Learning from recursive, tree structured examples

  • P. Jappy
  • M. C. Daniel-Vatonne
  • O. Gascuel
  • C. de la Higuera
Extended Abstracts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 784)


In this paper, we propose an example representation system that combines a greater expressive richness than that of the Boolean framework and an analogous treatment complexity. The model we have chosen is algebraic, and has been used up to now to cope with program semantics [4]. The examples are represented by labelled, recursive typed trees. A signature enables us to define the set of all allowed (partial or complete) representations. This model properly contains Boolean representations. We show that in the PAC framework defined by Valiant [10], the extensions to this model of two Boolean formula classes: k-DNF and k-DL, remain polynomially learnable.


  1. 1.
    Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K. (1986). Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing. 273–282.Google Scholar
  2. 2.
    Courcelle, B. (1986). Equivalences and transformations of regular systems — applications to recursive program schemes and grammars, Theoretical Computer Science 42(1), 1–122.CrossRefGoogle Scholar
  3. 3.
    Cohen, W.W. (1993). Pac-Learning a Restricted Class of Recursive Logic Programs. Proceedings of the Tenth National Conference on Artificial Intelligence. 86–92.Google Scholar
  4. 4.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977). Initial algebra semantics and continuous algebras, Journal A.C.M. 24 (1), 68–95.Google Scholar
  5. 5.
    Gold, M. (1978). Complexity of automaton identification from given data, Information and control 37, 302–320.CrossRefGoogle Scholar
  6. 6.
    Haussler, D. (1989). Learning conjunctive concepts in structural domains, Machine Learning 4,7–40.Google Scholar
  7. 7.
    Jappy, P., Daniel-Vatonne, M.C., Gascuel, O. and de la Higuera., C. (1993). Learning from Recursive, Tree Structured Examples. Rapport de Recherche LIRMM. No 93040.Google Scholar
  8. 8.
    Muggleton, S.H. (1992). Inductive Logic Programming. Academic Press.Google Scholar
  9. 9.
    Rivest, R.L. (1987). Learning decision list, Machine Learning 2(3), 229–246.Google Scholar
  10. 10.
    Valiant, L.G. (1984). A theory of the learnable. ACM Com. 27, 1134–1142.Google Scholar
  11. 11.
    Winston, P.H. (1975). Learning Structural descriptions from Examples, in The psychology of computer vision, Winston, P. H. (Ed.), Mc Graw Hill, New York, 157–209.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • P. Jappy
    • 1
  • M. C. Daniel-Vatonne
    • 1
  • O. Gascuel
    • 1
  • C. de la Higuera
    • 1
  1. 1.DIF - LIRMMMontpellierFrance

Personalised recommendations