Skip to main content

Tumor models for preclinical development of targeted agents

  • Chapter
Advances in Targeted Cancer Therapy

Part of the book series: Progress in Drug Research ((PDR,volume 63))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teicher BA (ed) (2001) Tumor models in cancer research. Humana Press, Totowa

    Google Scholar 

  2. Schuh JCL (2004) Trials, tribulations and trends in tumor modeling in mice. Toxicol Pathol 32(Suppl 1): 53–66

    CAS  PubMed  Google Scholar 

  3. Coussens L, Yang-Feng TC, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Lieberman TA, Schlessinger J, Francke U et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chrmosomal location with neu oncogene. Science 230: 1132–1139

    CAS  PubMed  Google Scholar 

  4. Pirollo KF, Hao Z, Rait A (1997) Evidence supporting a signal transduction pathway leading to the radiation-resistant phenotype in human tumor cells. Biochem Biophys Res Commun 230: 196–201

    Article  CAS  PubMed  Google Scholar 

  5. Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ (1999) Monoclonal antibody to HER-2/neu receptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res 59: 1347–1355

    CAS  PubMed  Google Scholar 

  6. Klapper LN, Waterman H, Sela M, Yarden Y (2000) Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-CBL and enhancing ubiquitination of HER-2. Cancer Res 60: 3384–3388

    CAS  PubMed  Google Scholar 

  7. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of Trastuzumab (Herceptin). Semin Oncol 26(Suppl 12): 60–70

    CAS  PubMed  Google Scholar 

  8. Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases downregulate vascular endothelial growth factor production by tumor cells in vitro and in vivo. Am J Pathol 151: 1523–1530

    CAS  PubMed  Google Scholar 

  9. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6: 443–446

    CAS  PubMed  Google Scholar 

  10. Slamon DJ, Clark GM, Wong SG, Levin W, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182

    CAS  PubMed  Google Scholar 

  11. Slamon DJ, Godolphin W, Jones L, Holt J, Wong S, Keith D, Levin W, Stuart S, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast cancer and ovarian cancer. Science 244: 707–712

    CAS  PubMed  Google Scholar 

  12. Slamon D, Press M, Godolphin W, Ramos L, Haran P, Shek L, Stuart S, Ullrich A (1989) Studies of the HER-2/neu oncogene in human breast cancer. Cancer Cells 7: 371–379

    Google Scholar 

  13. Reese D, Slamon D (1997) HER-2/neu signal transduction in human breast and ovarian cancer. Stem Cells 15: 1–8

    CAS  PubMed  Google Scholar 

  14. DiFiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA (1987) erbB2 is a potent oncogene when expressed in NIH-3T3 cells. Science 237: 178–181

    CAS  Google Scholar 

  15. Hudziak RM, Schlessinger J, Ullrich A (1987) Increased expression of the putative growth factor receptor p185HER-2 causes transformation and tumorigenesis of NIH-3T3 cells. Proc Natl Acad Sci USA 84: 7159–7163

    CAS  PubMed  Google Scholar 

  16. Chazin V, Kaleko M, Miller A, Slamon DJ (1992) Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene 7: 1859–1865

    CAS  PubMed  Google Scholar 

  17. Pierce J, Arnstein P, Dimarco E, Artrip J, Kraus M, Lonardo F, Di Fiore P, Aaronson S (1991) Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene 6: 1189–1194

    CAS  PubMed  Google Scholar 

  18. Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ (1997) The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15: 537–547

    Article  CAS  PubMed  Google Scholar 

  19. Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ (1998) Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 17: 2235–2249

    Article  CAS  PubMed  Google Scholar 

  20. Pegram MD, Pauletti G, Slamon DJ (1998) HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 52: 65–77

    Article  CAS  PubMed  Google Scholar 

  21. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, Coombs D, Baly D, Kabbinavar F, Slamon D (1999) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18: 2241–2251

    Article  CAS  PubMed  Google Scholar 

  22. Xu F, Yu Y, Le X-F, Boyer C, Mills GB, Bast RC (1999) The outcome of heregulin-induced activation of ovarian cancer cells depends on the relative levels of HER-2 and HER-3 expression. Clin Cancer Res 5: 3653–3660

    CAS  PubMed  Google Scholar 

  23. Konecny GE, Meng YG, Untch M, Wang H-J, Bauerfeind I, Epstein M, Stieber P, Vernes J-M, Gutierrez J, Hong K et al (2004) Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10: 1706–1716

    CAS  PubMed  Google Scholar 

  24. Kohn EC, Lu Y, Wang H, Yu Q, Yu S, Hall H, Smith DL, Meric-Bernstam F, Hortobagyi GN, Mills GB (2004) Molecular therapeutics: promise and challenges. Semin Oncol 31: 39–53

    Article  CAS  PubMed  Google Scholar 

  25. Chakravarthy B, Pietenpol JA (2003) Combined modality management of breast cancer: development of predictive markers through proteomics. Semin Oncol 30: 23–36

    Article  CAS  PubMed  Google Scholar 

  26. Petricoin EF, Liotta LA (2003) Clinical applications of proteomics. J Nutr 133: 2476S–2484S

    CAS  PubMed  Google Scholar 

  27. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2: 566–580

    Article  CAS  PubMed  Google Scholar 

  28. Hamid O (2004) Emerging treatments in oncology: focus on tyrosine kinase (erbB) receptor inhibitors. J Am Pharm Assoc 44: 52–58

    Google Scholar 

  29. Workman P (2001) Scoring a bull’s-eye against cancer genome targets. Curr Opin Pharmacol 1: 342–352

    CAS  PubMed  Google Scholar 

  30. Heldin CH (2001). Signal transduction: multiple pathways, multiple options for therapy. Stem Cells 19: 295–303

    Article  CAS  PubMed  Google Scholar 

  31. Elsayed YA, Sausville EA (2001) Selected novel anticancer treatments targeting cell signaling proteins. Oncologists 6: 517–537

    CAS  Google Scholar 

  32. Hondermarck H, Vercoutter-Edouart AS, Revillion F, Lemoine J, er-Yazidi-Belkoura I, Nurcombe V, Peyrat JP (2001) Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1: 1216–1232

    Article  CAS  PubMed  Google Scholar 

  33. Arteaga CL, Khuri F, Krystal G, Sebti S (2002) Overview of rationale and clinical trials with signal transduction inhibitors in lung cancer. Semin Oncol 29(1 suppl 4): 15–26

    CAS  PubMed  Google Scholar 

  34. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67

    Article  CAS  PubMed  Google Scholar 

  35. Graff JR (2002) Emerging targets in the AKT pathway for treatment of androgenindependent prostatic adenocarcinoma. Exp Opin Ther Targets 6: 103–113

    CAS  Google Scholar 

  36. Lango MN, Shin DM, Grandis JR (2001) Targeting growth factor receptors: integration of novel therapeutics in the management of head and neck cancer. Curr Opin Oncol 13: 168–175

    Article  CAS  PubMed  Google Scholar 

  37. Bode AM, Dong Z (2000) Signal transduction pathways: targets for chemoprevention of skin cancer. Lancet Oncol 1: 181–188

    Article  CAS  PubMed  Google Scholar 

  38. Heymach JV (2001) Angiogenesis and antiangiogenic approaches to sarcomas. Curr Opin Oncology 13: 261–269

    CAS  Google Scholar 

  39. Reddy SA (2001) Signaling pathways in pancreatic cancer. Cancer J 7: 274–286

    CAS  PubMed  Google Scholar 

  40. Lieberman SM, Horig H, Kaufman HL (2001) Innovative treatments for pancreatic cancer. Surg Clin N Am 81: 715–739

    Article  CAS  PubMed  Google Scholar 

  41. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186

    CAS  PubMed  Google Scholar 

  42. Ciardiello F, Bianco R, Caputo R, Caputo R, Damiano V, Triani T, Melisi D, De Vita F, De Placido S, Bianco AR et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 10: 784–793

    CAS  PubMed  Google Scholar 

  43. El-Rayes BF, LoRusso PM (2004) Targeting the epidermal growth factor receptor. Br J Cancer 91: 418–424

    Article  CAS  PubMed  Google Scholar 

  44. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2 suppl): 21–26

    CAS  PubMed  Google Scholar 

  45. Teicher BA (1996) Systems approach to cancer therapy (antiangiogenics + standard cytotoxics-mechanism(s) of interaction). Cancer Metastasis Rev 15: 247–272

    Article  CAS  PubMed  Google Scholar 

  46. Teicher BA (ed) (1999) Antiangiogenic agents in cancer therapy. Humana Press, Totowa

    Google Scholar 

  47. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine signaling as a target for cancer intervention strategies. Endocr Relat Cancer 8: 161–173

    Article  CAS  PubMed  Google Scholar 

  48. Ciardiello F, Tortora G (2001) A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 7: 2958–2970

    CAS  PubMed  Google Scholar 

  49. Sedlacek HH (2000) Kinase inhibitors in cancer therapy. A look ahead. Drugs 59: 435–476

    Article  CAS  PubMed  Google Scholar 

  50. Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273: 200–206

    Article  CAS  PubMed  Google Scholar 

  51. Kari C, Chan TO, de Quadros MR, Roderick U (2003) Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. Cancer Res 63: 1–5

    CAS  PubMed  Google Scholar 

  52. Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM (2004) Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 64: 5355–5362

    CAS  PubMed  Google Scholar 

  53. Kim DW, Choy H (2004) Potential role for epidermal growth factor receptor inhibitors in combined-modality therapy for non-small cell ling cancer. Int J Radiat Oncol Biol Phys 59(2 suppl): 11–20

    CAS  PubMed  Google Scholar 

  54. Thomas SM, Grandis JR (2004) Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors in combined-modality therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys 59(2 suppl): 11–20

    Google Scholar 

  55. Harari PM, Huang SM (2004) Combining EGFR inhibitors with radiation or chemotherapy: will preclinical studies predict clinical results? Int J Radiat Oncol Biol Phys 58: 976–983

    Article  CAS  PubMed  Google Scholar 

  56. Li B, Chang CM, Yuan M, McKenna WG, Shu HK (2003) Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 63: 7443–7450

    CAS  PubMed  Google Scholar 

  57. Arteaga CL (2003) EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21(23 suppl): 289s–291s

    PubMed  Google Scholar 

  58. Mendelsohn J (2000) Blockade of receptors for growth factors: an anticancer therapy. Clin Cancer Res 6: 747–753

    CAS  Google Scholar 

  59. Mendelsohn J (1997) Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 3: 2703–2707

    CAS  PubMed  Google Scholar 

  60. Fan Z, Baselga J, Masui H, Mendelsohn J (1993) Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 53: 4637–4642

    CAS  PubMed  Google Scholar 

  61. Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller WH, Mendelsohn J (1993) Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 85: 1327–1333

    CAS  PubMed  Google Scholar 

  62. Ciardiello F, Bianco R, Damiano V, De Lorenzo S, Pepe S, De Placido S, Fan Z, Mendelsohn J, Bianco AR, Tortora G (1999) Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 5: 909–916

    CAS  PubMed  Google Scholar 

  63. Bruns CJ, Harbison MT, Davis DW, Portera CA, Tsan R, McConkey DJ, Evans DB, Abbruzzese JL, Hicklin DJ, Radinsky R (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 6: 1936–1948

    CAS  PubMed  Google Scholar 

  64. Inoue K, Slaton JW, Perrotte P, Davis DW, Bruns CJ, Hicklin DJ, McConkey DJ, Sweeney P, Radinsky R, Dinney CP (2000) Paclitaxel enhances the effects of the antiepidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin Cancer Res 6: 4874–4884

    CAS  PubMed  Google Scholar 

  65. Huang S-M, Harari P (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics and tumor angiogenesis. Clin Cancer Res 6: 2166–2174

    CAS  PubMed  Google Scholar 

  66. Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5: 257–265

    CAS  PubMed  Google Scholar 

  67. Ciardiello F, Bianco R, Damiano V, Fontanini G, Caputo R, Pomatico G, De Placido S, Damiano V, De Lorenzo S, Pepe S et al (2000) Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 6: 3739–3747

    CAS  PubMed  Google Scholar 

  68. Ciardiello F, Caputo R, Bianco R, Damiananco V, Pomatico G, De Placido S, Bianco AR, Tortora G (2000) Antitumor effect and potentiation of cytotoxic drug activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-sensitive tyrosine kinase inhibitor. Clin Cancer Res 6: 2053–2063

    CAS  PubMed  Google Scholar 

  69. Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7: 1459–1465

    CAS  PubMed  Google Scholar 

  70. Woodburn JR, Kendrew J, Fennell M, Wakeling AE (2000) ZD1839 (‘Iressa’) a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI): inhibition of c-fos mRNA, an intermediate marker of EGFR activation, correlates with tumor growth inhibition. Proc Am Assoc Cancer Res 41: 402

    Google Scholar 

  71. Traxler P (2003) Tyrosine kinases as targets in cancer therapy-successes and failures. Expert Opin Ther Targets 7: 215–234

    Article  CAS  PubMed  Google Scholar 

  72. Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P, O’Reilly T, Wood J, Zimmermann J (2001) Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21: 499–512

    Article  CAS  PubMed  Google Scholar 

  73. Douglass EC (2003) Development of ZD1839 in colorectal cancer. Semin Oncol 30: 17–22

    CAS  PubMed  Google Scholar 

  74. Sirotnak FM, Zakowsky MF, Miller VA, Scher HI, Kris MG (2000) Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa) an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 6: 4885–4892

    CAS  PubMed  Google Scholar 

  75. Ohmori T, Ao Y, Nishio K, Saijo N, Arteaga CL, Kurki T (2000) Low dose cisplatin can modulate the sensitivity of human non-small cell lung carcinoma cells to EGFR tyrosine kinase inhibitor (ZD1839; Iressa) in vivo. Proc Am Assoc Cancer Res 41: 482

    Google Scholar 

  76. Williams K, Telfer BA, Stratford IJ, Wedge SR (2000) An evaluation of the EGFR tyrosine kinase inhibitor ZD1839 (Iressa) in combination with ionizing radiation. 11th NCI-EORTC-AACR Symposium on New Drugs in Cancer Therapy: Amsterdam, November 7–10. Abstract LB3

    Google Scholar 

  77. Harari PM, Huang SM (2001) Radiation response modification following molecular inhibition of epidermal growth factor receptor signaling. Semin Radiat Oncol 11: 281–289

    Article  CAS  PubMed  Google Scholar 

  78. Hirata A, Ogawa S-I, Kometani T, Kuwano T, Naito S, Kuwano M, Ono M (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62: 2554–2560

    CAS  PubMed  Google Scholar 

  79. Tortora G, Caputo R, Damiano V, Fontanini G, Melisi D, Veneziani BM, Zunino F, Bianco AR, Ciardiello F (2001) Oral administration of a novel taxane, an antisense oligonucelotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Clin Cancer Res 7: 4156–4163

    CAS  PubMed  Google Scholar 

  80. Naruse I, Ohmori T, Ao Y, Fukumoto H, Kuroki T, Mori M, Saijo N, Nishio K (2002) Antitumor activity of the selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) Iressa (ZD1839) in an EGFR-expressing multidrug-resistant cell line in vitro and in vivo. Int J Cancer 98: 310–315

    Article  CAS  PubMed  Google Scholar 

  81. Drucker BJ, Schwartz L, Marion S, Motzer R (2002) Phase II trial of ZD1839 (Iressa), an EGF receptor inhibitor, in patients with advanced reanl cell carcinoma. Proc Am Soc Clin Oncol 2002: abstract 720

    Google Scholar 

  82. Cho CD, Fisher GA, Halsey JZ, Advani RH, Yuen AR, Sikic BI (2002) A phase I study ZD1839 (Iressa) in combination with oxaliplatin, 5-fluororuacil (5-FU) and leucovorin (LV) in advanced solid malignancies. Proc Am Soc Clin Oncol. 2002: abstract 38

    Google Scholar 

  83. Albanell J, Rojo F, Baselga J (2001) Pharmacodynamic studies with the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839. Semin Oncol 28(5 suppl 16): 56–66

    CAS  PubMed  Google Scholar 

  84. Dancey J (2004) Epidermal growth factor receptor inhibitors in clinical development. Int J Radiat Oncol Biol Phys 58: 1003–1007

    Article  CAS  PubMed  Google Scholar 

  85. Modjtahedi H, Eccles S, Box G, Styles J, Dean C (1993) Immunotherapy of human tumour xenografts overexpressing the EGF receptor with rat antibodies that block growth factor-receptor interaction. Br J Cancer 67: 254–261

    CAS  PubMed  Google Scholar 

  86. Modjtahedi H, Styles J, Box G, Eccles S, Gusterson B, Dean C (1993) Antitumour activity of rat Mabs to the human receptor for EGF. In: AA Epenetos, NR Lemonie (eds): Mutant oncogenes: targets for therapy? Chapman and Hall, London, 35–47

    Google Scholar 

  87. Modjtahedi H, Styles J, Dean C (1993) The growth response of human tumour cell lines expressing the EGF receptor to treatment with EGF and/or Mabs that block ligand binding. Int J Oncol 3: 237–243

    CAS  Google Scholar 

  88. Fan Z, Baselga J, Masui H, Mendelsohn J (1992) Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 53: 4637–4642

    Google Scholar 

  89. Pollack VA, Savage DM, Baker DA, Tsparikos KE, Sloan DE, Moyer JD, Barbacci EG, Pustilnik LR, Smolarek TA, Davis JA et al (1999) Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 291: 739–748

    CAS  PubMed  Google Scholar 

  90. Grunwald V, Hidalgo M (2003) Development of the epidermal growth factor receptor inhibitor OSI-774. Semin Oncol 30: 23–31

    Article  CAS  PubMed  Google Scholar 

  91. Miller VA (2004) Long survival of never smoking non-small cell lung cancer (NSCLC) patients (pts) treated with relotinib HCl (OSI-774) and chemotherapy: subgroup analysis of TRIBUTE. Proc Am Soc Clin Oncol 2004: abstract 7061

    Google Scholar 

  92. Tran HT (2004) Pharmacokinetic study of the phase III randomized, double-blind, multicenter trial of paclitaxel (Pac) and carboplatin (C) combined with erlotinib (E) or placebo in patients with advanced non-small cell lung cancer. Proc Am Soc Clin Oncol 2004: abstract 2050

    Google Scholar 

  93. Mauro MJ, Druker BJ (2001) STI571: targeting BCR-ABL as therapy for CML. Oncologist 6: 233–238

    Article  CAS  PubMed  Google Scholar 

  94. Mauro MJ, Druker BJ (2001) STI571: a gene product-targeted therapy for leukemia. Curr Oncol Reports 3: 223–227

    CAS  Google Scholar 

  95. Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ (2002) STI571: a paradigm of new agents for cancer therapies. J Clin Oncol 20: 325–334

    Article  CAS  PubMed  Google Scholar 

  96. Griffin J (2001) The biology of signal transduction inhibition: basic science to novel therapies. Semin Oncol 28(5 suppl 17): 3–8

    Article  CAS  PubMed  Google Scholar 

  97. Thambi P, Sausville EA (2002) STI571 (imatinib mesylate): the tale of a targeted therapy. Anti-Cancer Drugs 13: 111–114

    Article  CAS  PubMed  Google Scholar 

  98. Olavarria E, Craddock C, Dazzi F, Marin D, Marktel S, Apperley JF, Goldman JM (2002) Imatinib mesylate (STI571) in the treatment of relapse of chronic myeloid leukemia after allogenic stem cell transplantation. Blood 99: 3861–3862

    Article  CAS  PubMed  Google Scholar 

  99. Gorre ME, Sawyer CL (2002) Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol 9: 303–307

    Article  PubMed  Google Scholar 

  100. O’Dwyer ME, Mauro MJ, Druker BJ (2002) Recent advances in the treatment of chronic myelogenous leukemia. Annu Rev Med 53: 369–381

    Google Scholar 

  101. La Rose P, O’Dwyer ME, Druker BJ (2002) Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective. Leukemia 16: 1213–1219

    Google Scholar 

  102. Liu WM, Stimson LA, Joel SP (2002) The in vitro activity of the tyrosine kinase inhibitor STI571 in BCR-ABL positive chronic myeloid leukemia cells: Synergistic interactions with anti-leukemic agents. Br J Cancer 86: 1472–1478

    Article  CAS  PubMed  Google Scholar 

  103. Marley SB, Davidson RJ, Goldman JM, Gordon MY (2002) Effects of combinations of therapeutic agents on the proliferation of progenitor cells in chronic myeloid leukemia. Br J Hematol 116: 162–165

    Article  CAS  Google Scholar 

  104. Avramis IA, Laug WE, Sausville EA, Avramis VI (2003) Determination of drug synergism between the tyrosine kinase inhibitors NSC680410 (adaphostin) and/or STI571 (imatinib mesylaste, Gleevec) with cytotoxic drugs against human leukemia cell lines. Cancer Chemother Pharmacol 52: 307–318

    Article  CAS  PubMed  Google Scholar 

  105. Topaly J, Fruehauf S, Ho AD, Zeller WJ (2002) Rationale for combination therapy of chronic myelogenous leukemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning. Br J Cancer 86: 1487–1493

    Article  CAS  PubMed  Google Scholar 

  106. Wolff NC, Ilaria RL (2001) Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 98: 2808–2816

    Article  CAS  PubMed  Google Scholar 

  107. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D et al (2002) A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 99: 7622–7627

    Article  CAS  PubMed  Google Scholar 

  108. Krystal GW (2001) Mechanisms of resistance to imatinib (STI571) and prospects for combination with conventional chemotherapeutic agents. Drug Resist Updat 4: 16–21

    CAS  PubMed  Google Scholar 

  109. Krystal GW, Honsawek S, Kiewlich D, Liang C, Vasile S, Sun L, McMahon G, Lipson KE (2001) Indoline tyrosine kinase inhibitors block kit activation and growth of small cell lung cancer cells. Cancer Res 61: 3660–3668

    CAS  PubMed  Google Scholar 

  110. Weisberg E, Griffin JD (2001) Mechanisms of resistance imatinib (STI571) in preclinical models and in leukemia patients. Drug Resist Updat 4: 22–28

    CAS  PubMed  Google Scholar 

  111. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shisshodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64: 672–677

    Article  CAS  PubMed  Google Scholar 

  112. Demetri GD (2004) SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resitance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST). Proc Am Soc Clin Oncol 2004: abstract 3001

    Google Scholar 

  113. Demetri GD (2001) Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin Oncol 28(5 suppl 17): 19–26

    Article  CAS  PubMed  Google Scholar 

  114. Joensuu H, Dimitrijevic S (2001) Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumors. Ann Med 33: 451–455

    CAS  PubMed  Google Scholar 

  115. Joensuu H, Krause A, Demetri GD, Blanke C, von Mehren M, Heinrich MC, Eisenberg B, Roberts PJ, Silberman S, Dimitrijevic S et al (2002) Gastrointestinal stromal tumor (GIST) patients who respond to imatinib (STI571, Gleevec) show marked decline of circulating levels of VEGF, KIT, and bFGF in serum, but not stem cell factor (SCF) levels. Proc Am Soc Clin Oncol 2002: abstract 552

    Google Scholar 

  116. Heinrich MC, Blanke CD, Druker BJ, Corlees CL (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703

    Article  CAS  PubMed  Google Scholar 

  117. Sawaki A, Yamao K (2004) Imatinib mesylate acts in metastatic or unresectable gastrointestinal stromal tumor by targeting KIT receptors: a review. Cancer Chemotherap Pharmacol 54(suppl 1): S44–S49

    CAS  Google Scholar 

  118. Herzig M, Christofori G (2002) Recent advances in cancer research: mouse models of tumorigenesis. Biochim Biophys Acta 1602: 97–113

    CAS  PubMed  Google Scholar 

  119. Gendler SJ, Mukherjee P (2001) Spontaneous adenocarcinoma mouse models for immunotherapy. Trends Mol Med 7: 471–475

    Article  CAS  PubMed  Google Scholar 

  120. Lampson LA (2001) New animal models to probe brain tumor biology, therapy, and immunotherapy: advantages and remaining concerns. J Neurooncol 53: 275–287

    Article  CAS  PubMed  Google Scholar 

  121. Tuveson DA, Jacks T (2002) Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 12: 105–110

    Article  CAS  PubMed  Google Scholar 

  122. Jackson-Grusby L (2002) Modeling cancer in mice. Oncogene 21: 5504–5514

    Article  CAS  PubMed  Google Scholar 

  123. Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans. Cancer Biol Ther 2(4 suppl 1): S134–S139

    CAS  PubMed  Google Scholar 

  124. van Kempen LCLT, Ruiter DJ, van Muijen GNP, Coussens LM (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 82: 539–548

    PubMed  Google Scholar 

  125. Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W (2003) Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 566: 9–20

    Google Scholar 

  126. Chung LWK (2003) Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer 97(3 suppl): 772–778

    PubMed  Google Scholar 

  127. Hoekstra R, Verweij J, Eskens FALM (2003) Clinical trial design for target specific anticancer agents. Invest New Drugs 21: 243–250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag, Basel (Switzerland)

About this chapter

Cite this chapter

Teicher, B.A. (2005). Tumor models for preclinical development of targeted agents. In: Herrling, P.L., Matter, A., Schultz, R.M. (eds) Advances in Targeted Cancer Therapy. Progress in Drug Research, vol 63. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7414-4_3

Download citation

Publish with us

Policies and ethics