Skip to main content

Molecular recognition by large hydrophobic cavities embedded in synthetic bilayer membranes

  • Chapter
  • First Online:
Supramolecular Chemistry II — Host Design and Molecular Recognition

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 175))

Abstract

Artificial receptors of three different structural modes, each being capable of providing a large hydrophobic cavity, were designed and synthesized: octopus cyclophanes having eight flexible hydrocarbon branches, steroid cyclophanes bearing four rigid steroid moieties, and cage-type cyclophanes composed of two macrocyclic skeletons and four chiral bridges connecting both macrocycles. In aqueous solution these cationic cyclophanes are effective in molecular recognition toward anionic and nonionic organic guests as artificial intracellular receptors. Hybrid assemblies are formed by combination of the individual cyclophanes with synthetic bilayer membranes composed of a peptide lipid that covalently involves an L-alanine residue interposed between an anionic head group and a hydrophobic double-chain segment. Such hybrid assemblies are considered to be artificial cell-surface receptors and generated supramolecular effects on molecular recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7 References

  1. Ehrlich P (1906) Proc Roy Soc London (Biol) 66: 424

    Google Scholar 

  2. Langley JN (1906) J Physiol (London) 33: 374

    Google Scholar 

  3. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland Publishing, New York, p 681

    Google Scholar 

  4. Lehn J-M (1988) Angew Chem Int Ed Engl 27: 89

    Google Scholar 

  5. Diederich F (1988) Angew Chem Int Ed Engl 27: 362

    Google Scholar 

  6. Koga K, Odashima K (1989) J Incl Phenom 7: 53

    Google Scholar 

  7. Murakami Y, Kikuchi J, Hisaeda Y, Ohno T (1991) in: Schneider H-J, Dürr H (eds) Frontiers in supramolecular organic chemistry and photochemistry. VCH, Weinheim, p 145

    Google Scholar 

  8. Rebek J Jr (1990) Angew Chem Int Ed Engl 29: 245

    Google Scholar 

  9. Schneider H-J (1991) Angew Chem Int Ed Engl 30: 1417

    Google Scholar 

  10. Seel C, Vögtle F (1992) Angew Chem Int Ed Engl 31: 528

    Google Scholar 

  11. Tabushi I, Kuroda Y, Yokota K (1982) Tetrahedron Lett 23: 4601

    Google Scholar 

  12. Lehn J-M (1990) Angew Chem Int Ed Engl 29: 1304

    Google Scholar 

  13. Odashima K, Sugawara M, Umezawa Y (1991) Trends Anal Chem 10: 207

    Google Scholar 

  14. Murakami Y, Kikuchi J, Ohno T (1990) in: Gokel GW (ed) Advances in supramolecular chemistry, vol 1. JAI Press, Greenwich, p 109

    Google Scholar 

  15. Murakami Y, Kikuchi J, Suzuki M, Takaki T (1984) Chem Lett 2139

    Google Scholar 

  16. Murakami Y, Kikuchi J, Suzuki M, Matsuura T (1988) J Chem Soc, Perkin Trans 1 1289

    Google Scholar 

  17. Murakami Y, Kikuchi J, Ohno T, Hayashida O, Kojima M (1990) J Am Chem Soc 112: 7672

    Google Scholar 

  18. Murakami Y, Kikuchi J, Hirayama T (1987) Chem Lett 161

    Google Scholar 

  19. Murakami Y, Kikuchi J, Ohno T, Hirayama T (1989) Chem Lett 881

    Google Scholar 

  20. Murakami Y, Kikuchi J, Ohno T, Hirayama T, Nishimura H (1989) Chem Lett 1199

    Google Scholar 

  21. Murakami Y, Kikuchi J, Ohno T, Hirayama T, Hisaeda Y, Nishimura H (1991) Chem Lett 1657

    Google Scholar 

  22. Murakami Y, Kikuchi J, Ohno T, Hirayama T, Hisaeda Y, Nishimura H, Snyder JP, Steliou K (1991) J Am Chem Soc 113: 8229

    Google Scholar 

  23. Murakami Y, Kikuchi J (1991) in: Dugas H (ed) Bioorganic chemistry frontiers, vol 2. Springer, Berlin Heidelberg New York, p 73

    Google Scholar 

  24. Urushigawa Y, Inazu T, Yoshino T (1971) Bull Chem Soc Jpn 44: 2546

    Google Scholar 

  25. Murakami Y, Nakano A, Miyata R, Matsuda Y (1979) J Chem Soc, Perkin Trans 1 1699

    Google Scholar 

  26. Murakami Y, Nakano A, Akiyoshi K, Fukuya K (1981) J Chem Soc, Perkin Trans 1 2800

    Google Scholar 

  27. Tabushi I, Kimura Y, Yamamura K (1981) J Am Chem Soc 103: 6486

    Google Scholar 

  28. Tabushi I, Yamamura K, Nonoguchi H, Hirotsu K, Higuchi T (1984) J Am Chem Soc 106: 2621

    Google Scholar 

  29. Kodaka M, Fukaya T (1986) Bull Chem Soc Jpn 59: 2944

    Google Scholar 

  30. Lepropre G, Fastrez J (1987) J Incl Phenom 5: 157

    Google Scholar 

  31. Odashima K, Itai A, Iitaka Y, Koga K (1980) J Am Chem Soc 102: 2504

    Google Scholar 

  32. Takahashi I, Odashima K, Koga K (1984) Tetrahedron Lett 25: 973

    Google Scholar 

  33. Breslow R, Czarnik AW, Lauer M, Leppkes R, Winkler J, Zimmerman S (1986) J Am Chem Soc 108: 1969

    Google Scholar 

  34. Schneider H-J, Blatter T (1988) Angew Chem Int Ed Engl 27: 1163

    Google Scholar 

  35. Lai C-F, Odashima K, Koga K (1989) Chem Pharm Bull 37: 2351

    Google Scholar 

  36. Kikuchi J, Egami K, Suehiro K, Murakami Y (1992) Chem Lett 1685

    Google Scholar 

  37. Kikuchi J, Matsushima C, Tanaka Y, Hie K, Suehiro K, Hayashida O, Murakami Y (1992) J Phys Org Chem 5: 633

    Google Scholar 

  38. Kikuchi J, Matsushima C, Suehiro K, Oda R, Murakami Y (1991) Chem Lett 1807

    Google Scholar 

  39. Kikuchi J, Inada M, Miura H, Suehiro K, Hayashida O, Murakami Y (1994) Recl Trav Chim Pays-Bas 113: 216

    Google Scholar 

  40. Murakami Y, Kikuchi J, Tenma H (1985) J Chem Soc, Chem Commun 753

    Google Scholar 

  41. Murakami Y, Ohno T, Hayashida O, Hisaeda Y (1991) J Chem Soc, Chem Commun 950

    Google Scholar 

  42. Murakami Y, Ohno T, Hayashida O, Hisaeda Y (1991) Chem Lett 1595

    Google Scholar 

  43. Murakami Y, Hayashida O, Ito T, Hisaeda Y (1992) Chem Lett 497

    Google Scholar 

  44. Murakami Y, Hayashida O (1993) Proc Natl Acad Sci USA 90: 1140

    Google Scholar 

  45. Murakami Y, Hayashida O, Ito T, Hisaeda Y (1993) Pure Appl Chem 65: 551

    Google Scholar 

  46. Murakami Y, Hayashida O, Matsuura S (1993) Recl Trav Chim Pays-Bas 112: 421

    Google Scholar 

  47. Murakami Y, Hayashida O, Ono K, Hisaeda Y (1993) Pure Appl Chem 65: 2319

    Google Scholar 

  48. Mayo L, Olafson BD, Goddard III WA (1990) J Phys Chem 94: 8897

    Google Scholar 

  49. Brockerhoff H (1977) in: van Tamelen EE (ed) Bioorganic chemistry, vol 3. Academic Press, New York, p 1

    Google Scholar 

  50. Tabushi I, Kuroda Y, Kimura Y (1976) Tetrahedron Lett 3327

    Google Scholar 

  51. Odashima K, Soga T, Koga K (1981) Tetrahedron Lett 22: 5311

    Google Scholar 

  52. Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH, Weinheim, p 359

    Google Scholar 

  53. Perrin MF (1929) Ann Phys (Leipzig) 26: 169

    Google Scholar 

  54. Murakami Y, Nakano A, Fukuya K (1980) J Am Chem Soc 102: 4253

    Google Scholar 

  55. Murakami Y, Nakano A, Ikeda H (1982) J Org Chem 47: 2137

    Google Scholar 

  56. Murakami Y, Nakano A, Yoshimatsu A, Uchitomi K, Matsuda Y (1984) J Am Chem Soc 106: 3613

    Google Scholar 

  57. Murakami Y, Kikuchi J, Takaki T, Uchimura K, Nakano A (1985) J Am Chem Soc 107: 2161

    Google Scholar 

  58. Slavik J (1982) Biochim Biophys Acta 694: 1

    Google Scholar 

  59. McClure WO, Edelman GM (1966) Biochemistry 5: 1908

    Google Scholar 

  60. Murakami Y, Kikuchi J, Nishida K, Nakano A (1984) Bull Chem Soc Jpn 57: 1371

    Google Scholar 

  61. Murakami Y, Kikuchi J, Akiyoshi K, Imori T (1986) J Chem Soc, Perkin Trans 2 1445

    Google Scholar 

  62. Arimura T, Kawabata H, Matsuda T, Muramatsu T, Satoh H, Fujio K, Manabe O, Shinkai S (1991) J Org Chem 56: 301

    Google Scholar 

  63. Murakami Y, Hayashida O, Nagai Y (1994) Recl Trav Chim Pays-Bas 113: 209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Weber

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Murakami, Y., Kikuchi, Ji., Hayashida, O. (1995). Molecular recognition by large hydrophobic cavities embedded in synthetic bilayer membranes. In: Weber, E. (eds) Supramolecular Chemistry II — Host Design and Molecular Recognition. Topics in Current Chemistry, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58800-0_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-58800-0_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58800-9

  • Online ISBN: 978-3-540-49106-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics