Skip to main content
Log in

A systems approach to cancer therapy

Antiangiogenics + Standard Cytotoxics → Mechanism(s) of Interaction

  • Tumor Angiogenesis
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Conclusion

The molecules described herein as antiangiogenic agents and antimetastatic agents represent a wide variety of molecular structures with a wide variety of biological effects and targets. Most often these agents have been generally classified as antiangiogenic or antimetastatic by their effects in an in vitro bio-assay system. The diversity in this group of molecules gives strength to the potential of this approach in therapeutic applications. The biological and biochemical pathways involved in angiogenesis are numerous and redundant. It is likely that there are many angiogenic factors and many pathways of invasion, therefore it is likely that blockade of more than one pathway related to angiogenesis and/or invasion will be necessary to impact on the natural progress of a malignant disease.

The vasculature forms the first barrier to penetration of molecules into tumors. Although the antiangiogenic agent treatments administered in this study did not inhibit angiogenesis in these tumors completely, the vasculature present in the treated tumors may be impaired compared to control tumors. Overall, therefore, the best speculation is that the main targets for the antiangiogenic agents are extracellular matrix processes and/or tumor endothelial cells and that inhibition and/or impairment of these non-malignant functions can improve therapeutic responses when used in combination with cytotoxic therapies. The incorporation of antiangiogenic agents and/or antimetastatic agents into therapeutic regimens represents an important challenge. The successful treatment of cancer requires the eradication of all malignant cells and therefore treatment with cytotoxic therapies. The compatibility of antiangiogenic therapy and/or anti-invasion agents with cytotoxic chemotherapeutic agents is not obvious [316].

The goal of the addition of any non-cytotoxic potentiator to a therapeutic regimen is to take a good therapy and, without additional toxicity, ‘push’ it to cure.

Cyclophosphamide is a good drug against the Lewis lung carcinoma although no long-term survivors of animals bearing Lewis lung carcinoma are achieved with cyclophosphamide treatment alone. Adding antiangiogenic agents to treatment of this tumor with cyclophosphamide produced a cure rate of 40–50%, meaning that both the primary and metastatic disease has been eradicated in these animals. Cures were achieved only when the antiangiogenic treatments extended from days 4–18 post Lewis lung tumor implantation. The results obtained with the addition of antiangiogenic agents to cytotoxic anticancer therapies in in vivo models of established solid tumors have been very positive and provide direction for future clinical trials including these antiangiogenic agents. Two conclusions may be drawn. First, combinations of antiangiogenic and/or antimetastatic agents evoke a greater effect on tumor response to therapy than does treatment with single agents of these classes. Second, treatment with antiangiogenic agents and/or antimetastatic agents can interact in a positive way with cytotoxic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paget S: The distribution of secondary growths in cancer of the breast. Lancet (March 23): 571–573, 1989

  2. Poste G, Paruch L: Stephen Paget, M.D., F.R.C.S., (1855–1926): A Retrospective. Cancer Metastasis Rev 8: 93–97, 1989

    Google Scholar 

  3. Mareel MM, Van Roy FM, Bracke ME: How and when do tumor cells metastasize? Critical Reviews in Oncogenesis (4)5: 559–594, 1993

    Google Scholar 

  4. Kohn EC: Development and prevention of metastasis. Anticancer Res 13: 2553–2560, 1993

    Google Scholar 

  5. Freitas I, Baronzio GF: Neglected factors in cancer treatment: cellular interactions and dynamic microenvironment in solid tumors. Anticancer Res 14: 1097–1102, 1994

    Google Scholar 

  6. Wellstein A: Growth factor targeted and conventional therapy of breast cancer. Breast Ca Res Trtmt 31: 141–152, 1994

    Google Scholar 

  7. Connolly JL, Ducatman BS, Schnitt SJ, Dvorak AM, Dvorak HF: Principles of cancer pathology. In: Holland JF, Frei III E, Bast Jr RC, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer Medicine. Lea & Febiger, Philadelphia, PA, 1993, pp 432–450

    Google Scholar 

  8. Cotran RS, Kumar V, Robbins SL: Neoplasia (4th ed.). W.B. Saunders Co., Philadelphia, PA, 1989, p 239–305

    Google Scholar 

  9. Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Eng J Med 315: 1650–1659, 1986

    Google Scholar 

  10. Nagy JA, Brown LF, Senger DR, Lanir N, Van De Water L, Dvorak AM, Dvorak HF: Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948: 305–326, 1989

    Google Scholar 

  11. Hodde C, Miodonski A, Bakker C, Veltman WAM: Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat's cochlea. Scan Electron Microse (II): 477–484, 1977

  12. Burger PC, Chandler DB, Klintworth GK: Scanning electron microscopy of vascular casts. J Elec Micro Tech 1: 341–348, 1984

    Google Scholar 

  13. Hammersen F, Endrick B, Messmer K: The fine structure of tumor blood vessels. Int J Microcirc: Clin Exp 4: 31–43, 1985

    Google Scholar 

  14. Fahrenbach WH, Bacon DR, Morrison JC, Van Buskirk EM: Controlled vascular corrosion casting of the rabbit eye. J Elec Micro Tech 10: 15–26, 1988

    Google Scholar 

  15. Schraufnagel DE, Schmid A: Microvascular casting of the lung: effects of various fixation protocols. J Elec Micro Tech 8: 185–191, 1988

    Google Scholar 

  16. Falk P: Differences in vascular pattern between the spontaneous and the transplanted C3H mouse mammary carcinoma. Eur J Cancer 18: 155–165, 1982

    Google Scholar 

  17. Warren BA: The vascular morphology of tumors. In: Peterson HI (ed) Tumor blood circulation. CRC Press, Boca Raton, FL, 1979, pp 1–47

    Google Scholar 

  18. Falk P: Patterns of vasculature in two pairs of related fibrosarcomas in the rat and their relation to tumour response to single large doses of radiation. Eur J Cancer 14: 237–250, 1978

    Google Scholar 

  19. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 48: 2641–2658, 1988

    Google Scholar 

  20. Peters W, Teixeira M, Intaglietta M, Gross JF: Microcirculatory studies in rat mammary carcinoma. I. Transparent chamber method, development of microvasculature and pressures in tumor vessels. J Natl Cancer Inst 65: 631–642, 1980

    Google Scholar 

  21. Zweifach BW: I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res 34: 843–857, 1974

    Google Scholar 

  22. House SD, Johnson PC: Diameter and blood flow of skeletal muscle venules during local flow regulation. Am J Physiol 250: H828-H837, 1986

    Google Scholar 

  23. Schmid-Schoenbein GW, Zweifach BW, Kovalcheck S: The application of stereological principles to morphometry of the microcirculation in different tissues. Microvasc Res 14: 303–317, 1977

    Google Scholar 

  24. Dewhirst MW, Tso CY, Oliver R, Gustafson CS, Secomb TW, Gross JF: Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 17: 91–99, 1989

    Google Scholar 

  25. Endrich B, Intaglietta M, Reinhold HS, Gross JF: Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res 39: 17–23, 1979

    Google Scholar 

  26. Endrich B, Hammersen F, Gotz A, Messmer K: Microcirculatory blood flow, capillary morphology, and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst 68: 475–485, 1982

    Google Scholar 

  27. Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51: 265–273, 1991

    Google Scholar 

  28. Skalak TC, Schmid-Schönbein GW: The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc Res 32: 333–347, 1986

    Google Scholar 

  29. Vaupel P: Oxygen supply to malignant tumors. In: Peterson H-I (ed) Tumor blood circulation: angiogenesis, vascular morphology, and blood flow of experimental and human tumors. CRC Press Inc., Boca Raton, FL, 1979, pp 143–168

    Google Scholar 

  30. Awwad HK, El Naggar ME, Mocktar N, Barsoum M: Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int J Radiat Oncol Biol Phys 12: 1329–1333, 1986

    Google Scholar 

  31. Tannock IF, Steel GG: Quantitative techniques for study of the anatomy and function of small blood vessels in tumors. J Natl Cancer Inst 42: 771–782, 1969

    Google Scholar 

  32. Lauk S, Zietman A, Skates S, Fabian R, Suit HD: Comparative morphometric study of tumor vasculature in human squamous cell carcinomas and their xenotransplants in athymic nude mice. Cancer Res 49: 4557–4561, 1989

    Google Scholar 

  33. Folkman J: Tumor angiogenesis: therapeutic implications. New Eng J Med 285: 1182–1186, 1971

    Google Scholar 

  34. Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–416, 1972

    Google Scholar 

  35. Veyta JC, Via DP, Butterfield CE, Zetter BR: Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99: 2034–2040, 1984

    Google Scholar 

  36. Folkman J, Klagsbrun M: Angiogenic factors. Science 235: 442–447, 1987

    Google Scholar 

  37. Folkman J: What is the role of angiogenesis in metastasis from cutaneous melanoma? Eur J Cancer Clin Oncol 23: 361–363, 1987

    Google Scholar 

  38. Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasis to neoplasia. Nature 339: 58–61, 1989

    Google Scholar 

  39. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6, 1990

    Google Scholar 

  40. Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A, Witte L, Fuks Z: Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 51: 2552–2558, 1991

    Google Scholar 

  41. Folkman J, Shing Y: Angiogenesis. J Biol Chem (267)16: 10931–10934, 1992

    Google Scholar 

  42. Shing Y, Folkman J, Haudenschild C, Lund D, Crum R, Klagsbrun M: Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor. J Cell Biochem 29: 275–287, 1985

    Google Scholar 

  43. Thomas KA: Fibroblast growth factors. FASEB J 1: 434–440, 1987

    Google Scholar 

  44. Rifkin DB, Moscatelli D: Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol (109)1: 1–6, 1989

    Google Scholar 

  45. Burgess WH, Maciag T: The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 58: 575–606, 1986

    Google Scholar 

  46. Gospodarowicz D: Fibroblast growth factor and its involvement in developmental processes. curr Top Dev Biol 24: 57–93, 1990

    Google Scholar 

  47. Klagsbrun M, D'Amore PA: Regulators of angiogenesis. Annu Rev Physiol 53: 217–239, 1991

    Google Scholar 

  48. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L: Basic fibroblast growth factor induces angiogenesis in vitro. Proceedings of the National Academy of Sciences U.S.A. (83)19: 7297–7301, 1986

    Google Scholar 

  49. Thomas KA, Rios-Candelore M, Gimenz-Gallego G, DiSalvo J, Bennett C, Rodkey J, Fitzpatrick S: Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proceedings of the National Academy of Sciences U.S.A. 82: 6409–6413, 1985

    Google Scholar 

  50. Lobb RR, Alderman EM, Fett JW: Induction of angiogenesis by bovine brain derived class 1 heparin-binding growth factor. Biochemistry (24)19: 4969–4973, 1985

    Google Scholar 

  51. Baird A, Ling A: Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 142: 428–435, 1987

    Google Scholar 

  52. Shing Y: Heparin-copper biaffinity chromatography of fibroblast growth factors. J Biol Chem (263)18: 9059–9062, 1988

    Google Scholar 

  53. Moscatelli D, Presta M, Rifkin DB: Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis, and migration. Proceedings of the National Academy of Sciences U.S.A. 83(7): 2091–2095, 1986

    Google Scholar 

  54. Presta M, Moscatelli D, Joseph-Silverstein J, Rifkin DB: Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration. Mol Cell Biol (6)1: 4060–4066, 1986

    Google Scholar 

  55. Slack JM, Darlington BG, Heath JK, Godsave SF: Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326: 197–200, 1987

    Google Scholar 

  56. Kimmelman D, Kirschner M: Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell (51)5: 869–877, 1987

    Google Scholar 

  57. Vlodavsky J, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M: Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proceedings of the National Academy of Sciences U.S.A. (84)8: 2292–2296, 1987

    Google Scholar 

  58. Ferrara N, Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun (161)2: 851–858, 1989

    Google Scholar 

  59. Gospodarowicz D, Abraham JA, Schilling J: Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proceedings of the National Academy of Sciences U.S.A. (86)19: 7311–7315, 1989

    Google Scholar 

  60. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J: Tumor vascular permeability factor stimulates endothelial growth and angiogenesis. Journal of Clinical Investigators (84)5: 1470–1478, 1989

    Google Scholar 

  61. Pepper MS, Ferrara N, Orci L, Montesano R: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun (181)2: 902–906, 1991

    Google Scholar 

  62. Leung ZW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (246)4935: 1306–1309, 1989

    Google Scholar 

  63. Plouet J, Schilling J, Gospodarowicz D: Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J (8)12: 3801, 1989

    Google Scholar 

  64. Conn G, Soderman DD, Schaeffer MT, Wile M, Hatcher VB, Thomas KA: Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proceedings of the National Academy of Sciences U.S.A. (87)4: 1323–1327, 1990

    Google Scholar 

  65. Myoken Y, Kayada Y, Okamoto T, Kan M, Sato GH, Sato JD: Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites. Proceedings of the National Academy of Sciences U.S.A. (88)13: 5819–5823, 1991

    Google Scholar 

  66. Rosenthal RA, Megyesi J, Henzel WJ, Ferrara N, Folkman J: Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors (4)1: 53–59, 1990

    Google Scholar 

  67. Connolly DT, Olander JV, Heuvelman D, Nelson R, Monsell R, Siegel N, Haymore BL, Leimgruber R, Feder J: Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 264: 20017–20024, 1989

    Google Scholar 

  68. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT: Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science (246)4935: 1309–1312, 1989

    Google Scholar 

  69. Conn G, Bayne ML, Soderman DD, Kwok PW, Sullivan KA, Palisi TM, Hope DA, Thomas KA: Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proceedings of the National Academy of Sciences U.S.A. (87)7: 2628–2632, 1990

    Google Scholar 

  70. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA: The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem (266) 18: 11947–11954, 1991

    Google Scholar 

  71. O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL: Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55: 510–513, 1995

    Google Scholar 

  72. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189–1193, 1995

    Google Scholar 

  73. Shweiki D, Neeman M, Itin A, Keshet E: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implication for tumor angiogenesis. Proc Nat Acad Sci 92: 768–772, 1995

    Google Scholar 

  74. Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59: 520–529, 1994

    Google Scholar 

  75. Kondo S, Matsumoto T, Yokoyama Y, Ohmori I, Suzuki H: The shortest isoform of human vascular endothelial growth factor/vascular permeability factor (VEGF/VPF121) produced by Saccharomyces cerevisiae promotes both angiogenesis and vascular permeability. Biochim Biophys Acta 1243: 195–202, 1995

    Google Scholar 

  76. Luger TA, Schwarz T: Evidence for an epidermal cytokine network. J Invest Dermatol 95: 100S-104S, 1990

    Google Scholar 

  77. Oliveira IC, Sciavolino PJ, Lee TH, Vilcek J: Downregulation of interleukin-8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon. Proceedings of the National Academy of Sciences U.S.A. 89: 9049–9053, 1992

    Google Scholar 

  78. Baggiolini M, Clark-Lewis I: Interleukin-8, a chemotactic and inflammatory cytokine. Federation of European Biochemical Societies 307: 97–101, 1992

    Google Scholar 

  79. Bickel M: The role of interleukin-8 in inflammation and mechanisms of regulation. J Perio Res 64: 456–460, 1993

    Google Scholar 

  80. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801, 1992

    Google Scholar 

  81. Aman MJ, Rudolf G, Goldschmitt J, Aulitzky WE, Lam C, Huber C, Peschel C: Type-I interferons are potent inhibitors of interleukin-8 production in hematopoietic and bone marrow stromal cells. Blood 82: 2371–2378, 1993

    Google Scholar 

  82. Ishikawa F, Miyazone K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin C-H: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature (338)6216: 557–562, 1989

    Google Scholar 

  83. Fett JW, Strydom DJ, Lob RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL: Isolation and characterization of angiogenin, and angiogenic protein from human carcinoma cells. Biochemistry (24)20: 5480–5486, 1985

    Google Scholar 

  84. Bicknell R, Vallee BL: Angiogenin activates endothelial cell phospholipase. Proceedings of the National Academy of Sciences U.S.A. (85)16: 5961–5965, 1988

    Google Scholar 

  85. Bicknell R, Vallee BL: Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase. Proceedings of the National Academy of Sciences U.S.A. (86)5: 1573–1577, 1989

    Google Scholar 

  86. Shapiro R, Riordan JF, Vallee BL: Characteristic ribonucleolytic activity of human angiogenin. Biochemistry (25) 12: 3527–3532, 1986

    Google Scholar 

  87. St. Clair DK, Ryback SM, Riordan JF, Vallee BL: Angiogenin abolishes cell free protein synthesis by specific peptide inactivation of ribosomes. Proceedings of the National Academy of Sciences U.S.A. 84: 8330–8334, 1987

    Google Scholar 

  88. Hu G-F, Riordan JF, Vallee BL: Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Nat Acad Sci USA 91: 12096–12100, 1994

    Google Scholar 

  89. Olson KA, Fett JW, French TC, Key ME, Vallee BL: Angiogenin antagonists prevent tumor growth in vivo. Proc Nat Acad Sci USA 92: 442–446, 1995

    Google Scholar 

  90. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N: Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature (329) 6140: 630–632, 1987

    Google Scholar 

  91. Frater-Schroder M, Risau W, Hallman R, Gautschi P, Bohlen P: Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proceedings of the National Academy of Sciences U.S.A. (84)15: 5277–5281, 1987

    Google Scholar 

  92. Okamura K, Sato Y, Matsuda T, Hamanaka R, Ono M, Kohno K, Kuwano M: Endogenous basic fibroblast growth factor-dependent induction of collagenase and interleukin-6 in tumor necrosis factor-treated human microvascular endothelial cells. J Biol Chem (266)29: 19162–19165, 1991

    Google Scholar 

  93. Beutler B, Cerami A: Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature (320) 6063: 584–588, 1986

    Google Scholar 

  94. Schreiber AB, Winkler ME, Derynck R: Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth facience (232)4755: 1250–1253, 1986

    Google Scholar 

  95. Derynck R: Transforming growth factor-alpha. Mol Reprod Dev (27)1: 3–9, 1990

    Google Scholar 

  96. Roberts AB, Sporn MB, Assoian RK, Smith JM, Rocher NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences U.S.A. (83)12: 4167–4171, 1986

    Google Scholar 

  97. Sporn MB, Roberts AB: Peptide growth factors. Springer-Verlag, Berlin, 1990, p 419–472

    Google Scholar 

  98. Dobson DE, Kambe A, Block E, Dion T, Lu H, Castellot Jr. JJ, Spiefelman BM: 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell (61)2: 223–230, 1990

    Google Scholar 

  99. Form DM, Auerbach R: PGE2 and angiogenesis. Proc Soc Exp Biol Med (172)2: 214–218, 1983

    Google Scholar 

  100. Ziche M, Jones J, Gullino P: The role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst (69)2: 475–482, 1982

    Google Scholar 

  101. BenEzra D: Neovasculogenic ability of prostaglandins, growth factors, and synthetic chemoattractants. Am J Opthal (86)4: 455–461, 1978

    Google Scholar 

  102. Graeber JE, Glaser BM, Setty BNY, Jerdan JA, Walega RW, Stuart MJ: 15-Hydroxyeicosatetraenoic acid stimulates migration of human retinal microvessel endothelium in vitro and neovascularization in vivo. Prostaglandin (39)6: 665–673, 1990

    Google Scholar 

  103. Kull Jr. FC, Brent DA, Parikh I, Cuatrecasas P: Chemical identification of a tumor-derived angiogenic factor. Science (236)4803: 843–845, 1987

    Google Scholar 

  104. Fraser RA, Ellis M, Stalker AL: Experimental angiogenesis in the chorioallantoic membrane. In: Lewis DH (ed) Current advances in basic and clinical Microcirculatory Research. S. Karger AG, Basel, 1979, pp 25–27

    Google Scholar 

  105. Dusseau JW, Hutchins PM, Malbasa DA: Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res (59)2: 163–170, 1986

    Google Scholar 

  106. West DC, Hampson IN, Arnold F, Kumar S: Angiogenesis induced by degradation products of hyaluronic acid. Science (228)4705: 1324–1326, 1985

    Google Scholar 

  107. Masferrer JL, Rimarachin JA, Gerrifsen ME, Falck JR, Yadagiri P, Dunn MW, Laniado SM: 12(R)-hydroxyeicosatrienoic acid, a potent chemotactic and angiogenic factor produced by the cornea. Exp Eye Res (52)4: 417–424, 1991

    Google Scholar 

  108. Laniado-Schwartzman M, Lavrovsky Y, Stoltz RA, Conners MS, Falck JR, Chauhan K, Abraham NG: Activation of nuclear factor κB and oncogene expression by 12(R)-hydroxyeicosatrienoic acid, an angiogenic factor in microvessel endothelial cells. J Biol Chem (269)39: 24321–25327, 1994

    Google Scholar 

  109. Oikawa T, Suganuma M, Ashino-Fuse H, Shimamura M: Okadaic acid is a potent angiogenesis inducer. Jpn J Cancer Res (83)1: 6–9, 1992

    Google Scholar 

  110. Mustonen T, Alitalo K: Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol (129)4: 895–898, 1995

    Google Scholar 

  111. van der Geer P, Hunter T, Lindberg RA: Receptor proteintyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10: 251–337, 1994

    Google Scholar 

  112. Blood CH, Zetter BR: Tumor interactions with the vasculature: angiogenesis and tumor metastases. Biochim Biophys Acta 1032: 89–118, 1990

    Google Scholar 

  113. Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, BarShavit R, Fuks Z: Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9: 203–226, 1990

    Google Scholar 

  114. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336, 1991

    Google Scholar 

  115. Zetter BR: Cell motility in angiogenesis and tumor metastasis. Cancer Invest (8)6: 669–671, 1990

    Google Scholar 

  116. Dorudi S, Hart IR: Mechanisms underlying invasion and metastasis. Curr Opin Onc 5: 130–135, 1993

    Google Scholar 

  117. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature (Lond) 284: 67–68, 1980

    Google Scholar 

  118. Liotta LA, Thorgeirrson UP, Garbisa S: Role of collagenases in tumor cell invasion. Cancer Metastasis Rev (1)4: 277–288, 1982

    Google Scholar 

  119. Liotta LA, Stetler-Stevenson W: Metalloproteinases and malignant conversion: does correlation imply causality? J Natl Cancer Inst (81)8: 556–557, 1989

    Google Scholar 

  120. Sanchez-Lopez R, Nicholson R, Gesnel MC, Matrisan LM, Mreathnach R: Structure-function relationships in the collagenase family member transin. J Biol Chem (263)24: 11892–11899, 1988

    Google Scholar 

  121. Muller D, Quantin B, Gesnel MC, Abecassis J, Breathnach R: The collagenase gene family in humans consists of at least four members. Biochem J (253)1: 187–192, 1988

    Google Scholar 

  122. Chin JR, Murphy G, Werb Z: Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem (260)22: 12367–12376, 1985

    Google Scholar 

  123. Wilhelm SM, Collier IE, Kronberger A, Eisen Z, Marmer BL, Grant GA, Bauer EA, Goldberg GI: Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proceedings of the National Academy of Sciences U.S.A. (84)19: 6725–6729, 1987

    Google Scholar 

  124. Ostrowski LE, Finch J, Krieg P, Matrisian L, Patskan G, O'Connell JF, Phillips J, Slaga TG, Breathnach R, Bowden GT: Expression pattern of a gene for a secreted metalloproteinase during late stages of tumor progression. Mol Carcinog (1)1: 13–19, 1988

    Google Scholar 

  125. Paganetti PA, Caroni P, Schwab ME: Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease. J Cell Biol (107)6 Pt 1: 2281–2291, 1988

    Google Scholar 

  126. Chen JM, Chen WT: Fibronectin-degrading proteases from the membranes of transformed cells. Cell (48)2: 193–203, 1987

    Google Scholar 

  127. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH: Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109: 877–889, 1989

    Google Scholar 

  128. Thorgeirsson UP, Turpeenniemi-Hujanen T, Williams JE, Westin EH, Heilman CA, Talmadge JE, Liotta LA: NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice. Mol Cell Biol 5: 259–262, 1985

    Google Scholar 

  129. Garbisa S, Pozatti R, Mushchel RJ, Safiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res (47)6: 1523–1528, 1987

    Google Scholar 

  130. Carlson SA, Ramshaw IA, Warrinton RC: Involvement of plasminogen activator production with tumor metastasis in a rat model. Cancer Res (44)7: 1122–1127, 1984

    Google Scholar 

  131. Eisenbach L, Sega S, Feldman M: Proteolytic enzymes in tumor metastases. II. Collagenase Type IV activity in subcellular fractions of cloned tumor cell populations. J Natl Cancer Inst 74: 87–93, 1985

    Google Scholar 

  132. Sullivan LM, Wuigley JP: An anticatalytic monoclonal antibody to avian plasminogen activator: its effect on behavior of RSV-transformed chick fibroblasts. Cell (45)6: 905–915, 1986

    Google Scholar 

  133. Ramshaw IA, Badenoch-Jones P, Grant A, Maxcted M, Claudianus C: Enhanced plasminogen activator production by highly metastatic variant cell lines of a rat mammary adenocarcinoma. Invasion Metastasis 6: 133–144, 1986

    Google Scholar 

  134. Ostrowski LE, Ashon A, Suthan BP, Pagast P, Bain DL, Wong C, Patel A, Schultz RM: Selective inhibition for proteolytic enzymes in an in vivo mouse model for experimental metastasis. Cancer Res 46: 4121–4128, 1986

    Google Scholar 

  135. Sappino AP, Busso N, Belin D, Vassali JD: Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas. Cancer Res (47)15: 4043–4046, 1987

    Google Scholar 

  136. Evers JL, Patel J, Madeja JM, Schneider SL, Hobika GH, Camiola SM, Markus G: Plasminogen activator activity and composition in human breast cancer. Cancer Res (42)1: 219–226, 1982

    Google Scholar 

  137. Ossowoski L, Reich E: Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611–619, 1983

    Google Scholar 

  138. Ossowski L: Plasminogen activator dependent pathways in the dissemination of human tumor cells in chick embryo. Cell (52)3: 321–328, 1988

    Google Scholar 

  139. Hearing VJ, Law LW, Corti A, Appella E, Blasi F: Modulation of metastatic potential by cell surface urokinase of murine melanoma cells. Cancer Res 48: 1270–1278, 1988

    Google Scholar 

  140. Axelrod JH, Reich R, Miskin R: Expression activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Mol Cell Biol (9)5: 2133–2141, 1989

    Google Scholar 

  141. Sloane BF, Dunn JR, Honn KV: Lysosomal cathepsin B: correlation with metastatic potential. Science (212)4499: 1151–1152, 1981

    Google Scholar 

  142. Sloane BF, Honn KV, Sadler JG, Turner JJ, Taylor JD: Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res 42: 980–986, 1982

    Google Scholar 

  143. Koppel P, Baici A, Keist R, Matsu S, Keller R: Cathepsin B-like enzymes. Subcellular distribution and properties in neoplastic and control cells from human ectocervix. Exp Cell Biol (52)8: 293–299, 1984

    Google Scholar 

  144. Sloane BF, Rozchin J, Johnson K, Taylor H, Chrissman JD, Honn KV: Cathepsin B: association with plasma membrane in metastatic tumors. Proceedings of the National Academy of Sciences U.S.A. 83: 2483–2487, 1986

    Google Scholar 

  145. Rozhin J, Robinson D, Stevens MA, Lah TT, Honn KV, Ryan RE, Sloane BF: Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Cancer Res 40: 550–556, 1987

    Google Scholar 

  146. Kao TR, Stern R: Elastases in human breast carcinoma cell lines. Cancer Res (46)3: 1355–1358, 1986

    Google Scholar 

  147. Nemoto S, Koiso K, Aoyagi K, Takahashi S: Elastase—does this enzyme play any role in bladder cancer invasion? J Urol (134)5: 996–998, 1986

    Google Scholar 

  148. Zeydel M, Nakagawa S, Biempica L, Takahashi S: Collagenase and elastase production by mouse mammary adenocarcinoma primary cultures and cloned cells. Cancer Res (46)12 Pt 1: 6438–6445, 1986

    Google Scholar 

  149. Yusa T, Blood CH, Zetter BR: Tumor cell interactions with elastin: implications for pulmonary metastasis. Am Rev Respir Dis (140)5: 1458–1462, 1989

    Google Scholar 

  150. Kao RT, Wong M, Stern R: Elastin degradation by proteases from cultured human breast cancer cells. Biochem Biophys Res Commun (105)1: 383–389, 1982

    Google Scholar 

  151. Hornebeck W, Brechmeier D, Bollon G, Adnet JJ, Robert L: Proteinases and Tumor Invasion. Raven Press, New York, 1980, p 117–139

    Google Scholar 

  152. Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V: Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res (43)6: 2704–2711, 1983

    Google Scholar 

  153. Nakajima M, Irimura T, Di Ferrante D, Di Ferrante N, Nicolson GL: Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science (220)4597: 611–613, 1983

    Google Scholar 

  154. Corcoran ML, Stetler-Stevenson WG, Brown PD, Wahl LM: Interleukin-4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J Biol Chem 267: 515–519, 1992

    Google Scholar 

  155. Henry N, van Lasmsweerde A-L, Vaes G: Collagen degradation by metastatic variants of Lewis Lung Carcinoma: cooperation between tumor cells and macrophages. Cancer Res 43: 5321–5327, 1983

    Google Scholar 

  156. Templeton NS, Stetler-Stevenson WG: Identification of a basal promoter for the human Mr 72,000 type IV collagenase gene and enhanced expression in a highly metastatic cell line. Cancer Res 51: 6190–6193, 1991

    Google Scholar 

  157. Pyke C, Ralfkiaer E, Huhtala P, Hurskainen T, Dano K, Tryggvason K: Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res 52: 1336–1341, 1992

    Google Scholar 

  158. Overall CM, Wrana JL, Sodek J: Transcriptional and posttranscriptional regulation of 72-kDa gelatinase/Type IV collagenase by transforming growth factor-β1 in human fibroblasts. J Biol Chem (266)21: 14064–14071, 1991

    Google Scholar 

  159. Coucke P, Baramova E, Leprince P, DePauw-Gillet M-C, Foidart J-M, Bassleer R: Metalloproteinases and serine proteases activities in mixed spheroids of mouse B16 melanoma cells and fibroblasts. Int J Oncol 5: 1125–1130, 1994

    Google Scholar 

  160. Roskelley CD, Desprez PY, Bissell MJ: Extracellular matrix-dependent tissue-specific gene expression in mamary epithelial cells requires both physical and biochemical signal transduction. Proc Nat Acad Sci USA 91: 12378–12382, 1994

    Google Scholar 

  161. Nakajima M, Welch DR, Wynn DM, Tsuruo T, Nicolson GL: Serum and plasma Mr 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762NF mammary adenocarcinoma. Cancer Res 53: 5802–5807, 1993

    Google Scholar 

  162. Zucker S, Lysik RM, Zarrabi MH, Moll U: Mr 92,000 Type IV collagenase is increased in plasma of patients with colon cancer and breast cancer. Cancer Res 53: 140–146, 1993

    Google Scholar 

  163. Rao JS, Steck PA, Mohanam S, Stetler-Stevenson WG, Liotta LA, Sawaya R: Elevated levels of Mr 92,000 Type IV collagenase in human brain tumors. Cancer Res 53: 2208–2211, 1993

    Google Scholar 

  164. Alvarez OA, Carmichael DF, DeClerck YA: Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst 82: 589–595, 1990

    Google Scholar 

  165. Terranova VP, Hujanen ES, Martin GR: Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Inst 77: 311–316, 1986

    Google Scholar 

  166. Tryggvason K, Hoyhtya M, Salo T: Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 907: 191–217, 1987

    Google Scholar 

  167. Taylor S, Folkman J: Protamine is an inhibitor of angiogenesis. Nature 297: 307–312, 1982

    Google Scholar 

  168. Groopman JE, Scadden DT: Interferon therapy for Kaposi sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann Int Med 110: 335–337, 1989

    Google Scholar 

  169. White CW, Sondheimer HM, Crouch EC, Wilson H, Fan LL: Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. Med Intell 18: 1197–1200, 1989

    Google Scholar 

  170. Strieter RM, Kunkel SL, Arenberg DA, Burdick MD, Polverini PJ: Interferon γ-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun (210)1: 51–57, 1995

    Google Scholar 

  171. Kolber DL, Knisely TL, Maione TE: Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst 87: 304–309, 1995

    Google Scholar 

  172. Stetler-Stevenson WG, Krutzsch HC, Liotta LA: Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 264: 17374–17378, 1989

    Google Scholar 

  173. Welgus HG, Stricklin GP: Human skin fibroblast collagenase inhibitor. Comparative studies in human connective tissues, serum, and amniotic fluid. J Biol Chem 258: 12259–12264, 1983

    Google Scholar 

  174. Voest EE, Kenvon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J: Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87: 581–586, 1995

    Google Scholar 

  175. Kerbel RS, Hawley RG: Interleukin 12: newest member of the antiangiogenesis club. J Natl Cancer Inst (87)8: 557–558, 1995

    Google Scholar 

  176. Banks RE, Patel PM, Selby PJ: Interleukin 12: a new clinical player in cytokine therapy. Br J Cancer 71: 655–659, 1995

    Google Scholar 

  177. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994

    Google Scholar 

  178. Lee A, Langer R: Shark cartilage contains inhibitors of tumor angiogenesis. Science 221: 1185–1187, 1983

    Google Scholar 

  179. Moses MA, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 248: 1408–1410, 1990

    Google Scholar 

  180. Taylor CM, Weiss JB: Partial purification of a 5.7 K glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem Biophys Res Commun 133: 911–916, 1985

    Google Scholar 

  181. DeClerck YA: Purification and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Arch Biochem Biophys 265: 28–37, 1988

    Google Scholar 

  182. Sakamoto N, Iwahana M, Tanaka NG, Osada Y: Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res 51: 903–906, 1991

    Google Scholar 

  183. Bogden AE, Taylor JE, Moreau J-P, Coy DH, LePage DJ: Response of human lung tumor xenografts to treatment with a somatostatin analogue (somatuline). Cancer Res 50: 4360–4365, 1990

    Google Scholar 

  184. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin αvb3 for angiogenesis. Science 265: 569–573, 1994

    Google Scholar 

  185. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164, 1994

    Google Scholar 

  186. Cheresh DA: Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Nat Acad Sci USA 84: 6471–6475, 1987

    Google Scholar 

  187. Folkman J, Weisz PB, Joullie MM, Li WW, Ewing WR: Control of angiogenesis with synthetic heparin substitutes. Science 243: 1490–1493, 1989

    Google Scholar 

  188. Crum R, Szabo S, Folkman J: A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375–1378, 1985

    Google Scholar 

  189. Folkman J, Langer R, Lingardt R, Haudenschild C, Taylor S: Angiogenesis inhibition and tumour regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–725, 1983

    Google Scholar 

  190. Lee K-E, Iwamura M, Cockett ATK: Cortisone inhibition of tumor angiogenesis measured by a quantitative colorimetric assay in mice. Cancer Chemother Pharmacol 26: 461–463, 1990

    Google Scholar 

  191. Ingber D, Folkman J: Inhibition of angiogenesis through modulation of collagen metabolism. Lab Inves 59: 44–51, 1988

    Google Scholar 

  192. Oikawa T, Hirotani K, Nakamura O, Shudo K, Hiragun A, Iwaguchi T: A highly potent antiangiogenic activity of retinoids. Cancer Lett 48: 157–162, 1989

    Google Scholar 

  193. Sharpe RJ, Kadin ME, Harmon DC, Imber MJ, Anderson RR: Complete resolution of Kaposi's sarcoma with systemic etretinate therapy in a patient with mycosis fungoides. J Am Acad Dermatol 20: 1123–1124, 1989

    Google Scholar 

  194. Schwartz JL, Flynn E, Shklar G: The effects of carotenoids on the antitumor immune response in vivo and in vitro with hamster and mouse immune effectors. In: Bendich A, Chandra RK (ed) Symposium on micronutrients and immune functions. New York Academy of Science, New York, 1990, pp 92–96

    Google Scholar 

  195. Schwartz JL, Flynn E, Trickler D, Shklar G: Directed lysis of experimental cancer by beta carotene in liposomes. Nutr Cancer 16: 107–112, 1991

    Google Scholar 

  196. Schwartz JL, Shklar G: A cyanobacteria extract and beta carotene stimulates an antitumor immune response against oral cancer cell line. Phytother Res 3: 243–248, 1989

    Google Scholar 

  197. Schwartz JL, Singh R, Teicher B, Wright JE, Trites DH, Shklar G: Induction of a 70-kDa protein associated with the selective cytotoxicity of beta carotene in human epidermal carcinoma. Biochem Biophys 169: 941–946, 1990

    Google Scholar 

  198. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, Delgadillo-Madrueño F, Paredes-Casillas P, Hong WK, Masimini G, Holdener EE, Krakoff IH: 13-cis-retinoic acid plus interferon-α2a in locally advanced squamous cell carcinoma of the cervix. J Natl Cancer Inst 85: 499–500, 1993

    Google Scholar 

  199. Schwartz JL, Suda D, Light G: Beta carotene is associated with the regression of hamster buccal pouch carcinoma and the induction of tumor necrosis factor in macrophages. Biochem Biophys Res Commun 136: 1130–1135, 1986

    Google Scholar 

  200. Shklar G, Schwartz JL: Tumor necrosis factor in experimental cancer regression with vitamin E, B-carotene, canthaxanthin and algae extract. Eur J Cancer 24: 839–850, 1988

    Google Scholar 

  201. Smith MA, Parkinson DR, Cheson BO, Friedman MA: Retinoids in cancer therapy. J Clin Oncol 10: 839–864, 1992

    Google Scholar 

  202. Chiocca E, Davies P, Stein J: The molecular basis of retinoic acid action. J Biol Chem 263: 11584–11589, 1988

    Google Scholar 

  203. Cowan J, Vanhoff P, Dinesman A: Use of a human tumor cloning system to screen retinoids for antineoplastic activity. Cancer 51: 92–96, 1983

    Google Scholar 

  204. Lotem J, Sachs L: Regulation by bcl-2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation competent and defective myeloid leukemic cells. Cell Growth Differ 4: 41–47, 1993

    Google Scholar 

  205. Schwartz JL: β-carotene induced programmed cell death. J Dent Res 72: 285, 1993

    Google Scholar 

  206. Schwartz JL, Antoniades DZ, Zhao S: Molecular and biochemical reprogramming of oncogenesis through the activity of prooxidant or antioxidant. N Y Acad of Scie 686: 262–278, 1993

    Google Scholar 

  207. Alles A, Sulik K: Retinoic acid-induced limb-reduction defects: perturbations of zones of programmed death as a pathogenetic mechanism. Teratology 40: 163–171, 1989

    Google Scholar 

  208. Robertson K, Mueller L, Collins S: Retionic acid receptors in myeloid leukemia: characterization of receptors in retinoic acid resistant K-562 cells. Blood 77: 340–347, 1991

    Google Scholar 

  209. Tabin C: Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66: 199–217, 1991

    Google Scholar 

  210. Schwartz JL, Tanaka J, Khandekar V, Herman TS, Teicher BA: β-carotene and/or vitamin E as modulators of alkylating agents in SCC-25 human squamous carcinoma cells. Cancer Chemother Pharmacol 29: 207–213, 1992

    Google Scholar 

  211. Denekamp J: Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66: 181–196, 1993

    Google Scholar 

  212. Malone TE, Sharpe RJ: Development of angiogenesis in hibitors for clinical applications. Trends Biol Sci 11: 457–461, 1990

    Google Scholar 

  213. Teicher BA, Schwartz JL, Holden SA, Ara G, Northey D: In vivo modulation of several anticancer agents by β-carotene. Cancer Chemother Pharmacol (34)3: 235–241, 1994

    Google Scholar 

  214. Gerewal H, List A, Meyskens F: Phase II trial of fenretinide N-(4-hydroxyphenyl) retinamide in myelodysplasia. Possible retinoid, induced disease acceleration. Leuk Res 13: 339–343, 1989

    Google Scholar 

  215. Hong WK, Lippman SM, Itri LM: Prevention of secondary primary tumors with isotretinoin in squamous cell carcinoma of the head and neck. New Eng J Med 323: 795–801, 1990

    Google Scholar 

  216. Schwartz JL, Antoniades DZ: β-carotene triggers enhanced expression of 70 kD stress protein and tumor suppresser p53 in association with the inhibition of oral carcinogenesis. Cancer Detect Prev (in press): 1995

  217. Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W: Inhibition of tumor cell-induced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett 75: 35–39, 1993

    Google Scholar 

  218. Barnes S, Grubbs C, Setchell KDR, Carlson J: Soybeans inhibit mammary tumor in models of breast cancer. In: Pariza M, Liss AR (ed) Mutagens and carcinogens in the diet. Wiley-Liss, New York, 1990, pp 239–253

    Google Scholar 

  219. Akiyama T, Ishida J, Nakawaga S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem (262) 12: 5592–5595, 1987

    Google Scholar 

  220. Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y: Effect of genistein on toposiomerase activity and on the growth of [Val12]Ha-ras-transformed NIH 3Y3 cells. Biochem Biophys Res Commun 157: 183–189, 1988

    Google Scholar 

  221. Zwiller J, Sassone-Corsi P, Kakazu K, Boyton AL: Inhibition of PDGF-induced c-jun and c-fos expression by a tyrosine protein kinase inhibitor. Oncogene 6: 219–221, 1991

    Google Scholar 

  222. Linassier C, Pierre M, Le Peco J-B, Pierre J: Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol 39: 187–193, 1990

    Google Scholar 

  223. Yamashita J, Kawada S, Nakano H: Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol 39: 737–744, 1990

    Google Scholar 

  224. Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Peca JB, Larsen AK: Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA toposiomerase II. Cancer Res (49)18: 5111–5117, 1989

    Google Scholar 

  225. Peterson G, Barnes S: Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179: 661–667, 1991

    Google Scholar 

  226. McCabe Jr MJ, Orrenius S: Genistein induces apoptosis in immature human thymocytes by inhibiting toposiomerase-II. Biochem Biophys Res Commun (194)2: 944–950, 1993

    Google Scholar 

  227. Kanatani Y, Kasukabe T, Hozumi M, Motoyoshi K: Genistein exhibits preferential cytotoxicity to a leukemogenic variant but induces differentiation of a non-leukemogenic variant of the mouse monocytic leukemia Mm cell line. Leuk Res (17)10: 847–853, 1993

    Google Scholar 

  228. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L: Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Nat Acad Sci USA 90: 2690–2694, 1993

    Google Scholar 

  229. Sjoberg ER, Chammas R, Ozawa H, Kawashima I, Khoo K-H, Morris HR, Dell A, Tai T, Varki A: Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. J Biol Chem (270)7: 2921–2930, 1995

    Google Scholar 

  230. Uckun FM, Evans WE, Forsyth CJ, Waddick KG, Ahlgren LT, Chelstrom LM, Burkhardt A, Bolen J, Myers DE: Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267: 886–889, 1995

    Google Scholar 

  231. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J: Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348: 555–557, 1990

    Google Scholar 

  232. Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folkman J: Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem Biophys Res Commun 174: 1070–1076, 1991

    Google Scholar 

  233. Brem H, Ingber D, Blood CH, Bradley D, Urioste S, Folkman J: Suppression of tumor metastasis by angiogenesis inhibition. Surg Forum 42: 439–441, 1991

    Google Scholar 

  234. Brem H, Folkman J: Analysis of experimental antiangiogenic therapy. J Ped Surg 28: 445–451, 1993

    Google Scholar 

  235. Takayamiya Y, Friedlander RM, Brem H, Malick A, Martuza RL: Inhibition of angiogenesis and growth of human nerve sheath tumors by AGM-1470. J Neurosurg 78: 470–476, 1993

    Google Scholar 

  236. Brem H, Gresser I, Grossfeld J, Folkman J: The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J Ped Surg 28: 445–451, 1993

    Google Scholar 

  237. Yanase T, Tamura M, Fujita K, Kodama S, Tanaka K: Inhibitory effect of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. Cancer Res 53: 2566–2570, 1993

    Google Scholar 

  238. Kamei S, Okada H, Inoue Y, Yoshioka T, Ogawa Y, Toguchi H: Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J Pharmacol Exper Ther (264)1: 469–474, 1993

    Google Scholar 

  239. Yamaoka M, Yamamoto T, Masaki T, Ikeyama S, Sudo K, Fujita T: Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(Chloroacetyl-carbamoyl)fumagillin (TNP-470; AGM-1470). Cancer Res 53: 4262–4267, 1993

    Google Scholar 

  240. Toi M, Tamamoto Y, Imazawa T, Takayanagi T, Akutsu K, Tominaga T: Antitumor effect of the angiogenesis inhibitor AGM-1470 and its combination effect with tamoxifen in DMBA induced mammary tumors in rats. Int J Oncol 3: 525–528, 1993

    Google Scholar 

  241. Yamaoka M, Yamamoto T, Ikeyama S, Sudo K, Fujita T: Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res 53: 5233–5236, 1993

    Google Scholar 

  242. Schoof DD, Obando JA, Cusack Jr GC, Goedegebuure PS, Brem H, Eberlein TJ: The influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int J Cancer 55: 630–635, 1993

    Google Scholar 

  243. Teicher BA, Holden SA, Ara G, Alvarez Sotomayor E, Huang ZD, Chen Y-N, Brem H: Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other antiangiogenic agents. Int J Cancer 57: 920–925, 1994

    Google Scholar 

  244. Teicher BA, Dupuis N, Kusumoto T, Robinson MF, Liu F, Menon K, Coleman CN: Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Invest 2: 269–276, 1995

    Google Scholar 

  245. Teicher BA, Holden SA, Dupuis NP, Kakeji Y, Ikebe M, Emi Y, Goff D: Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Ca Res Trtmt 36: 227–236, 1995

    Google Scholar 

  246. Teicher BA, Dupuis NP, Robinson M, Emi Y, Goff D: Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncology Res (7)5: 237–243, 1995

    Google Scholar 

  247. Teicher BA, Holden SA, Ara G, Dupuis N, Liu F, Yuan J, Ikebe M, Kakeji Y: Influence of an anti-angiogenic treatment on 9L gliosarcoma oxygenation and response to cytotoxic therapy. Int J Cancer (61)5: 732–737, 1995

    Google Scholar 

  248. Konno H, Tanaka T, Matsuda I, Kanai T, Maruo Y, Nishino N, Nakamura S, Baha S: Comparisons of the inhibitory effect of the angiogenesis inhibitor, TNP-470, and mitomycin C on the growth and liver metastasis of human colon cancer. Int J Cancer 61: 268–271, 1995

    Google Scholar 

  249. Hori A, Ikeyama S, Sudo K: Suppression of cyclin D1 mRNA expression by the angiogenesis inhibitor TNP-470 (AGM-1470) in vascular endothelial cells. Biochem Biophys Res Commun (204)3: 1067–1073, 1994

    Google Scholar 

  250. Tanaka T, Konno H, Matsuda I, Nakamura S, Baba S: Prevention of hepatic metastasis of human colon cancer by angiogenesis inhibitor TNP-470. Cancer Res 55: 836–839, 1995

    Google Scholar 

  251. Murata J, Saiki I, Makabe T, Tsuta Y, Tokura S, Azuma I: Inhibition of tumor-induced angiogenesis by sulfated chitin derivatives. Cancer Res 51: 22–26, 1991

    Google Scholar 

  252. Teicher BA, Alvarez Sotomayor E, Huang ZD, Ara G, Holden S, Khandekar V, Chen Y-N: β-Cyclodextrin tetradecasulfate/tetrahydrocortisol ± minocycline as modulators of cancer therapies in vitro and in vivo against primary and metastatic Lewis lung carcinoma. Cancer Chemother Pharmacol 33: 229–238, 1993

    Google Scholar 

  253. Teicher BA, Holden SA, Ara G, Northey D: Response of the FSaII fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res 13: 2101–2106, 1993

    Google Scholar 

  254. Larsson EK, Joki A, Stälhandske T: Mechanism of action of the new immunomodulator LS26166 on T-cell responses. Int J Immunopharmacol 9: 425–431, 1987

    Google Scholar 

  255. Harning R, Koo GC, Szalay J: Regulation of the metastasis of murine ocular melanoma by natural killer cells. Invest Ophthalmol Visual Sci 30: 1909–1915, 1989

    Google Scholar 

  256. Kalland T: Effects of the immunomodulator LS-2616 on growth and metastasis of the murine B16-F10 melanoma. Cancer Res 46: 3018–3022, 1986

    Google Scholar 

  257. Harning R, Szalay J: A treatment for metastasis of murine ocular melanoma. Invest Ophthalmol Visual Sci 29: 1505–1510, 1988

    Google Scholar 

  258. Tarkowski A, Gunnarsson K, Nilsson LA, Lindholm L, Stälhandske T: Successful treatment of autoimmunity in MRL/1 mice with LS-2616, a new autoimmunomodulator. Arthritis Rheum 29: 1405–1409, 1986

    Google Scholar 

  259. Ichikawa T, Lamb JC, Christensson PJ, Hartley-Asp B, Issacs JT: The antitumor effects of the quinoline-3-carboxamide linomide on Dunning R-3327 rat prostatic cancers. Cancer Res 52: 3022–3028, 1992

    Google Scholar 

  260. Vukanovic J, Passaniti A, Hirata T, Traystman RJ, Hartley-Asp B, Isaacs JT: Antiangiogenic effects of the quinoline-3-carboxamide linomide. Cancer Res 53: 1833–1837, 1993

    Google Scholar 

  261. Karussis DM, Lehmann D, Slavin S, Vourka-Karussis U, Mizrachi-Koll R, Ovadia H, Kalland T, Abramsky O: Treatment of chronic-relapsing experimental autoimmune encephalomyelitis with the synthetic immunomodulator linomide (quinoline-3-carboxamide). Proceedings of the National Academy of Sciences U.S.A. 90: 6400–6404, 1993

    Google Scholar 

  262. Borgström P, Torres Filho P, Vajkoczy P, Strandgarden K, Polaçek J, Hartley-Asp B: The quinoline-3-carboxamide Linomide inhibits angiogenesis in vivo. Cancer Chemother Pharmacol 34: 280–286, 1994

    Google Scholar 

  263. Vukanovic J, Isaacs JT: Linomide inhibits angiogenesis, growth, metastasis, and macrophage infiltration within rat prostatic cancers. Cancer Res 55: 1499–1504, 1995

    Google Scholar 

  264. D'Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Nat Acad Sci USA 91: 4082–4085, 1994

    Google Scholar 

  265. Krishnan EC, Krishnan J, Jewell B, Bhatia P, Jewell WR: Dose-dependent radiation effect of microvascular and repair. J Natl Cancer Inst 79: 1321–1325, 1987

    Google Scholar 

  266. Krishnan EC, Krishnan L, Jewell WR: Immediate effect of irradiation on microvasculature. Int J Radiat Oncol Biol Phys 15: 147–150, 1988

    Google Scholar 

  267. Prionas SD, Kowalski J, Fajardo LF, Kaplan I, Kwan HH, Allison AC: Effects of X-irradiation on angiogenesis. Radiat Res 124: 43–49, 1990

    Google Scholar 

  268. Tryggvason K, Höyhtyä M, Pyke C: Type-IV collagenases in invasive tumors. Breast Ca Res Trtmt 24: 209–218, 1993

    Google Scholar 

  269. Cottam DW, Rees RC: Regulation of matrix metalloproteinases: their role in tumor invasion and metastasis (review). Int J Oncol 2: 861–872, 1993

    Google Scholar 

  270. Redwood SM, Liu BC-S, Weiss RE, Hodge DE, Droller MJ: Abrogation of the invasion of human bladder tumor cells by using protease inhibitor(s). Cancer 69: 1212–1219, 1992

    Google Scholar 

  271. Galardy RE, Grobelny D, Foellmer HG, Fernandex LA: Inhibition of angiogenesis by the matrix metalloproteinase inhibitor N-[2R-2-(Hydroxyamidocarbonymethyl)-4-methylpentanoyl]-L-tryptophan methylamide. Cancer Res 54: 4715–4718, 1994

    Google Scholar 

  272. Davies B, Brown PD, Crimmin MJ, Balkwill FR: A synthetic matrix metalloproteinase inhibitor decreases tumour burden and prolongs survival of mice bearing human ovarian carcinoma xenograft. Cancer Res 53: 2087–2091, 1993

    Google Scholar 

  273. Chirivi RS, Garofalo A, Crimmin MJ, Bawden LJ, Brown PD, Giavazzi RG: Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58: 1–5, 1994

    Google Scholar 

  274. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM: Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumour growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 54: 4726–4728, 1994

    Google Scholar 

  275. Taraboletti G, Garofalo A, Belotti D, Drudis T, Borsotti P, Scanziani E, Brown P, Giavazzi R: Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst 87: 293–298, 1995

    Google Scholar 

  276. Anderson IC, Shipp MA, Docherty AJP, Teicher BA: Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res (in press): 1996

  277. Watson SA, Morris TM, Robinson G, Crimmin MJ, Brown PD, Hardcastle JD: Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res 55: 3629–3633, 1995

    Google Scholar 

  278. Sledge GW, Qulali M, Goulet R, Bone EA, Fife R: Effect of matrix metalloproteinase inhibitor on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst 87: 1546–1550, 1995

    Google Scholar 

  279. Golub LM, Lee HM, Nemiroff LA, McNamara TF, Kaplan R, Ramamurthy NS: Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J Perio Res 18: 516–526, 1983

    Google Scholar 

  280. Golub LM, McNamara TF, D'Angelo G, Greenwald RA, Ramamurthy NS: A non-antibacterial chemically-modified tetracycline inhibits mammalian collagenase activity. J Dent Res 66: 1310–1314, 1987

    Google Scholar 

  281. Greenwald RA, Golub LM, Lavietes B, Ramamurthy NS, Bruber B, Laskin RS, McNamara TF: Tetracyclines inhibit human synovial collagenase in vivo and in vitro. J Rheumatol 4: 28–32, 1987

    Google Scholar 

  282. Zucker S, Lysik RM, Ramamurthy S, Golub LM, Wieman JM, Wilkie DP: Diversity of melanoma plasma membrane proteinase: Inhibition of collagenolytic and cytolytic activities by minocycline. J Natl Cancer Inst 75: 517–525, 1985

    Google Scholar 

  283. Tilley BC, Alarcón GS, Heyse SP, Trentham DE, Neuner R, Kaplan DA, Clegg DO, Leisen JCC, Buckley L, Cooper SM, Duncan H, Pillemer SR, Tuttleman M, Fowler SE: Minocycline in rheumatoid arthritis: a 48-week, double-blind, placebo-controlled trial. Ann Int Med 122: 81–89, 1995

    Google Scholar 

  284. Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR: Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2: 297–321, 1991

    Google Scholar 

  285. Tamargo RJ, Bok RA, Brem H: Angiogenesis inhibition by minocycline. Cancer Res 51: 672–675, 1991

    Google Scholar 

  286. Alvarez Sotomayor E, Teicher BA, Schwartz GN, Holden SA, Menon K, Herman TS, Frei III E: Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother Pharmacol 30: 377–384, 1992

    Google Scholar 

  287. Teicher BA, Alvarez Sotomayor E, Huang ZD: Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52: 6702–6704, 1992

    Google Scholar 

  288. Sidky YA, Borden EC: Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47: 5155–5161, 1987

    Google Scholar 

  289. Brouty-Boyé D, Zetter BR: Inhibition of cell motility by interferon. Science 208: 516–518, 1980

    Google Scholar 

  290. Real FX, Oettgen HF, Krown SE: Kaposi's sarcoma and the acquired immunodeficiency syndrome: treatment with high and low doses of recombinant leukocyte A interferon. J Clin Oncol 4: 544–551, 1986

    Google Scholar 

  291. Rios A, Maansell PW, Newell GR, Reuben JM, Gutterman JU: Treatment of acquired immunodeficiency syndrome-related Kaposi's sarcoma with lymphoblastoid interferon. J Clin Oncol 3: 506–512, 1985

    Google Scholar 

  292. Merigan TC: Human interferon as a therapeutic agent: a decade passes. New Eng J Med 318: 1458–1460, 1988

    Google Scholar 

  293. Waddell WR, Ganser GF, Cerise EJ, Loughry RW: Sulindac for polyposis of the colon. Am J Surg 41: 891–894, 1990

    Google Scholar 

  294. Orchard PJ, Smith III CM, Woods WG, Day DL, Dehner LP, Shapiro R: Treatment of haemangioendotheliomas with alpha interferon. Lancet 2: 565–567, 1989

    Google Scholar 

  295. Hoffman MA, Wadler S: Mechanisms by which Interferon potentiates chemotherapy. Cancer Invest (11)3: 310–313, 1993

    Google Scholar 

  296. White CW, Wolf SJ, Korones DM, Sondheimer HM, Tosi MF, Yu A: Treatment of childhood angiomatous diseases with recombinant interferon alfa-2a. J Pediatr 118: 59–66, 1991

    Google Scholar 

  297. Ezekowitz RAB, Phil D, Mulliken JB, Folkman J: Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. New Eng J Med 326: 1456–1463, 1992

    Google Scholar 

  298. Toma S, Melioli G, Palumbo R, Rosso R: Recombinant interleukin-2 and α-2a-interferon in pre-treated advanced soft tissue sarcomas. Int J Oncol 2: 997–1001, 1993

    Google Scholar 

  299. Iwagaki H, Hizuta A, Yoshino T, Mannami T, Moriyasu F, Tanaka N, Orita K: Complete regression of advanced liposarcoma of the anterior chest wall with interferon-alpha and tumor necrosis factor-alpha. Anticancer Res 13: 13–16, 1993

    Google Scholar 

  300. Cohji K, Fidler I, Tsan R, Radinsky R, von Eschenbach A, Tsuruo T, Nakajima M: Human recombinant interferons-beta and -gamma decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int J Cancer 58: 380–384, 1994

    Google Scholar 

  301. Teicher BA, Holden SA, Chen Y-N, Ara G, Korbut TT, Northey D: CAI: effects on cytotoxic therapies in vitro and in vivo. Cancer Chemother Pharmacol (34)6: 515–522, 1994

    Google Scholar 

  302. Folkman J, Ingber DE: Angiostatic steroids: method of discovery and mechanism of action. Ann Surg 206: 374–383, 1987

    Google Scholar 

  303. Ingber DE, Madri JA, Folkman J: A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119: 1768–1775, 1986

    Google Scholar 

  304. Grunt TW, Lametschwadtner A, Karrer K, Staindl O: The angioarchitecture of the Lewis lung carcinoma in laboratory mice. Scan Electron Microsc 11: 557–574, 1986

    Google Scholar 

  305. Grunt TW, Lametschwadtner K, Karrer A: The characteristic structural feature of the blood vessels of the Lewis lung carcinoma. Scan Electron Microsc 11: 575–589, 1986

    Google Scholar 

  306. Killough JH, Magill GB, Smith RC: The treatment of amebiasis with fumagillin. Science 115: 71–72, 1952

    Google Scholar 

  307. Katznelson H, Jamieson CA: Control of nosema disease of honeybees with fumagillin. Science 115: 70–71, 1952

    Google Scholar 

  308. Setchell KDR, Borriello SP, Kirk DN, Axelson M: Nonsteroidal estrogens of dietary origin: possible role in hormone-dependent disease. Am J Clin Nutr 40: 569–578, 1984

    Google Scholar 

  309. Messina M, Barnes S: The role of soy products in reducing risk of cancer. J Natl Cancer Inst 83: 541–546, 1991

    Google Scholar 

  310. Hunter T, Cooper JA: Protein-tyrosine kinase. Ann Rev Biochem 54: 897–930, 1985

    Google Scholar 

  311. Takano S, Gately S, Neville M, Herblin WF, Gross JL, Brem S: Suramin, an inhibitor of angiogenesis, suppresses endothelial cell growth, migration and plasminogen activator activity. Proc Amer Assoc Cancer Res 34: 74, 1993

    Google Scholar 

  312. Danesi R, Del Bianchi S, Soldani P, Campagni A, La Rocca RV, Myers CE, Paparelli A, Del Tacca M: Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br J Cancer 68: 932–938, 1993

    Google Scholar 

  313. Stein CA, LaRocca RV, Thomas R, McAtee N, Meyers CE: Suramin: an anticancer drug with a unique mechanism of action. J Clin Oncol 7: 499–508, 1989

    Google Scholar 

  314. Yayon A, Klagsburn M: Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: reversal by suramin. Proc Nat Acad Sci USA 87: 5346–5350, 1990

    Google Scholar 

  315. Takano S, Gately S, Neville ME, Herblin WF, Gross JL, Engelhard H, Perricone M, Eidsvoog K, Brem S: Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res 54: 2654–2660, 1994

    Google Scholar 

  316. Gasparini G, Harris AL: Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13: 765–782, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teicher, B.A. A systems approach to cancer therapy. Cancer Metast Rev 15, 247–272 (1996). https://doi.org/10.1007/BF00437479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00437479

Key words

Navigation