1988) cistrans isomerization of the azobenzenes included as guests in Langmuir–Blodgett films of amphiphilic β-cyclodextrin. Chem Lett 17:1–4. https://doi.org/10.1246/cl.1988.1

    Article  Google Scholar 

  321. Nishiyama K, Fujihira M (1988) cistrans reversible photoisomerization of an amphiphilic azobenzene derivative in its pure LB film prepared as polyion complexes with polyallylamine. Chem Lett 17:1257–1260. https://doi.org/10.1246/cl.1988.1257

    Article  Google Scholar 

  322. Matsumoto M, Tachibana H, Sato F, Terrettaz S (1997) Photoinduced self-organization in Langmuir-Blodgett films. J Phys Chem B 101:702–704. https://doi.org/10.1021/jp9629093

    Article  CAS  Google Scholar 

  323. Matsumoto M, Miyazaki D, Tanaka M, Azumi R, Manda E, Kondo Y, Yoshino N, Tachibana H (1998) Reversible light-induced morphological change in Langmuir-Blodgett films. J Am Chem Soc 120:1479–1484. https://doi.org/10.1021/ja970577p

    Article  CAS  Google Scholar 

  324. Tachibana H, Goto A, Nakamura T, Matsumoto M, Manda E, Niino H, Yabe A, Kawabata Y (1989) Photoresponsive conductivity in Langmuir-Blodgett films. Thin Solid Films 179:207–213. https://doi.org/10.1016/0040-6090(89)90184-3

    Article  CAS  Google Scholar 

  325. Tachibana H, Nakamura T, Matsumoto M, Komizu H, Manda E, Niino H, Yabe A, Kawabata Y (1989) Photochemical switching in conductive Langmuir-Blodgett films. J Am Chem Soc 111:3080–3081. https://doi.org/10.1021/ja00190a061

    Article  CAS  Google Scholar 

  326. Nishiyama K, Kurihara MA, Fujihira M (1989) Photochromism of an amphiphilic azobenzene derivative in its Langmuir-Blodgett films prepared as polyion complexes with ionic polymers. Thin Solid Films 179:477–483. https://doi.org/10.1016/0040-6090(89)90224-1

    Article  CAS  Google Scholar 

  327. Seki T, Tamaki T, Ichimura K, Aoki K (1989) Photochemical alignment regulation of a nematic liquid crystal by Langmuir-Blodgett layers of azobenzene polymers as “command surfaces”. Macromolecules 22:3505–3506

    Article  CAS  Google Scholar 

  328. Tachibana H, Azumi R, Nakamura T, Matsumoto M, Kawabata Y (1992) New types of photochemical switching phenomena in Langmuir-Blodgett films. Chem Lett:173–176. https://doi.org/10.1246/cl.1992.173

  329. Tachibana H, Manda E, Azumi R, Nakamura T, Matsumoto M, Kawabata Y (1992) Multiple photochemical switching device based on Langmuir-Blodgett films. Appl Phys Lett 61:2420–2421. https://doi.org/10.1063/1.108184

    Article  CAS  Google Scholar 

  330. Tachibana H, Manda E, Matsumoto M (1995) Conductivity switching of Langmuir-Blodgett films using photoisomerization of phenylazonaphthalene. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 267:341–346. https://doi.org/10.1080/10587259508034014

    Article  CAS  Google Scholar 

  331. Tachibana H, Azumi R, Tanaka M, Matsumoto M, Sako SI, Sakai H, Abe M, Kondo Y, Yoshino N (1996) Structures and photoisomerization of the polyion complex Langmuir-Blodgett films of an amphiphile bearing two azobenzene units. Thin Solid Films 284–285:73–75. https://doi.org/10.1016/S0040-6090(95)08274-3

    Article  Google Scholar 

  332. Maack J, Ahuja RC, Möbius D, Tachibana H, Matsumoto M (1994) Molecular cis-trans switching in amphiphilic monolayers containing azobenzene moieties. Thin Solid Films 242:122–126. https://doi.org/10.1016/0040-6090(94)90514-2

    Article  CAS  Google Scholar 

  333. Shimura N, Ogawa M (2004) Preparation of aluminum-containing self-standing mesoporous silica films. Bull Chem Soc Jpn 77:1599–1606. https://doi.org/10.1246/bcsj.77.1599

    Article  CAS  Google Scholar 

  334. Ogawa M, Fujii K, Kuroda K, Kato C (1991) Preparation of montmorillonite-p-aminoazobenzene intercalation compounds and their photochemical behavior. Mater Res Soc Symp Proc 233:89–94

    Article  CAS  Google Scholar 

  335. Adams JM, Reid PI (1977) Azobenzene intercalates of montmorillonite. Clay Clay Miner 25:228–230

    Article  Google Scholar 

  336. Ogawa M, Okutomo S, Kuroda K (1998) Control of interlayer microstructures of a layered silicate by surface modification with organochlorosilanes. J Am Chem Soc 120:7361–7362. https://doi.org/10.1021/ja981055s

    Article  CAS  Google Scholar 

  337. Bujdák J, Iyi N, Fujita T (2003) Isomerization of cationic azobenzene derivatives in dispersions and films of layered silicates. J Colloid Interface Sci 262:282–289. https://doi.org/10.1016/S0021-9797(03)00235-2

    Article  CAS  PubMed  Google Scholar 

  338. Koteja A, Matusik J (2016) Preparation and characterization of azobenzene-smectite photoactive mineral nanomaterials. Geol Geophys Environ 41:99. https://doi.org/10.7494/geol.2015.41.1.99

    Article  Google Scholar 

  339. Kosuge K, Yamazaki A, Tsunashima A, Otsuka R (1992) Hydrothermal synthesis of magadiite and kenyaite. J Ceram Soc Jpn 100:326–331. https://doi.org/10.2109/jcersj.100.326

    Article  CAS  Google Scholar 

  340. Okutomo S, Kuroda K, Ogawa M (1999) Preparation and characterization of silylated-magadiites. Appl Clay Sci 15:253–264. https://doi.org/10.1016/S0169-1317(99)00010-1

    Article  CAS  Google Scholar 

  341. Iyi N, Kurashima K, Fujita T (2002) Orientation of an organic anion and second-staging structure in layered double-hydroxide intercalates. Chem Mater 14:583–589. https://doi.org/10.1021/cm0105211

    Article  CAS  Google Scholar 

  342. Nabetani Y, Takamura H, Uchikoshi A, Hassan SZ, Shimada T, Takagi S, Tachibana H, Masui D, Tong Z, Inoue H (2016) Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative. Nanoscale 8:12289–12293. https://doi.org/10.1039/C6NR02177H

    Article  CAS  PubMed  Google Scholar 

  343. Tong Z, Sasamoto S, Shimada T, Takagi S, Tachibana H, Zhang X, Tryk DA, Inoue H (2008) Preparation and photochemical behavior of polyfluorinated cationic azobenzene-titanoniobate intercalation compounds. J Mater Chem 18:4641. https://doi.org/10.1039/b805879b

    Article  CAS  Google Scholar 

  344. Okada T, Sakai H, Ogawa M (2008) The effect of the molecular structure of a cationic azo dye on the photoinduced intercalation of phenol in a montmorillonite. Appl Clay Sci 40:187–192. https://doi.org/10.1016/j.clay.2007.09.001

    Article  CAS  Google Scholar 

  345. Ogawa M, Kimura H, Kuroda K, Kato C (1996) Intercalation and the photochromism of azo dye in the hydrophobic interlayer spaces of organoammonium-fluor-tetrasilisic micas. Clay Sci 65:57–65. https://doi.org/10.11362/jcssjclayscience1960.10.57

    Article  Google Scholar 

  346. Okada T, Nozaki N, Seo J, Kwon JE, Park SY, Hashizume H, Sasaki T, Ogawa M (2017) Photoinduced structural changes of cationic azo dyes confined in a two dimensional nanospace by two different mechanisms. RSC Adv 7:8077–8081. https://doi.org/10.1039/C6RA27749G

    Article  CAS  Google Scholar 

  347. Ohtani O, Itoh T, Monna Y, Sasai R, Shichi T, Yui T, Takagi K (2005) Design of photofunctional laminated organized thin films: photochromism of ammoniumazobenzene arenecarboxylates cast on silica glass. Bull Chem Soc Jpn 78:698–702. https://doi.org/10.1246/bcsj.78.698

    Article  CAS  Google Scholar 

  348. Umemoto T, Ohtani Y, Tsukamoto T, Shimada T, Takagi S (2014) Pinning effect for photoisomerization of a dicationic azobenzene derivative by anionic sites of the clay surface. Chem Commun 50:314–316. https://doi.org/10.1039/c3cc47353h

    Article  CAS  Google Scholar 

  349. Fujita T, Iyi N, Klapyta Z (1998) Preparation of azobenzene-mica complex and its photoresponse to ultraviolet irradiation. Mater Res Bull 33:1693–1701

    Article  CAS  Google Scholar 

  350. Ueda M, Kim HB, Ichimura K (1994) Photochemical and thermal isomerization of azobenzene derivatives in sol-gel bulk materials. Chem Mater 6:1771–1775. https://doi.org/10.1021/cm00046a033

    Article  CAS  Google Scholar 

  351. Eisenbach CD (1978) Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers. Macromol Chem Phys 179:2489–2506. https://doi.org/10.1002/macp.1978.021791014

    Article  CAS  Google Scholar 

  352. Nabetani Y, Takamura H, Hayasaka Y, Sasamoto S, Tanamura Y, Shimada T, Masui D, Takagi S, Tachibana H, Tong Z, Inoue H (2013) An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale 5:3182–3193. https://doi.org/10.1039/c3nr34308a

    Article  CAS  PubMed  Google Scholar 

  353. Koteja A, Szczerba M, Matusik J (2017) Smectites intercalated with azobenzene and aminoazobenzene: structure changes at nanoscale induced by UV light. J Phys Chem Solids 111:294–303. https://doi.org/10.1016/j.jpcs.2017.08.015

    Article  CAS  Google Scholar 

  354. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277

    Article  CAS  Google Scholar 

  355. Taniguchi H, Shinpo A, Okazaki T, Matsui F, Irie M (1992) Photodegradation mechanism of photochromic diarylethene derivatives. Nippon Kagaku Kaishi 112:1138–1140. https://doi.org/10.1246/nikkashi.1992.1138

    Article  Google Scholar 

  356. Irie M, Lifka T, Uchida K, Kobatake S, Shindo Y (1999) Fatigue resistant properties of photochromic dithienylethenes: by-product formation. Chem Commun:747–748

    Google Scholar 

  357. Higashiguchi K, Matsuda K, Kobatake S, Yamada T, Kawai T, Irie M (2000) Fatigue mechanism of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. Bull Chem Soc Jpn 73:2389–2394. https://doi.org/10.1246/bcsj.73.2389

    Article  CAS  Google Scholar 

  358. Yokoyama S, Hirose T, Matsuda K (2015) Photoinduced four-state three-step ordering transformation of photochromic terthiophene at a liquid/solid interface based on two principles: photochromism and polymorphism. Langmuir 31:6404–6414. https://doi.org/10.1021/acs.langmuir.5b01404

    Article  CAS  PubMed  Google Scholar 

  359. Frath D, Sakano T, Imaizumi Y, Yokoyama S, Hirose T, Matsuda K (2015) Diarylethene self-assembled monolayers: cocrystallization and mixing-induced cooperativity highlighted by scanning tunneling microscopy at the liquid/solid interface. Chem A Eur J 21:11350–11358. https://doi.org/10.1002/chem.201500804

    Article  CAS  Google Scholar 

  360. Fukumoto S, Nakashima T, Kawai T (2011) Photon-quantitative reaction of a dithiazolylarylene in solution. Angew Chem Int Ed 50:1565–1568. https://doi.org/10.1002/anie.201006844

    Article  CAS  Google Scholar 

  361. Iijima S, Nakashima T, Kawai T (2016) Stereoselective photoreaction in P-stereogenic dithiazolylbenzo[b]phosphole chalcogenides. New J Chem 40:10048–10055. https://doi.org/10.1039/c6nj02446g

    Article  CAS  Google Scholar 

  362. Yokoyama Y, Shiozawa T, Tani Y, Ubukata T (2009) A unified strategy for exceptionally high diastereoselectivity in the photochemical ring closure of chiral diarylethenes. Angew Chem Int Ed 48:4521–4523. https://doi.org/10.1002/anie.200901156

    Article  CAS  Google Scholar 

  363. Yokoyama Y, Hasegawa T, Ubukata T (2011) Highly diastereoselective photochromic ring closure of bisbenzothienylethenes possessing dual fluorinated stereocontrollers. Dyes Pigments 89:223–229. https://doi.org/10.1016/j.dyepig.2010.03.008

    Article  CAS  Google Scholar 

  364. Okada H, Nakajima N, Tanaka T, Iwamoto M (2005) Improvement in photocyclization efficiency of diaryl ethenes by adjusting the pore size of mesoporous silica. Angew Chem Int Ed 44:7233–7236. https://doi.org/10.1002/anie.200501992

    Article  CAS  Google Scholar 

  365. Fukagawa M, Kawamura I, Ubukata T, Yokoyama Y (2013) Enantioselective photochromism of diarylethenes in human serum albumin. Chem A Eur J 19:9434–9437. https://doi.org/10.1002/chem.201301459

    Article  CAS  Google Scholar 

  366. Sasai R, Ogiso H, Shindachi I, Shichi T, Takagi K (2000) Photochromism in oriented thin films prepared by the hybridization of diarylethenes in clay interlayers. Tetrahedron 56:6979–6984. https://doi.org/10.1016/S0040-4020(00)00519-6

    Article  CAS  Google Scholar 

  367. Sasai R, Itoh H, Shindachi I, Shichi T, Takagi K (2001) Photochromism of clay - diarylethene hybrid materials in optically transparent gelatin films. Chem Mater 13:2012–2016. https://doi.org/10.1021/cm000822v

    Article  CAS  Google Scholar 

  368. Shindachi I, Hanaki H, Sasai R, Shichi T, Yui T, Takagi K (2004) The effect of layered sodium–magadiite on the photochromic reversibility of diarylethene immobilized on its surfaces. Chem Lett 33:1116–1117. https://doi.org/10.1246/cl.2004.1116

    Article  CAS  Google Scholar 

  369. Shindachi I, Hanaki H, Sasai R, Shichi T, Yui T, Takagi K (2007) Preparation and photochromism of diarylethene covalently bonded onto layered sodium-magadiite surfaces. Res Chem Intermed 33:143–153. https://doi.org/10.1163/156856707779160870

    Article  CAS  Google Scholar 

  370. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184. https://doi.org/10.1039/C3CS60181A

    Article  CAS  PubMed  Google Scholar 

  371. Wojtyk JTC, Wasey A, Kazmaier PM, Hoz S, Buncel E (2000) Thermal reversion mechanism of N-functionalized merocyanines to spiropyrans: a solvatochromic, solvatokinetic, and semiempirical study. J Phys Chem A 104:9046–9055. https://doi.org/10.1021/jp001533x

    Article  CAS  Google Scholar 

  372. Shimizu I, Kokado H, Inoue E (1969) Photoreversible photographic systems. V. Reverse photochromism of (photospiran/acid) system in acetone. Bull Chem Soc Jpn 42:1726–1729. https://doi.org/10.1246/bcsj.42.1726

    Article  CAS  Google Scholar 

  373. Raymo FM, Giordani S (2001) Signal processing at the molecular level. J Am Chem Soc 123:4651–4652. https://doi.org/10.1021/ja005699n

    Article  CAS  PubMed  Google Scholar 

  374. Yamaguchi T, Ogawa M (2018) Photochromism of a spiropyran in the presence of a synthetic hectorite. Chem Lett 47:189–191. https://doi.org/10.1246/cl.170982

    Article  CAS  Google Scholar 

  375. Mitchell RH, Ward TR, Chen Y, Wang Y, Weerawarna SA, Dibble PW, Marsella MJ, Almutairi A, Wang Z (2003) Synthesis and photochromic properties of molecules containing [e] -annelated dihydropyrenes. two and three way π-switches based on the valence isomerization. J Am Chem Soc 125:2974–2988

    Article  CAS  Google Scholar 

  376. Honda K, Komizu H, Kawasaki M (1982) Reverse photocharomism of stenhouse salts. J Chem Soc Chem Commun:253. https://doi.org/10.1039/c39820000253

  377. Lerch MM, Szymański W, Feringa BL (2018) The (photo)chemistry of stenhouse photoswitches: guiding principles and system design. Chem Soc Rev 47:1910–1937. https://doi.org/10.1039/c7cs00772h

    Article  CAS  PubMed  Google Scholar 

  378. Hatano S, Horino T, Tokita A, Oshima T, Abe J (2013) Unusual negative photochromism via a short-lived imidazolyl radical of 1,1’-binaphthyl-bridged imidazole dimer. J Am Chem Soc 135:3164–3172. https://doi.org/10.1021/ja311344u

    Article  CAS  PubMed  Google Scholar 

  379. Yamaguchi T, Kobayashi Y, Abe J (2015) Fast negative photochromism of 1,1′-binaphthyl-bridged phenoxyl−imidazolyl radical complex. J Am Chem Soc 138:906–913. https://doi.org/10.1021/jacs.5b10924

    Article  CAS  Google Scholar 

  380. Yamaguchi T, Ogawa M (2018) Hydrophilic internal pore and hydrophobic particle surface of organically modified mesoporous silica particle to host photochromic molecules. Chem Lett 48:170–172

    Article  Google Scholar 

  381. Yamaguchi T, Maity A, Polshettiwar V, Ogawa M (2018) Negative photochromism based on molecular diffusion between hydrophilic and hydrophobic particles in the solid-state. Inorg Chem 57:3671–3674

    Article  CAS  Google Scholar 

  382. Yamaguchi T, Leelaphattharaphan NN, Shin H, Ogawa M (2019) Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem Photobiol Sci 18:1742–1749. https://doi.org/10.1039/C9PP00081J

    Article  CAS  PubMed  Google Scholar 

  383. Schomburg C, Wark M, Rohlfing Y, Schulz­Ekloff G, Wöhrle D (2001) Photochromism of spiropyran in molecular sieve voids: effects of host–guest interaction on isomer status, switching stability and reversibility. J Mater Chem 11:2014–2021. https://doi.org/10.1039/b101516h

    Article  CAS  Google Scholar 

  384. Casades I, Constantine S, Cardin D, García H, Gilbert A, Márquez F (2000) Ship-in-a-bottle synthesis and photochromism of spiropyrans encapsulated within zeolite Y supercages. Tetrahedron 56:6951–6956. https://doi.org/10.1016/S0040-4020(00)00515-9

    Article  CAS  Google Scholar 

  385. Kahle I, Spange S (2010) Internal and external acidity of faujasites as measured by a solvatochromic spiropyran. J Phys Chem C 114:15448–15453. https://doi.org/10.1021/jp1048106

    Article  CAS  Google Scholar 

  386. Tagaya H, Kuwahara T, Sato S, Kadokawa J, Karasu M, Chiba K (1993) Photoisomerization of indolinespirobenzopyran in layered double hydroxides. J Mater Chem 3:317. https://doi.org/10.1039/jm9930300317

    Article  CAS  Google Scholar 

  387. Tagaya H, Sato S, Kuwahara T, Kadokawa J, Masa K, Chibaa K (1994) Photoisomerization of Indolinespirobenzopyran in anionic clay matrices of layered double hydroxides. J Mater Chem 4:1907. https://doi.org/10.1039/jm9940401907

    Article  CAS  Google Scholar 

  388. Aiken S, Edgar RJL, Gabbutt CD, Heron BM, Hobson PA (2018) Negatively photochromic organic compounds: exploring the dark side. Dyes Pigments 149:92–121. https://doi.org/10.1016/j.dyepig.2017.09.057

    Article  CAS  Google Scholar 

  389. Kinashi K, Kita H, Misaki M, Koshiba Y, Ishida K, Ueda Y, Ishihara M (2009) Fabrication and optical properties of photochromic compound/clay hybrid films. Thin Solid Films 518:651–655. https://doi.org/10.1016/j.tsf.2009.07.042

    Article  CAS  Google Scholar 

  390. Saso N, Yamamoto T, Umemura Y, Einaga Y (2008) Normal photochromism of spiropyran in montmorillonite interlayer. Colloids Surf A Physicochem Eng Asp 317:309–315. https://doi.org/10.1016/j.colsurfa.2007.10.036

    Article  CAS  Google Scholar 

  391. Seki T, Ichimura K (1990) Thermal isomerization behaviors of a spiropyran in bilayers immobilized with a linear polymer and a smectitic clay. Macromolecules:31–35

    Google Scholar 

  392. Takagi K, Kurematsu T, Sawaki Y (1995) Photochromic behaviour of surfactant spiro[2H-1-benzopyran-2,2′-[2,3]-dihydroindole]s (spiropyrans) adsorbed into clay interlayers. J Chem Soc Perkin Trans 2:1667–1671. https://doi.org/10.1039/P29950001667

    Article  Google Scholar 

  393. Mal NK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421:350–353. https://doi.org/10.1038/nature01337.1

    Article  CAS  PubMed  Google Scholar 

  394. Bach T (1998) Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis. Synthesis:683–703

    Google Scholar 

  395. González-López M, Shaw JT (2009) Cyclic anhydrides in formal cycloadditions and multicomponent reactions. Chem Rev 109:164–189. https://doi.org/10.1021/cr8002714

    Article  CAS  PubMed  Google Scholar 

  396. Laszlo P, Lucchetti J (1984) Catalysis of the diels-alder reaction in the presence of clays. Tetrahedron Lett 25:1567–1570. https://doi.org/10.1016/S0040-4039(01)90012-7

    Article  CAS  Google Scholar 

  397. Laszlo P, Lucchetti J (1984) Acceleration of the diels-alder reaction by clays suspended in organic solvents. Tetrahedron Lett 25:2147–2150. https://doi.org/10.1016/S0040-4039(01)81184-9

    Article  CAS  Google Scholar 

  398. Valentine D, Turro NJ, Hammond GS (1964) Thermal and photosensitized dimerizations of cyclohexadiene. J Am Chem Soc 86:5202–5208. https://doi.org/10.1021/ja01077a033

    Article  CAS  Google Scholar 

  399. Schuster DI, Lem G, Kaprinidis NA (1993) New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes. Chem Rev 93:3–22. https://doi.org/10.1021/cr00017a001

    Article  CAS  Google Scholar 

  400. Usami H, Takagi K, Sawaki Y (1992) Regioselective photocyclodimerization of cyclohexenones intercalated on clay layers. Chem Lett 21:1405–1408. https://doi.org/10.1246/cl.1992.1405

    Article  Google Scholar 

  401. Madhavan D, Pitchumani K (2002) Photodimerisation of enones in a clay microenvironment. Photochem Photobiol Sci 1:991–995. https://doi.org/10.1039/b208030c

    Article  CAS  PubMed  Google Scholar 

  402. Takagi K, Usami H, Fukaya H, Sawaki Y (1989) Spatially controlled photocycloaddition of a clay-intercalated stilbazolium cation. J Chem Soc Chem Commun:1174. https://doi.org/10.1039/c39890001174

  403. Usami H, Takagi K, Sawaki Y (1990) Controlled photocycloaddition of stilbazolium ions intercalated in saponite clay layers. J Chem Soc Perkin Trans 2:1723. https://doi.org/10.1039/p29900001723

    Article  Google Scholar 

  404. Usami H, Takagi K, Sawaki Y (1992) Clay-inclusion photocyclodimerization: intercalation and migration of stilbazolium ions. J Chem Soc Faraday Trans 88:77–81. https://doi.org/10.1039/FT9928800077

    Article  CAS  Google Scholar 

  405. Nakahira T, Hama M, Fukuchi O, Okamura T, Iwabuchi S, Shimazu S, Uematsu T, Kikuchi H (1995) Control of photochemistry of stilbazolium ion by adsorption to poly(potassium vinylsulfate) and to hectorite clay. Macromol Rapid Commun 16:717–723. https://doi.org/10.1002/marc.1995.030161003

    Article  CAS  Google Scholar 

  406. Shichi T, Takagi K, Sawaki Y (1996) Organized photocycloaddition of 4-benzoylbenzoate with unsaturated carboxylates in hydrotalcite clay interlayers. Chem Lett 25:781–782. https://doi.org/10.1246/cl.1996.781

    Article  Google Scholar 

  407. Takagi K, Nakamura T, Katsu H, Itoh M, Sawaki Y, Imae T (1996) Photochemical cyclodimerization of cinnmamic acids included in surfactant amine oxides. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 276–277:135–138. https://doi.org/10.1080/10587259608046014

    Article  Google Scholar 

  408. Elsherbiny AS, Salem MA, Ismail AA (2012) Influence of the alkyl chain length of cyanine dyes on their adsorption by Na+-montmorillonite from aqueous solutions. Chem Eng J 200–202:283–290. https://doi.org/10.1016/j.cej.2012.06.050

    Article  CAS  Google Scholar 

  409. Yui T, Takagi K, Inoue H (2018) Microscopic environment and molecular orientation of guest molecules within polyfluorinated surfactant and clay hybrids: photochemical studies of stilbazolium derivatives. J Photochem Photobiol A Chem 363:61–67. https://doi.org/10.1016/j.jphotochem.2018.05.022

    Article  CAS  Google Scholar 

  410. Zhong J, Cui X, Guan W, Lu C (2018) Direct observation of adsorption kinetics on clays by cation-π interaction-triggered aggregation luminescence. J Mater Chem C 6:13218–13224. https://doi.org/10.1039/c8tc04837a

    Article  CAS  Google Scholar 

  411. Sasai R, Shin’ya N, Shichi T, Takagi K, Gekko K (2002) Molecular alignment and photodimerization of 4‘-Chloro-4-stilbenecarboxylic acid in hydrotalcite clays: bilayer formation in the interlayers. Langmuir 15:413–418. https://doi.org/10.1021/la980699a

    Article  Google Scholar 

  412. Shichi T, Yamashita S, Takagi K (1998) Photopolymerization of 4-vinylbenzoate and m- and p-phenylenediacrylates in hydrotalcite interlayers. Supramol Sci 5:303–308. https://doi.org/10.1016/S0968-5677(98)00023-6

    Article  CAS  Google Scholar 

  413. Kalo H, Möller MW, Kunz DA, Breu J (2012) How to maximize the aspect ratio of clay nanoplatelets. Nanoscale 4:5633–5639. https://doi.org/10.1039/c2nr31322g

    Article  CAS  PubMed  Google Scholar 

  414. Hofmann U, Klemen R (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für Anorg Chemie 262:95–99. https://doi.org/10.1002/zaac.19502620114

    Article  CAS  Google Scholar 

  415. Zemanová M, Link G, Takayama S, Nüesch R, Janek M (2006) Modification of layer charge in smectites by microwaves. Appl Clay Sci 32:271–282. https://doi.org/10.1016/j.clay.2006.01.002

    Article  CAS  Google Scholar 

  416. Skoubris EN, Chryssikos GD, Christidis GE, Gionis V (2013) Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics. Clays Clay Miner 61:83–97. https://doi.org/10.1346/CCMN.2013.0610207

    Article  CAS  Google Scholar 

  417. Takahashi K, Ishii R, Suzuki A, Nakamura T, Yoshida M, Ebina T (2017) Preparation of Lignin–Montmorillonite nanocomposite films and its characterization for electronic devices. Clay Sci 21:1–6. https://doi.org/10.11362/jcssjclayscience.21.1_1

    Article  CAS  Google Scholar 

  418. Ramamurthy V, Sivaguru J (2016) Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev 116:9914–9993. https://doi.org/10.1021/acs.chemrev.6b00040

    Article  CAS  PubMed  Google Scholar 

  419. Ramamurthy V, Corbin DR, Kumar CV, Turro NJ (1990) Modification of photochemical reactivity by zeolites: cation controlled photodimerisation of acenaphthylene within faujasites. Tetrahedron Lett 31:47–50. https://doi.org/10.1016/S0040-4039(00)94330-2

    Article  CAS  Google Scholar 

  420. Lalitha A, Pitchumani K, Srinivasan C (2000) Photodimerization of trans-2-styrylpyridine in zeolite cages. J Photochem Photobiol A Chem 134:193–197. https://doi.org/10.1016/S1010-6030(00)00271-9

    Article  CAS  Google Scholar 

  421. Kim SW, Son SU, Lee SI, Hyeon T, Chung YK (2000) Cobalt on mesoporous silica: the first heterogeneous pauson-khand catalyst. J Am Chem Soc 122:1550–1551. https://doi.org/10.1021/ja9939237

    Article  CAS  Google Scholar 

  422. Matsuo Y, Fukunaga T, Fukutsuka T, Sugie Y (2002) Photochemical dimerization of acenaphthylene in hydrophobized graphite oxide. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 386:45–50. https://doi.org/10.1080/10587250290113178

    Article  CAS  Google Scholar 

  423. Heinz H, Vaia RA, Koerner H, Farmer BL (2008) Photoisomerization of azobenzene grafted to layered silicates: simulation and experimental challenges. Chem Mater 20:6444–6456. https://doi.org/10.1021/cm801287d

    Article  CAS  Google Scholar 

  424. Tong Z, Takagi S, Shimada T, Tachibana H, Inoue H (2006) Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J Am Chem Soc 128:684–685. https://doi.org/10.1021/ja0564564

    Article  CAS  PubMed  Google Scholar 

  425. Nabetani Y, Takamura H, Hayasaka Y, Shimada T, Takagi S, Tachibana H, Masui D, Tong Z, Inoue H (2011) A Photoactivated artificial muscle model unit: reversible, photoinduced sliding of nanosheets. J Am Chem Soc 133:17130–17133. https://doi.org/10.1021/ja207278t

    Article  CAS  PubMed  Google Scholar 

  426. Guo W, Yu C, Li S, Yang J, Liu Z, Zhao C, Huang H, Zhang M, Han X, Niu Y, Qiu J (2017) High-stacking-density, superior-roughness LDH bridged with vertically aligned graphene for high-performance asymmetric supercapacitors. Small 13:1–9. https://doi.org/10.1002/smll.201701288

    Article  CAS  Google Scholar 

  427. Chen T, Xu S, Zhang F, Evans DG, Duan X (2009) Formation of photo- and thermo-stable layered double hydroxide films with photo-responsive wettability by intercalation of functionalized azobenzenes. Chem Eng Sci 64:4350–4357. https://doi.org/10.1016/j.ces.2009.07.005

    Article  CAS  Google Scholar 

  428. Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem Int Ed 47:2466–2469. https://doi.org/10.1002/anie.200704694

    Article  CAS  Google Scholar 

  429. Uchida K, Izumi N, Sukata S, Kojima Y, Nakamura S, Irie M (2006) Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface. Angew Chem Int Ed 45:6470–6473. https://doi.org/10.1002/anie.200602126

    Article  CAS  Google Scholar 

  430. Wang S, Song Y, Jiang L (2007) Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C: Photochem Rev 8:18–29. https://doi.org/10.1016/j.jphotochemrev.2007.03.001

    Article  CAS  Google Scholar 

  431. Kashima I, Okubo M, Qno Y, Itoi M, Kida N, Hikita M, Enomoto M, Kojima N (2005) Ferromagnetism and its photo-induced effect in 2D Iron mixed-valence complex coupled with photochromic spiropyran. Synth Met 155:703–706. https://doi.org/10.1016/j.synthmet.2005.09.033

    Article  Google Scholar 

  432. Enomoto M, Kojima N (2005) Charge transfer phase transition and ferromagnetism in a novel iron mixed-valence complex (n-C3H7)4N[FeIIFeIII(tto)3] (tto=C2OS3). Synth Met 152:457–460. https://doi.org/10.1016/j.synthmet.2005.07.177

    Article  CAS  Google Scholar 

  433. Kida N, Hikita M, Kashima I, Enomoto M, Itoi M, Kojima N (2009) Mössbauer spectroscopic study of photo-sensitive organic-inorganic hybrid system, (SP)[Fe(II)Fe(III)(dto)3](dto = C2O2S2, SP = spiropyran). Polyhedron 28:1694–1697. https://doi.org/10.1016/j.poly.2008.10.060

    Article  CAS  Google Scholar 

  434. Kida N, Hikita M, Kashima I, Okubo M, Itoi M, Enomoto M, Kato K, Takata M, Kojima N (2009) Control of charge transfer phase transition and ferromagnetism by photoisomerization of spiropyran for an organic-inorganic hybrid system, (SP)[FeIIFeIlI(dto)3] (SP = spiropyran, dto = C2O2S2). J Am Chem Soc 131:212–220. https://doi.org/10.1021/ja806879a

    Article  CAS  PubMed  Google Scholar 

  435. Tanaka N, Okazawa A, Sugahara A, Kojima N (2015) Development of a photoresponsive organic-inorganic hybrid magnet: layered cobalt hydroxides intercalated with spiropyran anions. Bull Chem Soc Jpn 88:1150–1155. https://doi.org/10.1246/bcsj.20150129

    Article  CAS  Google Scholar 

  436. Abellán G, Coronado E, Martí-Gastaldo C, Ribera A, Jordá JL, García H (2014) Photo-switching in a hybrid material made of magnetic layered double hydroxides intercalated with azobenzene molecules. Adv Mater 26:4156–4162. https://doi.org/10.1002/adma.201400713

    Article  CAS  PubMed  Google Scholar 

  437. Abellán G, Jordá JL, Atienzar P, Varela M, Jaafar M, Gómez-Herrero J, Zamora F, Ribera A, García H, Coronado E (2015) Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chem Sci 6:1949–1958. https://doi.org/10.1039/C4SC03460K

    Article  CAS  PubMed  Google Scholar 

  438. Okubo M, Enomoto M, Kojima N (2005) Study on photomagnetism of 2-D magnetic compounds coupled with photochromic diarylethene cations. Synth Met 152:461–464. https://doi.org/10.1016/j.synthmet.2005.07.181

    Article  CAS  Google Scholar 

  439. Shimizu H, Okubo M, Nakamoto A, Enomoto M, Kojima N (2006) Enhancement of the curie temperature by isomerization of diarylethene (DAE) for an organic-inorganic hybrid system: Co4(OH)7(DAE)0.5·3H2O. Inorg Chem 45:10240–10247. https://doi.org/10.1021/ic061498u

    Article  CAS  PubMed  Google Scholar 

  440. Kojima N, Okubo M, Shimizu H, Enomoto M (2007) Control of magnetism by isomerization of intercalated molecules in organic-inorganic hybrid systems. Coord Chem Rev 251:2665–2673. https://doi.org/10.1016/j.ccr.2007.08.025

    Article  CAS  Google Scholar 

  441. Abellán G, Coronado E, Martí-Gastaldo C, Waerenborgh J, Ribera A (2013) Interplay between chemical composition and Cation ordering in the magnetism of Ni/Fe layered double hydroxides. Inorg Chem 52:10147–10157. https://doi.org/10.1021/ic401576q

    Article  CAS  PubMed  Google Scholar 

  442. Kojima N, Aoki W, Itoi M, Ono Y, Seto M, Kobayashi Y, Maeda Y (2001) Charge transfer phase transition and ferromagnetism in a mixed-valence iron complex, (n-C3H7)4N[FeIIFeIII(dto)3] (dto = C2O2S2). Solid State Commun 120:165–170. https://doi.org/10.1016/S0038-1098(01)00366-0

    Article  CAS  Google Scholar 

  443. Ono Y, Okubo M, Kojima N (2003) Crystal structure and ferromagnetism of (n-C3H7)4N[CoIIFeIII(dto)3] (dto = C2O2S2). Solid State Commun 126:291–296. https://doi.org/10.1016/S0038-1098(02)00825-6

    Article  CAS  Google Scholar 

  444. Carrasco JA, Abellán G, Coronado E (2018) Influence of morphology in the magnetic properties of layered double hydroxides. J Mater Chem C 6:1187–1198. https://doi.org/10.1039/c7tc05569b

    Article  CAS  Google Scholar 

  445. Hornick C, Rabu P, Drillon M (2000) Hybrid organic-inorganic multilayer materials: influence of π electrons as magnetic media in a series of bridged-layer compounds M2(OH)4-xAx/2 (M = cu(II) or co(II), a = dicarboxylate anion). Polyhedron 19:259–266. https://doi.org/10.1016/S0277-5387(99)00355-1

    Article  CAS  Google Scholar 

  446. Matsuda K, Irie M (2000) Photoswitching of intramolecular magnetic interaction: a diarylethene photochromic spin coupler. Chem Lett 29:16–17. https://doi.org/10.1246/cl.2000.16

    Article  Google Scholar 

  447. Bousquet D, Peltier C, Masselin C, Jacquemin D, Adamo C, Ciofini I (2012) A DFT study of magnetic interactions in photoswitchable systems. Chem Phys Lett 542:13–18. https://doi.org/10.1016/j.cplett.2012.05.040

    Article  CAS  Google Scholar 

  448. Okada T, Morita T, Ogawa M (2005) Tris(2,2′-bipyridine)ruthenium(II)-clays as adsorbents for phenol and chlorinated phenols from aqueous solution. Appl Clay Sci 29:45–53. https://doi.org/10.1016/j.clay.2004.09.004

    Article  CAS  Google Scholar 

  449. Seki Y, Ide Y, Okada T, Ogawa M (2015) Concentration of 2-phenylphenol by organoclays from aqueous sucrose solution. Appl Clay Sci 109–110:64–67. https://doi.org/10.1016/j.clay.2014.12.021

    Article  CAS  Google Scholar 

  450. Yamaguchi T, Maity A, Polshettiwar V, Ogawa M (2017) Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and adsorption. J Phys Chem A 121:8080–8085. https://doi.org/10.1021/acs.jpca.7b08466

    Article  CAS  PubMed  Google Scholar 

  451. Yamaguchi T, Ogawa M (2018) Hydrophilic internal pore and hydrophobic particle surface of organically modified mesoporous silica particle to host photochromic molecules. Chem Lett 48:170–172. https://doi.org/10.1246/cl.180908

    Article  CAS  Google Scholar 

  452. Okabe Y, Ogawa M (2015) Photoinduced adsorption of spiropyran into mesoporous silicas as photomerocyanine. RSC Adv 5:101789–101793. https://doi.org/10.1039/C5RA18252B

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Chair Grant 2017 (grant number FDA-CO-2560-5655) from the National Science and Technology Development Agency (NSTDA), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamaguchi, T., Oh, JM., Ogawa, M. (2020). Photofunctions of Dye-Clay Hybrids: Recent Developments. In: Martínez-Martínez, V., López Arbeloa, F. (eds) Dyes and Photoactive Molecules in Microporous Systems. Structure and Bonding, vol 183. Springer, Cham. https://doi.org/10.1007/430_2020_53

Download citation

Publish with us

Policies and ethics