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Abstract. A digital naive plane can be represented by repetition of
specific elements, called (n, m)-cubes, composed of n×m adjacent voxels.
The aim of this paper is to study the class of (n, m)-cubes appearing in a
plane in relation with the parametric representation based on the normal
vector. Planes are ordered using Farey series coding and we prove the
relationship between the segmentation issued from the Farey net and
configurations of (n, m)-cubes. This is an original contribution.

1 Introduction

The topological development as well as the geometrical development of the dis-
crete space (ZZn) theory is continually increasing. Algorithmic problems which
are difficult to solve by the Euclidean geometry are easier to solve in the discrete
context as it is the case for object representation or squelettization problems [3].
Moreover, the arithmetic definitions of discrete lines and planes [11][1] allow the
entire discrete analysis of objects.
The problem of recognizing digital lines [4] is now solved but the generalization
to discrete planes [4][5] is not optimal. It would be interesting to recognize digital
planes by their geometry. The study of the coexistence of tricubes in a discrete
plane has been studied by different authors either by Fourier algorithm [7][13] or
by a syntaxic analysis [14]. Nevertheless the characterization of planes by pieces
with different sizes could reduce the set of corresponding planes.
In this paper our interest is to generalize the representation of naive planes by
(n, m)-cubes. For this, we will see the links between the parameters of naive
planes and their position in Farey nets via a two-dimensional continued fraction
algorithm [9][2][8]. We will illustrate the way how (n, m)-cubes generators of the
naive plane can be identified to the parameters of the naive plane. Some results
on 2D digital lines [6][10] are here extended to 3D digital planes.

2 Definitions

A digital naive plane of normal vector (a, b, c) and translation parameter r is
defined as the set of points M(x, y, z) ∈ ZZ3 satisfying the double-inequality:

0 ≤ ax + by + cz + r < max(|a|, |b|, |c|)
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where all parameters a, b, c, r are integers and a, b, c are not null all together
and verify gcd(a, b, c) = 1. We limit our study to naive planes in the 24th part
of space such that 0 ≤ a ≤ c, 0 ≤ b ≤ c and c 6= 0. These planes will be noted
by P(a, b, c, r).
We call remainder at point M(x, y, z) of the naive plane P(a, b, c, r) the value
R(x, y) = (ax + by + r) mod (c).
The lower leaning points (resp. upper leaning points) of the naive plane
P(a, b, c, r) are the points M(x, y, z) satisfying R(x, y) = 0 (resp. R(x, y) = c−1)
(fig.1(a)).
For n ≥ 2 and m ≥ 2, the (n, m)-cube at point (i, j) of the naive plane P
is defined as the set C(i, j, n, m) = {(x, y, z) ∈ P / i ≤ x < i + n, j ≤ y < j + m}
(fig.1(b)).
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Fig. 1. (a) Part of the naive plane P(3, 7, 19, 0); in dark gray we have the upper leaning
points and in light gray, the lower leaning points. (b) A (3, 4)-cube of P(3, 7, 19, 0).

Previous works [12] have shown that a naive plane satisfies the two following
properties:

Property 1. A naive plane contains at most nm different configurations of (n, m)-
cubes.
Property 2. Each (2n − 1, 2m − 1)-cube centered on a leaning point (upper or
lower) of a naive plane contains all the different configurations of (n, m)-cubes
that can be encountered in this plane.
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Fig. 2. 3×3 and 5×5 blocs centered on a leaning point of the naive plane P(3, 7, 19, 0)
with the configurations of (2, 2)-cubes (or bicubes) and (3, 3)-cubes (or tricubes).
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Definition 1.
- (n, m)-cubes at points (x1, y1) and (x2, y2) are geometrically equal if and

only if the difference R(x1 + k1, y1 + k2) − R(x2 + k1, y2 + k2) is a constant
for all (k1, k2) ∈ [0, n − 1] × [0, m − 1].

- (n, m)-cubes at points (x1, y1) and (x2, y2) are geometrically symetrics if
and only if the sum R(x1 + k1, y1 + k2)+R(x2 +n− 1− k1, y2 +m− 1− k2)
is a constant for all (k1, k2) ∈ [0, n − 1] × [0, m − 1]. The symetry is defined
with respect to the center of the volume delimited by the (n, m)-cube.
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Fig. 3. In the naive plane P(7, 13, 23, 0), the (2, 4)-cube at point (2, 0) (a) is geomet-
rically equal to the (2, 4)-cube at point (0, 1) (b) and geometrically symetric to the
(2, 4)-cube at point (3, −1) (c).

Then we verify the new following proposition (see figure 4 for illustration):

Proposition 1. Let xl, yl be the abscissa and ordinate of a lower leaning point
and xu, yu those of an upper leaning point of a same naive plane P(a, b, c, r).
Then, for all (α, β) ∈ ZZ2 the configuration of the (n, m)-cube at point of abscissa
xl +α and ordinate yl +β is geometrically symetric, with respect to the center of
the volume delimited by the (n, m)-cube, to the (n, m)-cube at point of abscissa
xu − n + 1 − α and ordinate yu − m + 1 − β.

Proof. For all (α, β) ∈ ZZ2 we have the relation R(xl +α, yl +β)+R(xu −α, yu −
β) = c−1. So according to definition 1, the configuration of (n, m)-cube at point
(xl + α, yl + β) is geometrically symetric to the configuration of (n, m)-cube at
point (xu − n + 1 − α, yu − m + 1 − β).
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Fig. 4. Representation with the remainders of the two symetric (3, 5)-cubes which are
attached to point (2, 2) and (7, 5) of the naive plane P(3, 7, 37, 0). The projection on
the (0xy) plane of the lower leaning point (voxel in light gray) is the point (3, 4). The
projection on the (0xy) plane of the upper leaning point (voxel in dark gray) is the point
(8, 7).
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With proposition 1 and property 2, we can limit our study to parts of plane
that are centered on lower leaning points. We deduce by translation that the
(2n − 1, 2m − 1)-cube S of the naive plane P(a, b, c, 0) which is centered on the
origin (a lower leaning point of this plane) contains all the configurations of
(n, m)-cubes that are needed to generate the planes P(a, b, c, r). In fact we can
remark that, for r = 0, · · · , c− 1, the (n, m)-cube C(0, 0, n, m) of the naive plane
P(a, b, c, r) is similar to one of the (n, m)-cubes contained in S. Consequently, we
will looking for the different configurations which appear around leaning points
of naive planes passing through the origin. First we need to recall some notions
about discretization of real planes.

3 Discretization of planes and hyper Farey nets

The discretization of an oriented curve by object boundary quantization (OBQ)
consists to take the nearest points of the discrete grid which are on the curve or
on the right of the curve.
The OBQ-discretization of a rational plane z = −ax+by+r

c where 0 ≤ a ≤ c,
0 ≤ b ≤ c and c 6= 0 gives the discrete naive plane P(a, b, c, r).

Let PR be the real plane z = −(αx + βy + γ) where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and
0 ≤ γ < 1. For n ≥ 2 and m ≥ 2, the OBQ-discretization of the plane PR on the
set V (i, j) =

{
(x, y) ∈ ZZ2 / i ≤ x < i + n, j ≤ y < j + m

}
is the set CR defined

by:

CR(i, j) =
{
(x, y, z) ∈ ZZ3 / (x, y) ∈ V (i, j), 0 ≤ αx + βy + z + γ < 1

}
As the set of rational numbers is dense in the set of real numbers, we always can
find four integers a, b, c and r satisfying the following conditions:

1) 0 ≤ a ≤ c, 0 ≤ b ≤ c, c 6= 0,
2) 0 ≤ r < c,
3) gcd(a, b, c) = 1,
4) the discretization on V (i, j) of the plane z = −(αx+βy+γ) is similar to the

discretization of the rational plane z = −ax+by+r
c . Note that by definition

the set of discrete points CR(i, j) is exactly the (n, m)-cube C(i, j, n, m) of
the discrete naive plane P(a, b, c, r).

Consequently, all rational numbers a
c , b

c and r
c satisfying these conditions are

“good” rational approximations of the real values α, β and γ.
By taking the discretization of the real plane z = −(αx + βy) on the rectangle
of size (2n − 1) × (2m − 1) centered on the point (0, 0) , we obtain the discrete
set S defined by:

S =
{
(x, y, z) ∈ ZZ3 / − n < x < n, −m < y < m, z − 1 < −(αx + βy) ≤ z

}
Using property 2, S contains all the different configurations of (n, m)-cubes
appearing in the discretization of rational planes for which parameters are ap-
proximations of α and β.
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One can notice that there exists an infinite number of real planes which have
the same discretization. So we define the equivalence class of S by:

S =
{
(α, β) ∈ [0, 1]2 / ∀(x, y, z) ∈ S z − 1 < −(αx + βy) ≤ z

}
.

There is a duality between the cartesian representation αx+βy+z = 0 of the real
plane and its parametric representation by the point (α, β) . A line xα+yβ+z = 0
of the parametric space is the set of points (α, β) which represent the parame-
ters of real planes passing through the point (x, y, z). The equivalence classes of
the different configurations appearing around a leaning point are defined by sets
of inequalities that decompose the unit square {(α, β)/0 ≤ α ≤ 1, 0 ≤ β ≤ 1} of
the parametric space into a set of polygons. This combination of lines is called
an hyper Farey net associated with (n, m)-cubes.An illustration will be
provided on figure 7.
Since the cartesian representation of a discrete plane is given by a double in-
equality, each discrete point (x, y, z), x = −(n − 1), · · · , n − 1, y = −(m −
1), · · · , m − 1 and z = min(0,−(x + y),−x,−y), · · · ,max(0,−(x + y),−x,−y),
is associated with an half-open band B(x, y, z) in the parametric space de-
limited by two parallel lines D(x, y, z) and D(x, y, z − 1), where D(x, y, z) ={
(α, β) ∈ [0, 1]2 / xα + yβ + z = 0

}
. Each band B(x, y, z) represents the set of

parameters (α, β) of real planes for which the discretization includes the point
(x, y, z).

Example 1. Let us analyze the (3 × 3) bloc S centered on the origin of a naive
plane (illustration on figure 5(a)). Its equivalence class S is defined by the in-
equalities −1 ≤ −α − β < 0, −1 ≤ −α < 0, 0 ≤ −α + β < 1, −1 ≤ −β < 0,
0 ≤ β < 1, −1 ≤ α − β < 0, 0 ≤ α < 1, 0 ≤ α + β < 1.
After reductions, the domain S illustrated on figure 5(b) is defined by the 4
inequalities 0 < α + β < 1, 0 < α < 1, 0 < β < 1, 0 < −α + β < 1.
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Fig. 5. (a) (3, 3)-cube S centered on the origin; (b) domain S of parameters (α, β)
related to the real plane αx + βy + z = 0 having S as discretization around the origin.
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Figure 6 represents all the configurations of (3, 3)-cubes which can appear around
the origin and the corresponding hyper Farey net.
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Fig. 6. (a) Black points are points appearing in naive planes P(a, b, c, 0) in the 24th

part of space. For instance, the points numbered from 1 to 9 belong to the naive plane
0 ≤ y + z < 1. (b) Representation with the values xα + yβ of the (3, 3)-cubes centered
on the origin. (c) Hyper Farey net attached to (2, 2)-cubes. Each band B(x, y, z) =
∪k∈IR,0≤k<1D(x, y, z − k) of the net is the parameter set of real planes PR such that
the point M(x, y, z) (black point of (a)) is in the discretization of PR.

Definition 2. A two-dimensional Farey series of order q ∈ IN∗ is the set Fq of
rational points defined by:

Fq =
q⋃

c=1

{(
a

c
,
b

c

)
∈ /Q2 / 0 ≤ a ≤ c, 0 ≤ b ≤ c

}
.

The construction of Farey series of order q ≥ 2 is recalled here.
Let A1

(
a1
c1

, b1
c1

)
and A2

(
a2
c2

, b2
c2

)
be two points of the Farey series of order (q−1)

satisfying c1 + c2 = q. The median point between A1 and A2, noted by A1 +A2,
is the point with coordinates

(
a1+a2
c1+c2

, b1+b2
c1+c2

)
. The Farey series of order q is

obtained by adding to the Farey series of order (q − 1) all median points for
which “denominator” are equal to q.

Definition 3. Let A be a subset of the Farey serie Fq of order q ≥ 1.
An hyper Farey net attached to A is a partition of the convex hull of A into
triangles of vertices

M1

(
a1,1

c1,3
,
a1,2

c1,3

)
, M2

(
a2,1

a2,3
,
a2,2

a2,3

)
, M3

(
a3,1

a3,3
,
a3,2

a3,3

)
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in A such as the determinant of the matrix (aij) is ±1 and containing no points
of A except for its vertices.

Theorem 1. The intersection between a line of the hyper Farey net associated
to (n, m)-cubes with another lines of the same Farey net is a subset of the two-
dimensional Farey series of order q ≤ 2(n − 1)(m − 1). The two vertices of an
edge of the Farey net are consecutive fractions of the one dimensional Farey
series in abscissa and ordinate.

Proof. The intersection of the line D(x, y, z) with the line D(x′, y′, z′), for xy′ −
x′y 6= 0, is the point ( |yz′ − y′z|

|xy′ − x′y| ,
|x′z − xz′|
|xy′ − x′y|

)

So the intersection of the line D(x, y, z) with the lines D(x′, y′, z′), x′ = −(n −
1), · · · , (n−1) and y′ = −(m−1), · · · , (m−1) is the set of rational points

(
a
c , b

c

)
satisfying 0 ≤ a ≤ c, 0 ≤ b ≤ c and 1 ≤ c ≤ 2(n − 1)(m − 1).

Example 2. In the hyper Farey net associated
to (2, 3)-cubes (fig. 7), the intersection of the
line α − β = 0 with the lines α + 2β = 0,
α + 2β = 1, α + β = 1, α + 2β = 2 and
α + 2β = 3 generates the points (0, 0),

(1
3 , 1

3

)
,( 1

2 , 1
2

)
,

( 2
3 , 2

3

)
and (1, 1). The set of abscissa

and the set of ordinates taken in ascending
order are associated with the one dimensional
Farey series of order 3:

{
0, 1

3 , 1
2 , 2

3 , 1
}

1

b

a10 1/3 1/2 2/3

1/3

1/2

2/3

Fig. 7. Hyper Farey net associated
to (2, 3)-cubes.

We study now the relation between the position of the parameters (α, β) in the
Farey net and the different configurations of (n, m)-cubes of the naive plane
P(a, b, c, 0) where

(
a
c , b

c

)
is a “good” approximation of (α, β) (as it was intro-

duced at the begining of this section). Let have a look at the different positions
for (α, β) with respect to the k-faces, k=0,1,2, of the lines arrangement of the
hyper Farey net.

Case 1: If the point (α, β) is a vertex of the arrangement then it is a ratio-
nal point expressed by

(
a
c , b

c

)
with c ≤ 2(n − 1)(m − 1). The discretization of

the rational plane of parameters (α, β) which includes the origin is the naive
plane P(a, b, c, 0) containing strictly p (p < nm) configurations of (n, m)-cubes.
Only the planes of normal vector (a, b, c) are generated by these p (n, m)-cubes.
The point (α, β) is also a vertex of the arrangement of the Farey net associated
with (n′, m′)-cubes where n′ ≥ n and m′ ≥ m. The associated naive plane is
generated by exactly p (n′, m′)-cubes.

Case 2: If the point (α, β) belongs to an edge of the arrangement then the me-
dian point

(
a1+a2
c1+c2

, b1+b2
c1+c2

)
between the two vertices

(
a1
c1

, b1
c1

)
and

(
a2
c2

, b2
c2

)
, is a
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“good” rational point of minimal denominator approaching (α, β). The real plane
of parameters (α, β) and the rational plane of parameters

(
a1+a2
c1+c2

, b1+b2
c1+c2

)
have

the same discretization on the set {(x, y) ∈ ZZ2 / − n < x < n, −m < y < m}.
So they have the same configurations of (n, m)-cubes. If L1 and L2 are the
lists of (n, m)-cubes appearing in the planes of normal (a1, b1, c1) and (a2, b2, c2)
then L1 ∪ L2 is the list of (n, m)-cubes appearing in the naive plane of normal
(a1 + a2, b1 + b2, c1 + c2) with Card(L1 ∪ L2) < nm.

Case 3: If the point (α, β) is on a face of the arrangement, we have 3 or 4
vertices bounding the face. The median point in case of 4 vertices corresponds
to the median point issued from two opposite vertices (see case 2). In case of
3 vertices, the median point of the 3 vertices is a “good” rational point

(
a
c , b

c

)
with minimal denominator approaching (α, β). The naive plane with parameters
corresponding to the median point is composed by union of (n, m)-cubes issued
from vertices. The plane is composed of exactly nm different configurations of
(n, m)-cubes. All rational plane having their parameters in the face of the ar-
rangement are discretized in naive planes generated by exactly nm (n, m)-cubes.

4 Relation between Farey series and representation by
(n, m)-cubes

The different configurations of (n, m)-cubes appearing around leaning points are
in one to one correspondance with vertices, edges and faces of the lines arrange-
ment of the hyper Farey net. We are going to see through some examples how
(n, m)-cubes can be constructed similarly with the computation of Farey series.

Farey serie of order 1 and basic elements of planes
The two-dimensional Farey serie of order 1 is the set of points (0, 0), (0, 1), (1, 0)
and (1, 1) corresponding to the dual representation of the basic naive planes
0 ≤ z < 1, 0 ≤ y + z < 1, 0 ≤ x + z < 1, 0 ≤ x + y + z < 1 of the same 24th

part of space (see figure 8). We define a basic element as to be a set of three
neighbour voxels not aligned. The basic planes are obtained by repetition of a
basic element (figure 9). The configurations of basic elements are sufficient to
generate naive planes.

1
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Fig. 8. Hyper Farey net of order 1 and basic
elements generators of the basic planes.
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y

(b)
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Fig. 9. (a) Basic naive plane of normal
vector (0,1,1); (b) list of the 4 basic ele-
ments involved in this plane.



84 J. Vittone and J.M. Chassery

Hyper Farey net associated with bicubes
On figure 10 we can see the basic planes generated by (2, 2)-cubes. On this
example the new point of coordinates

( 1
2 , 1

2

)
is introduced by using the transition

rules from the Farey serie of order 1 to the Farey serie of order 2. We introduce
the median point between

( 0
1 , 0

1

)
and

(1
1 , 1

1

)
or

( 0
1 , 1

1

)
and

(1
1 , 0

1

)
. The naive plane

of normal vector (1, 1, 2) is generated by two (2, 2)-cubes. The representation in
(2, 2)-cubes of each vertex of the hyper Farey net is obtained by concatenation
of the basic elements. Concatenation is defined as following.

1

1

a0

b

b-a b a+b

-a 0 a

-a-b -b a-b +

+

+

+
1/2

1/2
OR

Fig. 10. Hyper Farey net associated with (2, 2)-cubes.

The rules of construction of the (n, m)-cubes, for n ≥ 2 and m ≥ 2, are defined
as follows:
[S] and [S′] will design two (n1, m1)-cubes. Their symetric will be noted [−S]
and [−S′] (symetry with respect to the center of the volume including the (n, m)-
cube).
[S′′] and [−S′′] will design two symetric (n2, m2)-cubes.
[N ] and [N ′] will design two neutral (n1, m1)-cubes (geometrically equal to their
symetric).
[N ′′] will design a neutral (n2, m2)-cube.
The operator of concatenation (noticed by “+”) between two (n1, m1)-cubes
is defined as the union of them by a common band of voxels along lines or
columns.
The concatenation of two (n1, m1)-cubes generates a (n2, m2)-cube with the
following constraint:

n1 = n2 and m1 < m2 or n1 < n2 and m1 = m2

With respect to the classification of (n, m)-cubes in terms of symetric or neutral,
we have:
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- [S] + [N ] = [S′′]
- [S] + [S′] = [S′′]
- [S] + [−S] = [N ′′]
- [N ] + [N ′] = [S′′]

The different examples will illustrate the different rules to construct the (n, m)-
cubes appearing in a plane. To do that we will increase n and m values.

Representation by (2, 3)-cubes
In figure 11, the point C

( 1
3 , 1

3

)
is the median point (in the sense of Farey se-

ries) between B
( 1

2 , 1
2

)
and A

( 0
1 , 0

1

)
. The plane corresponding to B is generated

by two bicubes and the plane corresponding to A is generated by one bicube.
The concatenation of the two bicubes of B generates two neutral (2, 3)-cubes
but only one can coexist in a plane with the bicube of A. The association of
the bicube of A with the two bicubes of B generates two symetric (2, 3)-cubes.
Finaly, C is generated by three (2, 3)-cubes. The point D

(2
4 , 1

4

)
is generated by

four (2, 3)-cubes issued from the concatenation of the three bicubes appearing
in C (bicubes of A and B) with the bicube appearing in E (there is not neutrals
in E).

y
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+y
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x

+
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b

1

3/4

2/3

1/2

1/3

1/4

0 1/3 1/2 2/3
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A C
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C

B

D

E

Fig. 11. Hyper Farey net associated to (2, 3)-cubes.

Representation by (3, 3)-cubes
In figure 12, the point F

( 1
4 , 1

4

)
is the median point between C

(1
3 , 1

3

)
and A

( 0
1 , 0

1

)
.

It is composed of four (3, 3)-cubes issued from the concatenation of the neutral
(2, 3)-cube attached to A with the neutral and the two symetric (2, 3)-cubes
attached to C.
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Fig. 12. Hyper Farey net associated to (3, 3)-cubes.

Representation by (3, 4)-cubes
In figure 13, the point G

( 1
5 , 1

5

)
is the median point between F

(1
4 , 1

4

)
and A

( 0
1 , 0

1

)
.

The plane associated with point F is generated by four (3, 3)-cubes two by two
symetrics. The concatenation of these (3, 3)-cubes generate four (3, 4)-cubes,
two symetrics and two neutrals with only one compatible with the (3, 3)-cubes
of A. So the plane associated with point G is composed of three among the four
(3, 4)-cubes of F and of the (3, 4)-cubes generated by concatenation between the
(3, 3)-cubes of F and the (3, 3)-cube de A.
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EA
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1

1/3 1/2 2/3
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b

DF
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Fig. 13. Hyper Farey net associated with (3, 4)-cubes.
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5 Conclusion

A new approach has been discussed for digital naive plane understanding. Start-
ing from the arithmetic formulation of a digital plane given by 0 ≤ ax + by +
cz + r < c, we propose an identification process to list the set of bloc elements
called (n, m)-cubes encountered on the plane. We proved that the incremental
characterization of a Farey net (issued from the parametric representation

(
a
c , b

c

)
of the plane) can be used to identify the list of different (n, m)-cubes.
Future works will focuse on the definition of an algorithmic way to recognize
digital planes. The method will be incremental on n and m values. It will pass
alternatively from (n, m)-cubes structure to the corresponding Farey net.
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