Skip to main content

On Level Set Formulations for Anisotropic Mean Curvature Flow and Surface Diffusion

  • Conference paper
Multiscale Modeling in Epitaxial Growth

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 149))

Abstract

Anisotropic mean curvature motion and in particular anisotropic surface diffusion play a crucial role in the evolution of material interfaces. This evolution interacts with conservations laws in the adjacent phases on both sides of the interface and are frequently expected to undergo topological chances. Thus, a level set formulation is an appropriate way to describe the propagation. Here we recall a general approach for the integration of geometric gradient flows over level set ensembles and apply it to derive a variational formulation for the level set representation of anisotropic mean curvature motion and anisotropic surface flow. The variational formulation leads to a semi-implicit discretization and enables the use of linear finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Rost, (this volume).

    Google Scholar 

  2. U. Clarenz, The Wulff-shape minimizes an anisotropic Willmore functional. DFG-Forschergruppe Freiburg, Preprint 15 (2003).

    Google Scholar 

  3. M. Droske, M. Rumpf, A level set formulation for Willmore flow. Interfaces and Free Boundaries 6 (2004), 361–378.

    Google Scholar 

  4. D.L. Chopp, J.A. Sethian, Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1 (1999), 107–123.

    Google Scholar 

  5. M. Khenner, A. Averbuch, M. Israeli, M. Nathan, Numerical solution of grain boundary grooving by level set method. J. of Comput. Phys. 170 (2001), 764–784.

    Article  Google Scholar 

  6. P. Smereka, Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion J. of Sci. Comput. 19 (2003), 439–456.

    Article  Google Scholar 

  7. S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comput. Phys. 79 (1988), 12–784.

    Article  Google Scholar 

  8. R. Rusu, An algorithm for the elastic flow of surfaces. Mathematische Fakultät Freiburg, Preprint 35 (2001).

    Google Scholar 

  9. L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, 2000.

    Google Scholar 

  10. L.C. Evans, J. Spruck, Motion of Level Sets by Mean Curvature I. J. Diff. Geom. 33 (1991), 635–681.

    Google Scholar 

  11. U. Clarenz, G. Dziuk, M. Droske, M. Rumpf, Level set formulation for anisotropic geometric evolutions problems manuscript, in preparation

    Google Scholar 

  12. S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, 2003.

    Google Scholar 

  13. G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Kristallflächen. Zeitschrift der Kristallographie 34 (1901), 449–530.

    Google Scholar 

  14. I. Fonseca, S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinb. A 119 (1991), 125–136.

    Google Scholar 

  15. S. Yoshizawa, A.G. Belyaev, Fair Triangle Mesh Generation with Discrete Elastica. in Geometric Modeling and Processing, RIKEN, Saitama, 2001, 119–123

    Google Scholar 

  16. T.F. Chan, S.H. Kang, J. Shen, Euler’s Elastica and curvature-based inpainting. SIAM Appl. Math. 63 (2002), 564–592.

    Article  Google Scholar 

  17. K. Deckelnick, G. Dziuk, A fully discrete numerical scheme for weighted mean curvature flow. Numer. Math. 91 (2002), 423–452.

    Article  Google Scholar 

  18. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Clarenz, U., Haußer, F., Rumpf, M., Voigt, A., Weikard, U. (2005). On Level Set Formulations for Anisotropic Mean Curvature Flow and Surface Diffusion. In: Voigt, A. (eds) Multiscale Modeling in Epitaxial Growth. ISNM International Series of Numerical Mathematics, vol 149. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7343-1_14

Download citation

Publish with us

Policies and ethics