
Learning from Recursive, Tree Structured Examples

P. Jappy, M.C. Daniel-Vatonne, O. Gascuel, and C. de la Higuera
DIE- LYRMM, 16I rue Ac/,a, 34392 - Montpellier - FRANCE

Abstract In this paper, we propose an example representation system that combines
a greater expressive dctmess than that of the Boolean framework and an analogous
treatment complexity. The model we have chosen is algebraic, and has been used up
to now to cope with program semantics [4]. The examples are represented by
labelled, recursive typed trees. A signature enables us to define the set of all a/lowed
(partial or complete) representations. This model properly contains Boolean
representations. We show that in the PAC framework def'med by Valiant [10], the
extensions to this model of two Boolean formula classes: k-DNF and k-DL, remain
polynomially learnable.

! I n t r o d u c t i o n

This paper deals with data representation, in Inductive Learning. Two main trends are
found in the literature:

The first and older one uses an attribute-values type language. When the attribute values
are symbolic, this type of language is very close to propositional logic and to the Boolean
framework. Learning from these attribute-values representations is "often" "quite" easy.
This was shown from a theoretical point of view within the COLT. For instance k-DNF,
k-CNF [10] and k-DL [9] are three Boolean formula classes that are polynomially
learnable as defined in [10]. Practically, the successful applications of the attribute-values
representation (in Machine Learning, but in Statistics and Pattern Recognition also) are
extremely numerous. Of course, and that is the tradeback for efficiency, this type of
representation is relatively poor.

The second trend tends to use a "structural" representation close to predicate logic or to
semantic networks. For the main part, this approach comes from Artificial Intelligence
and in particular the work of Winston [11]. This type of representation is richer than the
previous one. Not only can we give the global characteristics of the example (e.g. the
colour, the shape...), but also the relations that link its components (e.g. it is composed of
a sphere on top of a cube...). The drawback is the algorithmic complexity problems
inherent in this type of representation. This was shown by FIaussler [6] within the
framework of the COLT. However, recent work in Inductive Logic Progamming [3,8] has
produced positive results on some very restricted FOL classes.

This paper proposes an "in between" way. We try to combine a complexity similar to that
of the Boolean framework with a greater expressive power. The model we have chosen to
represent the data has been used so far in algebraic program semantics [4J. The examples
are represented by labelled, recursive typed trees called typed terms. A signature enables
us to define the set of all allowed representations (be they partial or complete). The idea
of using trees stems from the fact that they are close to the "limit of polynomiality".
Forest matching, for instance, is already NP-complete. The fact that we dispose of a
generation mechanism, rather than simple tree-like representations, enables us to better
comprehend the language and its properties. For example, it allows us to define, and
eventually generate, ai[speciatisat, ons of a given description. This representation model
and its relation to the Boolean one are sketched in Section 2. Our goal is to dispose of a

368

representation system that is richer than the Boolean one, yet remains of similar
algorithmic complexity. Proving that this is the case cannot be done out o f a precise
context. This is why we focus on PAC learning and show (in Section 3) that the natural
extensions of two of the main Boolean formula classes, k-DNF and k-DL, stay
polynomially learnable.

2 T y p e d T e r m s

Typed terms are built using an algebraic structure called a signature which determines the
set of authorised representations. This contains the allowed symbols along with their
types and argument types. With such a structure, terms are constructed recursively in a
similar manner to mathematical functions. This endows them with a tree sn-ucture having
good complexity properties and a natural intuitive graphic representation.

A signature is a quadruple (S, F, or, a) where :
�9 S is a finite set of types (also called sorts).
�9 F is a finite set of symbols.
�9 o" : F > S is a many-to-one mapping. For any r in F, o1'4) is called type of 4.
�9 a : F > S* is a mapping (where S* is the free monoid generated by S). For any
symbol ~ in F , a(r gives the order and type of r arguments, with ct(~) = e the empty
word when ~ has no arguments./a(~)/the length of a(r is called r arity.

Furthermore, to each type s, is implicitly added a special symbol s meaning "unknown"
such that a(s = e. Terms containing one or more of these symbols are partial
descriptions of objects and the others are said to be completely specified. In the
following, we assume that all the examples used for learning are completely specified.

The set of terms of type s (noted Ts) is the smallest set such that:
V ~ F, a(r = sand ct(r = e ~ ~ T s and

V~ ~ F, G(~) = s, a(r = Sl...Sn and Vi ~ [1,hi ti E Tsi ~ O(tl tn) ~ Ts

Note that this definition is recursive and so allows direct implementation.

The generalisation relation between terms is defined by : t is more general than t"
(noted t _~ t') iff t is s or both terms have the same root ~0 and all arguments of ~ in t are
more general than those in t'. Relation < is a partial order of minimal element s
The generalisation test t _~ t' is linear in the size of t.

The size of a term is the sum of all its non s symbols. This size is a measure of the
information content of the term. This allows us to compute Nk, the number of terms of a
given type s and of size at most k, which is needed for leamability results. This value is :

Nl: ~_ k/ ak f k where a = max{ /~ qb)], qb s F} and f =/F]

Example: The following signature can be used to describe the origins of present day
Americans, tracing through the genealogy of a person until it reaches one of the following
possibilities: a Native American ancestor, or an immigrant from one of the continents.

S = {r} where r stands for race.

F cr a F r a
American r rr African r e
Asian r ~ European r
Hispanic r e Native r r

369

American American

I ' 2 ~ m e r i c a n ~ a m e r ~ r i c a n

s African European s s African

Remark: This simplified signature admits only one type. The need for multisortedness
appears when one wishes to add extra characteristics. Furthermore, the order of the
arguments isn't commutative and in this example the left son of a node describes (by
convention) the ancestors on the father's side and the right son those on the mother's.

Typed terms and Boolean representations
Any Boolean term can be simulated by a typed term using the following signature: each
variable V i is assigned a type and two literals (vi and ---vi) plus the corresponding g2, all
having the same common root. So any literal can be true, false or unknown, the root
representing their conjunction. This shows that our model generalises the Boolean one.

and F a cr
and V1V2V3V 4 conj
v I e V 1

~v l v2 -,v3 s ~v 1 e V 1
v2 e V2. . .

It follows that the extension of non learnable Boolean function classes to typed terms will
not be polynomially learnable either. This argument is in no way incompatible with the
one stating that the superset of a non learnable class can be learnable : we simply translate
a Boolean learning problem into another in the typed term framework and get our result
through reduction. So, we will only concentrate on two learnable Boolean classes, namely
k-DNF and k-DL. We define their natural extensions by replacing Boolean terms by their
typed counterparts, and note these new classes k-TDNF and k-TDL respectively (where k
now represents the maximum size of terms rather than the number of literals). In doing so,
we have to extend Valiant's definition of polynomial learnability [10] by replacing the
complexity parameter n (the number of Boolean variables) by a, the maximum arity of a
symbol and f the number of symbols in the signature. Note that this extrapolation is
consistent since using the above transformation, we have a = n and f = 2n+1.

3 P o l y n o m i a l l e a r n a b i l i t y o f k - T D N F a n d k - T D L

We must assume that the examples are randomly sampled from a population on which a
fixed but unknown probability measure is defined. Then the two new concept classes
defined above can be shown to fit in Valiant's definition of polynomial learnability. To
prove this, we will use the theorem by Blumer et al. [1] which splits this task into two
easier problems. The first is to show that each concept class is polynomial sized - that is
the logarithm of its size is a polynomial in the complexity parameters a and f mentioned
above. The second is to produce an indentification algorithm which finds a function
consistent with the training data or detects its non existence, and is polynomial in a ,f and
in the size of the learning set. We get [7] :

o/k-TDNF/ = 2 Nk _< 2k.takf k. So log(/k-TDNF/) ~ O(Nk) = O((af) k)

�9 /k-TDL/= 3Nk(Nk.t). So log(/k-TDL/) ~ O(Nklog (Nk)) = O((af) k+l)

370

This shows that both classes are polynomial sized. Furthermore, the identification
algorithms are very similar to those used by Valiant [10] and Rivest [9] and have similar
complexity (this is detailed in [7]). So these two new classes are polynomially learnable,
an important contribution to this result being the polynomiality of the generalisation test.

4 D i s c u s s i o n a n d c o n c l u s i o n

This paper studies the characteristics of a new example representation language and
shows that from a PAC learning point of view, it leads to a complexity similar to that of
the Boolean framework. Several points deserve to be discussed :

In our model, the number of possible representations is sometimes infinite (as in our
example) which is never the ease with Boolean terms. Yet, some aspects of the Boolean
framework are preserved, which explains our results concerning PAC learning.

Signatures and grammars have several similarities. Both rest on analogous algebraic
construction systems [2]. But our use of signatures is very different to that usually made
of grammars. When we place ourselves in a grammatical framework, derivation trees are
not essential. Here, on the contrary, we are interested in the trees themselves and give the
interior nodes a meaning. Furthermore, the goal of grammatical induction is to learn "the
grammar", whereas here we already dispose of the signature. This difference in approach
explains our reaching a polynomial learnability result when most problems regarding
grammars have a much greater difficulty [5].

We also feel that terms can represent an alternative approach to ILP in the study of
recursive rules. Similarities and differences between both approaches remain to be
investigated.

References :
1. Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M.K. (1986). Classifying
learnable geometric concepts with the Vapnik-Chervonenkis dimension. Proceedings of
the Eighteenth Annual ACM Symposium on Theory of Computing. 273-282.
2. Courcelle, B. (1986). Equivalences and transformations of regular systems -
applications to recursive program schemes and grammars, Theoretical Computer Science
42 (1), 1-122.
3. Cohen, W.W. (1993). Pac-Leaming a Restricted Class of Recursive Logic Programs.
Proceedings of the Tenth National Conference on Artificial Intelligence. 86-92.
4. Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977). Initial algebra
semantics and continuous algebras, Journal A.CAt. 24 (1), 68-95.
5. Gold, M. (1978). Complexity of automaton identification from given data, Information
and control 37, 302-320.
6. Haussler, D. (1989). Learning conjunctive concepts in structural domains, Machine
Learning 4,7-40.
7. Jappy, P., Daniel-Vatonne, M.C., Gascuel, O. and de la Higuera., C. (1993). Learning
from Recursive, Tree Structured Examples. Rapport de Recherche LIRMM. No 93040.
8. Muggleton, S.H. (1992). Inductive Logic Programming. Academic Press.
9. Rivest, R.L. (1987). Learning decision list, Machine Learning 2(3), 229-246.
10. Valiant, L.G. (1984). A theory of the learnable.ACM Com. 27, 1134-1142.
11. Winston, P.H. (1975). Learning Structural descriptions from Examples, in The
psychology of computer vision, Winston P. H. (Ed.), Mc Graw Hill, New York, 157-209.

