(n, m)-Cubes and Farey Nets for Naive Planes Understanding

  • J. Vittone
  • J. M. Chassery
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1568)

Abstract

A digital naive plane can be represented by repetition of specific elements, called (n,m)-cubes, composed of n × m adjacent voxels. The aim of this paper is to study the class of (n,m)-cubes appearing in a plane in relation with the parametric representation based on the normal vector. Planes are ordered using Farey series coding and we prove the relationship between the segmentation issued from the Farey net and configurations of (n,m)-cubes. This is an original contribution.

Keywords

Normal Vector Basic Element Basic Plane Rational Point Parametric Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Andrès, R. Acharya, and C. Sibata. Discrete analytical hyperplanes. GMIP, 59(5):302–309, 1997.Google Scholar
  2. 2.
    A.J. Brentjes. A two-dimensional continued fraction algorithm for best approximations with an application in cubic number fields. J. Reine Angew. Math., 326: 18–44, 1981.MATHMathSciNetGoogle Scholar
  3. 3.
    J.M. Chassery and A. Montanvert. Géométrie discrète en analyse d’images. Hermès, Paris, 1991.Google Scholar
  4. 4.
    I. Debled-Renesson. Etude et reconnaissance des droites et plans discrets. PhD thesis, Louis Pasteur University, Strasbourg, France, 1995.Google Scholar
  5. 5.
    I. Debled-Renesson and J.P. Reveillés. An incremental algorithm for digital plane recognition. In DGCI’4, pages 207–222, Grenoble, France, September 1994.Google Scholar
  6. 6.
    L. Dorst and A.W.M. Smeulders. Discrete representation of straight lines. IEEE Trans. PAMI, 6:450–463, 1984.MATHGoogle Scholar
  7. 7.
    J. Françon, J.M. Schramm, and M. Tajine. Recognizing arithmetic straight lines and planes. In A. Montanvert S. Miguet and S. Ubéda, editors, Lect. Notes Comput. Sci., volume 1176, pages 141–150. Springer, 1996.Google Scholar
  8. 8.
    D.J. Grabiner. Farey nets and multidimensional continued fractions. Monatsh. Math., 114(1):35–61, 1992.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Hurwitz. Ueber die angenäherte darstellung der zahlen durch rationale brüche. Math. Ann., 44:417–436, 1894.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M.D. McIlroy. A note on discrete representation of lines. ATandT Tech. J., 64: 481–490, 1985.Google Scholar
  11. 11.
    J.P. Reveillés. Géométrie discrète, calculs en nombre entiers et algorithmique. PhD thesis, Louis Pasteur University, Strasbourg, France, 1991.Google Scholar
  12. 12.
    J.P. Reveillés. Combinatorial pieces in digital lines and planes. In Vision Geometry IV, volume 2573. SPIE, 1995.Google Scholar
  13. 13.
    J.M. Schramm. Coplanar tricubes. In E. Ahronovitz and C. Fiorio, editors, Lect. Notes Comput. Sci., volume 1347, pages 87–98. Springer, 1997.Google Scholar
  14. 14.
    J. Vittone and J.M. Chassery. Coexistence of tricubes in digital naive plane. In E. Ahronovitz and C. Fiorio, editors, Lect. Notes Comput. Sci., volume 1347, pages 99–110. Springer, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. Vittone
    • 1
  • J. M. Chassery
    • 1
  1. 1.Laboratoire TIMC-IMAGInstitut Albert BonniotFrance

Personalised recommendations