Skip to main content
Log in

Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg2+-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adler AF, Leong KW (2010) Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today 5:553–569

    Google Scholar 

  • Akita H, Hatakeyama H, Khalil IA, Yamada Y, Harashima H (2011) Delivery of nucleic acids and gene delivery. In: Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials. Elsevier, New York, pp 411–444

    Google Scholar 

  • Albani JR (2007) Principles and applications of fluorescence spectroscopy, Interaction between ethydium bromide and DNA. Blackwell Publishing, Oxford, pp 168–183

    Google Scholar 

  • Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ (2005) Production and formulation of adenovirus vectors. In: Schaffer DV, Zhou W (eds) Gene therapy and gene delivery vectors. Springer, Berlin, p 247

    Google Scholar 

  • Álvarez RMS, Della Védova CO, Mack H-G, Farias RN, Hildebrandt P (2002) Raman spectroscopic study of the conformational changes of thyroxine induced by interactions with phospholipid. Eur Biophys J 31:448–453

    Google Scholar 

  • Andar AU, Hood RR, Vreeland WN, DeVoe DL, Swaan PW (2014) Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res 31:401–413

    Google Scholar 

  • Antipina MN, Schulze I, Dobner B, Langer A, Brezesinski G (2007) Physicochemical investigation of a lipid with a new core structure for gene transfection: 2-Amino-3-hexdecyloxy-2-(hexadecyloxymethyl)propan-1-ol. Langmuir 23:3919–3926

    Google Scholar 

  • Anwer K, Rhee BG, Mendiratta SK (2003) Recent progress in polymeric gene delivery systems. Crit Rev Ther Drug Carrier Syst 20(4):249–293

    Google Scholar 

  • Asiala SM, Schultz ZD (2014) Label-free in situ detection of individual macromolecular assemblies by surface enhanced Raman scattering. Chem Commun (Camb) 49(39):4340–4342

    Google Scholar 

  • Aumiller WM Jr, Davis BW, Keating CD (2014) Phase separation as a possible means of nuclear compartmentalization. Int Rev Cell Mol Biol 307:109–149

    Google Scholar 

  • Barthélémy P, Lee SJ, Grinstaff M (2005) Supramolecular assemblies with DNA. Pure Appl Chem 77(12):2133–2148

    Google Scholar 

  • Belletti D, Tonelli M, Forni F, Tosi G, Vandelli MA, Ruozi B (2013) AFM and TEM characterization of siRNAs lipoplexes: a combinatory tools to predict the efficacy of complexation. Colloids Surf A 436:459–466

    Google Scholar 

  • Bhaumik A, Ramakanth M, Brar LK, Raychaudhuri AK, Rondelez F, Chatterji D (2004) Formation of a DNA layer on Langmuir-Blodgett films and its enzymatic digestion. Langmuir 20:5891–5896

    Google Scholar 

  • Bibi S, Kaur R, Henriksen-Lacey M, McNeil SE, Wilkhu J, Lattmann E, Christensen D, Mohammed AR, Perrie Y (2011) Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm 417(1–2):138–150

    Google Scholar 

  • Black RA, Blosser MC, Stottrup BL, Tavakley R, Deamer DW, Keller SL (2013) Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proc Natl Acad Sci USA 110(33):13272–13276

    Google Scholar 

  • Bothun GD (2008) Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol. doi:10.1186/1477-3155-6-13

    Google Scholar 

  • Braun CS, Jas GS, Choosakoonkriang S, Koe GS, Smith JG (2003) The structure of DNA within cationic lipid/DNA complexes. Biophys J 84:1114–1123

    Google Scholar 

  • Brezesinski G, Möhwald H (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interface Sci 100–102:563–584

    Google Scholar 

  • Brockman H (1999) Lipid monolayers: why use half a membrane to characterise protein-membrane interactions? Curr Opin Struct Biol 9:438–443

    Google Scholar 

  • Cadenhead DA, Müller-Landau F, Kellner BMJ (1980) Phase transitions in insoluble one and two-component films at the air/water interface. In: Sinha SK (ed) Ordering in two dimensions. North Holland, Amsterdam, pp 73–81

    Google Scholar 

  • Campen RK, Ngo TTM, Sovago M, Ruysschaert J-M, Bonn M (2010) Molecular restructuring of water and lipids upon the interaction of DNA with lipid monolayers. J Am Chem Soc 132:8037–8047

    Google Scholar 

  • Cañamares MV, Garcia-Ramos JV, Gómez-Varga JD, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21:8546–8553

    Google Scholar 

  • Caracciolo G, Amenitsch H (2012) Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. Eur Biophys J 41(10):815–829

    Google Scholar 

  • Castano S, Delord B, Février A, Lehn J-M, Lehn P, Desbat B (2009) Asymmetric lipid bilayer formation stabilized by DNA at the air/water interface. Biochimie 91:765–773

    Google Scholar 

  • Chang Y-M, Chen CK-M, Hou M-H (2012) Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 13:3394–3413

    Google Scholar 

  • Chifu E, Zsakó J, Tomoaia-Cotişel M (1983) Xanthophyl films: I. Single-component monolayers at the air/water interface. J Colloid Interface Sci 95(2):346–354

    Google Scholar 

  • Chipot C, Klein ML, Tarek M (2005) Modeling lipid membranes. In: Yip S (ed) Handbook of materials modeling. Springer, New York, pp 929–958

    Google Scholar 

  • Cristofolini L, Berzina T, Erokhina S, Konovalov O, Erokhin V (2007) Structural study of the DNA dipalmitoylphosphatidylcholine complex at the air-water interface. Biomacromolecules 8:2270–2275

    Google Scholar 

  • Czolkos I, Hannestad JK, Jesorka A, Kumar R, Brown T, Albinsson B, Orwar O (2009) Platform for controlled supramolecular nanoassembly. Nano Lett 9(6):2482–2486

    Google Scholar 

  • Dacks JB, Field MC (2004) Eukaryotic cell evolution from a comparative genomic perspective: the endomembrane system. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny—an evolutionary synthesis in the age of genomics. CRC Press, Boca Raton, pp 309–334

    Google Scholar 

  • Dai S, Zhang X, Du Z, Dang H (2005) Fabrication of nanopatterned DNA films by Langmuir-Blodgett technique. Mater Lett 59(4):423–429

    Google Scholar 

  • Dan N, Danino D (2014) Structure and kinetics of lipid-nucleic acid complexes. Adv Colloid Interphase Sci 205:230–239

    Google Scholar 

  • DeRose V (2009) Chapter 5: characterization of nucleic acid-metal ion binding by spectroscopic techniques. In: Hud NV (ed) Nucleic acid-metal ion interactions. RSC Publishing, Cambridge, p 174

    Google Scholar 

  • Dhanoya A, Chain BM, Keshvarz-Moore E (2011) The impact of DNA topology on polyplex uptake and transfection efficiency in mammalian cells. J Biotechnol 155:377–386

    Google Scholar 

  • Diaz ME, Cerro RL (2008) Physicochemistry and hydrodynamics of Langmuir-Blodgett depositions: influence of molecular level forces on the efficiency of deposition of perfectly ordered Langmuir nanofilms. VDM Verlag Dr. Müller, Saarbrücken, pp 1–14

    Google Scholar 

  • Do TT, Tang VJ, Aguilera JA, Perry CC, Milligan JR (2011) Characterization of a lipophilic plasmid DNA condensate formed with a cationic peptide fatty acid conjugate. Biomacromolecules 12:1731–1737

    Google Scholar 

  • Dotan N, Cohen N, Kalid O, Freeman A (2002) Supramolecular assemblies made of biological macromolecules. In: Rossof M (ed) Nano-surface chemistry. Marcel Dekker Inc., New York, pp 461–471

    Google Scholar 

  • Duguid J, Bloomfield VA, Benevides J, Thomas GJ Jr (1993) Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn Co, Ni, Cu, Pd and Cd. Biophys J 65:1916–1928

    Google Scholar 

  • ElBayoumi TA, Torchilin VP (2010) Current trends in liposome research. In: Weissig V (ed) Liposomes. Methods in molecular biology. Humana Press, New York, pp 1–27

    Google Scholar 

  • Engelborghs Y, Visser AJWG (eds) (2014) Fluorescence spectroscopy and microscopy—methods and protocols. Methods in molecular biology, vol 1076. Humana Press, New York

    Google Scholar 

  • Erokhina S, Berzina T, Cristofolini L, Konovalov O, Erokhin V, Fontana MP (2007) Interaction of DNA oligomers with cationic lipidic monolayers: complexation and splitting. Langmuir 23:4414–4420

    Google Scholar 

  • Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology and technology meet, Wiley, New York

  • Fortier C, Durocher Y, De Crescenzo G (2014) Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine (Lond) 9(1):135–151

    Google Scholar 

  • Girard-Ergot AP, Blum LC (2007) Langmuir-Blodgett technique for synthesis of biomimetic lipid membranes. In: Martin DK (ed) Nanobiotechnology of biomimetic membranes. Springer, New York, pp 23–74

    Google Scholar 

  • Gonçalves E, Debs RJ, Heath TD (2004) The effect of liposome size on the final lipid/DNA ratio of cationic lipoplexes. Biophys J 86:1554–1563

    Google Scholar 

  • Gromelski S, Brezesinski G (2006) DNA condensation and interaction with zwitterionic phospholipids mediated by divalent cations. Langmuir 22:6293–6301

    Google Scholar 

  • Gu Z (ed) (2015) Bioinspired and biomimetic systems for drug, protein and gene delivery. Wiley, New York

  • Guntupalli R, Sorokulova I, Long R, Olsen E, Neely W, Vodyanoy V (2011) Phage Langmuir monolayers and Langmuir-Blodgett films. Colloids Surf B 82:182–189

    Google Scholar 

  • Haberl S, Kandušer M, Flisar K, Hodžić D, Bregar VB, Miklavčič D, Escoffre JM, Rols MP, Pavlin M (2013) Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J Gene Med 15(5):169–181

    Google Scholar 

  • Haberle FA, Ferguson GW (1980) Phase separation in lipid membranes. In: Simons K (ed) Additional perspectives on the biology of lipids. Cold Spring Harb Perspect Biol 3:1–3

    Google Scholar 

  • Hamilton RL Jr, Goerke J, Guo LSS, Williams MC, Havel RJ (1980) Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique. J Lipid Res 21:981–992

    Google Scholar 

  • Hianik T, Vitovic P, Humenik D, Andreev SY, Oretskaya TS, Hall EAH, Vadgama P (2003) Hybridization of DNA at the surface of phospholipid monolayers: effect of orientation of oligonucleotide chains. Bioelectrochemistry 59:35–40

    Google Scholar 

  • Hoch PG, Hartmann RK (2014) Supramolecular membrane-associated assemblies of RNA metabolic proteins in Escherichia coli. Biochem J 458(1):1–3

    Google Scholar 

  • Jen JJ, Grote J (eds) (2012) Materials science of DNA. CRC Press, Boca Raton

    Google Scholar 

  • Kabanov AV (2006) Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 58:1597–1621

    Google Scholar 

  • Kahya N, Merkle D, Schwille P (2007) Pushing the complexity of model bilayers: novel prospects for membrane biophysics. Springer Ser Fluoresc 4:339–359

    Google Scholar 

  • Kamimura K, Suda T, Zhang G, Liu D (2012) Advances in gene delivery systems. Pharmaceut Med 25(5):293–306

    Google Scholar 

  • Kaneda Y (2001) Gene therapy: a battle against biological barriers. Curr Mol Med 1(4):493–499

    Google Scholar 

  • Klose T, Rossmann MG (2014) Structure of large dsDNA viruses. Biol Chem 1395(7–8):711–719

    Google Scholar 

  • Kundu S (2010) Lipid-polyelectrolyte complexes at the air-water interface for different lipid packing. Colloids Surf A 368:31–36

    Google Scholar 

  • Kunitake T (2000) Self-assemblies of biomembrane mimics. In: Baszkin A, Norde W (eds) Physical chemistry of biological interfaces. Marcel Dekker Inc., New York, pp 283–305

    Google Scholar 

  • Kurihara K, Tamura M, Shohda K, Toyota T, Suzuki K, Sugawara T (2011) Self-reproduction of supramolecular giant vesicles cimbined with the amplification of encapsulated DNA. Nat Chem 4:775–781

    Google Scholar 

  • Laliberte JP, Moss B (2014) A novel mode of poxvirus superinfection exclusion that prevents fusion of the lipid bilayers of viral and cellular membranes. J Virol 7:816–824

    Google Scholar 

  • Lam AMI, Cullis PR (2000) Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. Biochim Biophys Acta 1463:279–290

    Google Scholar 

  • Langecker M, Arnaut V, List J, Simmel F (2014) DNA nanostructures interacting with lipid bilayer membranes. Acc Chem Res 47:1807–1815

    Google Scholar 

  • Lechardeur D, Lukacs GL (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2(2):183–194

    Google Scholar 

  • Lee KYC (2008) Collapse mechanisms of Langmuir monolayers. Annu Rev Phys Chem 59:771–791

    Google Scholar 

  • Lengyel A, Uhriková D, Klacsová M, Balgavý P (2011) DNA condensation and its thermal stability influenced by phospholipid bilayer and divalent cations. Colloids Surf B 86:212–217

    Google Scholar 

  • Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727

    Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Google Scholar 

  • Lewis RNAH, McElhaney RN (2007) Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes. In: Dopico AM (ed) Methods in molecular biology, vol 400., Methods in membrane lipidsHumana Press, Totowa, pp 207–226

    Google Scholar 

  • Liang H, Zhang XB, Lv Y, Gong L, Wang R, Zhu X, Yang R, Tan W (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 47(6):1891–1901

    Google Scholar 

  • Lin T-L, Wu J-C, Hu Y, Jeng U-S, Lee H-Y (2012) Effect of different divalent ions on the DNA adsorption by lipid monolayers. Chin J Phys 50(2):332–343

    Google Scholar 

  • Lucia B (ed) (2013) Metal ions in life sciences. Metallomics and the cell. Springer, Dordrecht

    Google Scholar 

  • Ma B, Zhang S, Jiang H, Zhao B, Lv H (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 123:184–194

    Google Scholar 

  • Manavbaşı Y, Süleymanoğlu E (2007) Nucleic acid-phospholipid recognition: fourier transform infrared spectrometric characterization of ternary phospholipid-inorganic cation-DNA complex and its relevance to chemicopharmaceutical design of nanometric liposome based gene delivery formulations. Arch Pharm Res 30(8):1027–1040

    Google Scholar 

  • Marty R, N’soukpoe-Kossi CN, Charbonneau D, Weinert CW, Kreplak L, Tajmir-Riahi H-A (2009) Structural analysis of DNA complexation with cationic lipids. Nucleic Acids Res 37(3):849–857

    Google Scholar 

  • McKnight RE (2013) Chapter 6: insights into the relative DNA binding affinity and preferred binding mode of homologous compounds using isothermal titration calorimetry (ITC). Intech, New York, pp 129–152

    Google Scholar 

  • Mello MLS, Vidal BC (2012) Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form. PLoS One 7(8):e43169. doi:10.1371/journal.pone.0043169

    Google Scholar 

  • Mereghetti P, Corsetto PA, Cremona A, Rizzo AM, Doglia SM, Ami D (2014) A Fourier transform infrared spectroscopy study of cell membrane domain modifications induced by docosahexaenoic acid. Biochim Biophys Acta 1840:3115–3122

    Google Scholar 

  • Michel R, Gradzielski M (2012) Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int J Mol Sci 13:11610–11642

    Google Scholar 

  • Miyamoto VK, Stoeckenius W (1971) Preparation and characteristics of lipid vesicles. J Membr Biol 4:252–269

    Google Scholar 

  • Moghaddam B, McNeil SE, Zheng Q, Mohammed AR, Perrie Y (2011) Exploring the correlation between lipid packing in lipoplexes and their transfection efficacy. Pharmaceutics 3(4):848–864

    Google Scholar 

  • Möhwald H (1995) Phospholipid monolayers. In: Lipowski R, Sackmann E (eds) Handbook of biological physics. Elsevier, Dordrecht, pp 161–211

    Google Scholar 

  • Motschmann H, Möhwald H (2001) Langmuir-Blodgett films. In: Holmberg K (ed) Handbook of applied surface and colloid chemistry. Wiley, New York, pp 629–648

    Google Scholar 

  • Neugebauer U (2014) Characterization of bacteria, antibiotics of the fluoroquinolone type and their biological targets DNA and gyrase utilizing the unique potential of vibrational spectroscopy. Dissertation, Friedrich Schiller University, Jena

  • Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45(7):1153–1162

    Google Scholar 

  • Norris V, Fishov I (2001) Hypothesis: membrane domains and hyperstructures control bacterial division. Biochimie 83(1):91–97

    Google Scholar 

  • O’Brien R, Ladbury JE, Chowdhry BZ (2001) Isothermal titration calorimetry of biomolecules. In: Harding SE, Chowdhry BZ (eds) Protein-ligand interactions: hydrodynamics and calorimetry. Practical approach series. Oxford University Press, Oxford, pp 263–286

    Google Scholar 

  • Okahata Y, Kawasaki T (2005) Preparation and electron conductivity of DNA-aligned cast and LB films from DNA-lipid complexes. Top Curr Chem 260:57–75

    Google Scholar 

  • Oupický D (2005) Subcellular fate of proteins and nucleic acids. In: Mahato R (ed) Biomaterials for delivery and targeting of proteins and nucleic acids. CRC Press, Boca Raton, pp 323–350

    Google Scholar 

  • Panayotov I, Fakirov S (1988) Chemistry and physics of polymers, Chapter XV: Biopolymers. Nauka i Izkustvo, Sofia, pp 562–586 (In Bulgarian)

    Google Scholar 

  • Park SH, Oh SG, Mun JY, Han SS (2005) Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids Surf B 44(2–3):117–122

    Google Scholar 

  • Park SH, Oh SG, Suh KD, Han SH, Chung DJ, Mun JY, Han SS, Kim JW (2009) Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles. Colloids Surf B 70(1):108–113

    Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta 1711:1–11

    Google Scholar 

  • Pott T, Roux D (2002) DNA intercalation in neutral multilamellar membranes. FEBS Lett 511:150–154

    Google Scholar 

  • Pozzi D, Caracciolo G, Caminiti R, De Sanctis SC, Amenitsch H, Marchini C, Montani M, Amici A (2009) Toward the rational design of lipid gene vector: shape coupling between lipoplex and anionic cellular lipids controls the phase evolution of lipoplexes and the efficiency of DNA release. ACS Appl Mat Interfaces 1(10):2237–2249

    Google Scholar 

  • Privalov PL (2009) Microcalorimetry of proteins and their complexes. In: Shriver JW (ed) Methods in Molecular Biology™. Protein structure, stability and interactions. Humana Press, New York, pp 1–39

    Google Scholar 

  • Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des 74:101–120

    Google Scholar 

  • Read ML, Logan A, Seymour LW (2005) Barriers to gene delivery using synthetic vectors. Adv Genet 53:19–46

    Google Scholar 

  • Resina S, Prevot P, Thierry AR (2009) Physico-chemical characteristics of lipoplexes influence cell uptake mechanisms and transfection efficacy. PLoS One 4(6):e6058. doi:10.1371/journal.pone.0006058

    Google Scholar 

  • Reusch VM Jr, Burger MM (1973) The bacterial mesosome. Biochim Biophys Acta 300(1):79–104

    Google Scholar 

  • Rinia HA, Wurpel GWH, Müler M (2007) Measuring molecular order and orientation using coherent anti-Stockes Raman scattering microscopy. In: Dopico AM (ed) Methods in molecular biology, vol 400., Methods in membrane lipidsHumana Press, Totowa, pp 45–61

    Google Scholar 

  • Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS One 6(8):e22802. doi:10.1371/journal.pone.0022802

    Google Scholar 

  • Sato S, Kawamoto J, Sato SB, Watanabe B, Hiratake J, Esaki N, Kurihara T (2012) Occurrence of a bacterial membrane microdomain at the cell division site enriched in phospholipids with polyunsaturated hydrocarbon chains. J Biol Chem 287(29):24113–24121

    Google Scholar 

  • Sau TK, Urban AS, Dondapati SK, Fedoruk M, Horton MR, Rogach AL, Stefani FD, Rädler JO, Feldman J (2009) Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids Surf A 342:92–96

    Google Scholar 

  • Scherman D (ed) (2014) Advanced textbook on gene transfer, gene therapy and genetic pharmacology: principles, delivery and pharmacology and biomedical applications of nucleotide-based therapies. Imperial College Press, London

    Google Scholar 

  • Schmutz M, Durand D, Debin A, Palvedeau Y, Etienne A, Thierry AR (1999) DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage. Proc Natl Acad Sci USA 96(22):12293–12298

    Google Scholar 

  • Schultz ZD, Levin IW (2011) Vibrational spectroscopy of biomembranes. Annu Rev Anal Chem 4:343–366

    Google Scholar 

  • Shi D (ed) (2015) Bio-inspired nanomaterials and applications: nanodetection, drug/gene delivery, medical diagnosis and therapy. World Scientific Publishing Co., Singapore

    Google Scholar 

  • Shimomura M, Mitamara R, Matsumoto J, Ijiro K (2003) DNA-mimetics: towards novel molecular devices having molecular information. Synth Met 133–134:473–475

    Google Scholar 

  • Silva MT, Sousa JC, Polónia JJ, Macedo MA, Parente AM (1976) Bacterial mesosomes: Real structures or artifacts? Biochim Biophys Acta 443(1):92–105

    Google Scholar 

  • Stine KJ, Moore BG (2002) Langmuir monolayers: fundamentals and relevance to nanotechnology. In: Rossof M (ed) Nano-surface chemistry. Marcel Dekker Inc., New York, pp 59–140

    Google Scholar 

  • Stottrup LB, Nguyen AH, Tüzel E (2010) Taking another look with fluorescence microscopy: image processing techniques in Langmuir monolayers for the twenty-first century. Biochim Biophys Acta 1798:1289–1300

    Google Scholar 

  • Süleymanoğlu E (2004) A nanoscale polynucleotide-neutral liposome self-assemblies formulated for therapeutic gene delivery. Electron J Biomed 2:13–35

    Google Scholar 

  • Süleymanoğlu E (2005) Preparation and phase behaviour of surface-active pharmaceuticals: self-assembly of DNA and surfactants with membranes. Differential adiabatic scanning microcalorimetric study. Farmaco 60(8):701–710

    Google Scholar 

  • Süleymanoğlu E (2006a) Phoshpolipid-nucleic acid recognition: energetics of DNA-Mg2+-phosphatidylcholine ternary complex formation and its further compaction as a gene delivery formulation. PDA J Pharmaceut Sci Technol 60(4):218–231

    Google Scholar 

  • Süleymanoğlu E (2006b) Phoshpolipid-nucleic acid recognition: developing an immobilized liposome chromatography for DNA separation and analysis. PDA J Pharmaceut Sci Technol 60(4):232–239

    Google Scholar 

  • Süleymanoğlu E (2009) The use of IR spectroscopy after rehydration to follow ternary lipoplex formation and design as a metal-based DNA nanopharmaceuticals. Prilozi 1:61–80

    Google Scholar 

  • Thaker VV, Herrmann LO, Sigle DO, Zhang T, Liedl T, Baumberg JJ, Keyser UF (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 1:1–7

    Google Scholar 

  • Trajanowicz M, Mulchandani A (2004) Analytical applications of planar bilayer lipid membranes. Anal Bioanal Chem 379:347–350

    Google Scholar 

  • Vaknin D, Kjaer K, Als-Nielsen J, Lösche M (1991) Structural properties of phosphatidylcholine in a monolayer at the air/water interface: neutron reflection study and reexamination of X-ray reflection measurements. Biophys J 59(6):1325–1332

    Google Scholar 

  • Vollhardt D (2002) Supramolecular organisation in monolayers at the air/water interface. Mater Sci Eng C 22:121–127

    Google Scholar 

  • Walde P, Blöchliger E (1997) Circular dichroic properties of phosphatidylcholine liposomes. Langmuir 13:1668–1671

    Google Scholar 

  • Wang T, Upponi JR, Torchilin VP (2012) Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 427(1):3–20

    Google Scholar 

  • Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92(2):203–217

    Google Scholar 

  • Wu G, Mikhailovsky A, Khant HA, Zasadzinski JA (2006a) Synthesis, characterization, and optical responce of gold nanoshells used to trigger release from liposomes. Methods Enzymol 464:279–307

    Google Scholar 

  • Wu J-C, Lin T-L, Jeng U-S, Torikai N (2006b) Neutron reflectivity studies on the DNA adsorption on lipid monolayers at the air-liquid interface. Phys B 385–386:838–840

    Google Scholar 

  • Yan J, Korolev N, Eom KD, Tam JP, Nordenskiöld L (2012) Biophysical properties and supramolecular structure of self-assembled liposome/ε-peptide/DNA nanoparticles: correlation with gene delivery. Biomacromolecules 13:124–131

    Google Scholar 

  • Zsakó J, Tomoaia-Cotisel M, Chifu E (1984) Insoluble mixed monolayers. I. Phase equilibria at the collapse of binary monolayers at gas/liquid interfaces. J Colloid Interface Sci 102:186–205

    Google Scholar 

  • Zuidam NJ, Barenholz Y, Minsky A (1999) Chiral DNA packaging in DNA-cationic liposome assemblies. FEBS Lett 457:419–422

    Google Scholar 

Download references

Acknowledgments

This work was supported by The Technological and Research Council of Turkey (TÜBİTAK) in the frame of the EU-COST Project 111S495. The staffs of The Central Laboratory of Middle East Technical University and Bilkent University-UNAM are greatly acknowledged for access to instruments. We also thank Pelin Tören for technical assistance during some of the experiments, and the Dept. of Analytical Chemistry of Gazi University, Faculty of Pharmacy for the use of their fluorescence and Raman spectrometers. The gratitudes of E. S. go particularly to Prof. Holm Holmsen (University of Bergen, Bergen-Norway) for introducing him to the field of Langmuir–Blodgett films and lipid monolayers during their joint work on antipsychotic drug–membrane interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Süleymanoğlu.

Additional information

Fatma Funda Kaya Demirsoy and Nuraniye Eruygur have contributed equally to this work.

Guest Editors: Mustafa Culha, Rawil F. Fakhrullin, Ratnesh Lal

This article is part of the topical collection on Nanobiotechnology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirsoy, F.F.K., Eruygur, N. & Süleymanoğlu, E. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections. J Nanopart Res 17, 50 (2015). https://doi.org/10.1007/s11051-014-2812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2812-5

Keywords

Navigation