Skip to main content

Automata: From Uncertainty to Quantum

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2295))

Included in the following conference series:

  • 439 Accesses

Abstract

Automata are simple mathematical objects with unexpected computational, mathematical, modelling and explanatory capabilities. This paper examines some relations between automata and physics. Automata will be used to model quantum uncertainty and quantum computation. Finally, mathematical proofs will be discussed from the perspective of quantum automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Freivalds, R. 1-way quantum finite automata: strengths, weaknesses and generalizations, Proceedings of 39th IEEE FOCS (1998), 332–341.

    Google Scholar 

  2. Ambainis, A., Watrous, J. Two-way finite automata with quantum and classical states, Technical Report, CC/9911009, 1999.

    Google Scholar 

  3. Bavel, Z., and Muller, D. E. Connectivity and reversibility in automata, J. Assoc. Comput. Mach. 17 (1970), 231–240.

    Google Scholar 

  4. Bell, J. S. On the Einstein Podolsky Rosen paradox, Physics, 1 (1964), 195–200. Reprinted in [5] pp. 14–21.

    Google Scholar 

  5. Bell, J. S. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  6. Brauer, W. Automatentheorie, Teubner, Stuttgart, 1984.

    Google Scholar 

  7. Bridgman, P. W. A physicists second reaction to Mengenlehre, Scripta Mathematica 2 (1934), 101–117, 224–234.

    Google Scholar 

  8. Brodsky, A., Pippenger, N. Characterisation of 1-way quantum finite automata, quantph/9903014, 1999.

    Google Scholar 

  9. Calude, A. S. The journey of the four colour theorem through time, The New Zealand Mathematics Magazine 38, 3 (2001), 1–10.

    MathSciNet  Google Scholar 

  10. Calude, C. S., Calude, E. Bisimulations and behaviour of nondeterministic automata, in G. Rozenberg, W. Thomas (eds.) Developments in Language Theory. Foundations, Applications, and Perspectives, World Scientific, Singapore, 2000, 60–70.

    Google Scholar 

  11. Calude, C. S., Calude, E., Chiu, T., Dumitrescu, M., and Nicolescu, R. Testing computational complementarity for Mermin automata, J. Multi Valued Logic, 6 (2001), 47–65.

    MATH  MathSciNet  Google Scholar 

  12. Calude, C. S., Calude, E., Khoussainov, B. Deterministic automata: Simulation, universality and minimality, Annals of Applied and Pure Logic 90, 1–3 (1997), 263–276.

    Article  MATH  MathSciNet  Google Scholar 

  13. Calude, C. S., Calude, E., Khoussainov, B. Finite nondeterministic automata: Simulation and minimality, Theoret. Comput. Sci. 242, 1–2 (2000), 219–235.

    Article  MATH  MathSciNet  Google Scholar 

  14. Calude, C. S., Calude, E., Svozil, K. Computational complementarity for probabilistic automata, in C. Martin-Vide, V. Mitrana (eds.). Where Mathematics, Computer Science, Linguistics and Biology Meet, Kluwer, Amsterdam 2000, 99–113.

    Google Scholar 

  15. Calude, C. S., Calude, E., Svozil, K., and Yu, S. Physical versus computational complementarity I, International Journal of Theoretical Physics 36 (1997), 1495–1523.

    Article  MATH  MathSciNet  Google Scholar 

  16. Calude, C. S., Calude, E., Ştefăanescu, C. Computational complementarity for Mealy automata, EATCS Bull. 66 (1998), 139–149.

    MATH  Google Scholar 

  17. Chaitin, G. J. ewblock An improvement on a theorem by E. F. Moore. IEEE Transactions on Electronic Computers EC-14 (1965), 466–467.

    Google Scholar 

  18. Ciamarra, M. P. Quantum reversibility and a new model of quantum automaton, in R. Freivalds (ed.). The 13th International Symposium on Foundations of Computation Theory (FCT’2001), Riga, Latvia, Springer-Verlag, Lect. Notes Comput. Sci. 2138, 2001, 376–379.

    Google Scholar 

  19. Cohen, D. W. An Introduction to Hilbert Space and Quantum Logic, Springer, New York, 1989.

    MATH  Google Scholar 

  20. Conway, J. H. Regular Algebra and Finite Machines, Chapman and Hall Ltd., London, 1971.

    MATH  Google Scholar 

  21. Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society London, A 400(1985), 97–119.

    Google Scholar 

  22. Einstein, A., Podolsky, B., and Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47 (1935), 777–780.

    Article  MATH  Google Scholar 

  23. Finkelstein, D., and Finkelstein, S. R. Computational complementarity, International Journal of Theoretical Physics 22, 8 (1983), 753–779.

    Article  MATH  MathSciNet  Google Scholar 

  24. Foulis, D. J., and Randall, C. Operational statistics. i. Basic concepts, Journal of Mathematical Physics 13 (1972), 1667–1675.

    Article  MATH  MathSciNet  Google Scholar 

  25. Frank, M., Knight, T., Margolus, N. Reversibility in optimally scalable computer architectures, In Unconventional Models of Computation, C. S. Calude, J. Casti, M. Dinneen, Eds., Springer-Verlag, 1998, 165–182.

    Google Scholar 

  26. Gill, A. State-identification experiments in finite automata, Information and Control 4 (1961), 132–154.

    Article  MATH  MathSciNet  Google Scholar 

  27. Ginsburg, S. On the length of the smallest uniform experiment which distinguishes the terminal states of the machine, J. Assoc. Comput. Mach. 5 (1958), 266–280.

    MATH  MathSciNet  Google Scholar 

  28. Giuntini, R. Quantum Logic and Hidden Variables. BI Wissenschaftsverlag, Mannheim, 1991.

    Google Scholar 

  29. Greenberger, D. B., Horne, M., and Zeilinger, A. Multiparticle interferometry and the superposition principle, Physics Today 46 (August 1993), 22–29.

    Google Scholar 

  30. Gruska, J. Quantum Computing, McGraw-Hill, London, 1999.

    Google Scholar 

  31. Hopcroft, J. E., and Ullman, J. D. Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.

    MATH  Google Scholar 

  32. Kochen, S., and Specker, E. P. The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics 17, 1 (1967), 59–87.

    MATH  MathSciNet  Google Scholar 

  33. Kondacs, A., Watrous, J. On the power of quantum finite state automata, Proceedings of 38th IEEE FOCS, 1997, 66–75.

    Google Scholar 

  34. Kozen, D. Automata and Computability, Springer-Verlag, NewYork, 1997.

    MATH  Google Scholar 

  35. Moore, C. Dynamical recognizers: real-time language recognition by analogue computers, Theoret. Comput. Sci. 201 (1998), 99–136.

    Article  MATH  MathSciNet  Google Scholar 

  36. Moore, C. Email to C. S. Calude, 10 May 2001.

    Google Scholar 

  37. Moore, C. Crutchfield, J. P. Quantum automata and quantum grammars, Theoret. Comput. Sci. 237 (2000), 275–306.

    Article  MATH  MathSciNet  Google Scholar 

  38. Moore, E. F. Gedanken-experiments on sequential machines, In Automata Studies, C. E. Shannon and J. McCarthy, Eds., Princeton University Press, Princeton, 1956, 129–153.

    Google Scholar 

  39. Paschen, K. Quantum finite automata using ancilla qubits, manuscript, May 2001.

    Google Scholar 

  40. Penrose, R. Shadows of the Minds, A Search for the Missing Science of Consciousness, Oxford University Press, Oxford, 1994.

    Google Scholar 

  41. Rabin, M.O. Probabilistic automata, Information and Control 6 (1963), 230–244.

    Article  Google Scholar 

  42. Salomaa, A. Computation and Automata, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  43. Svozil, K. Randomness & Undecidability in Physics, World Scientific, Singapore, 1993.

    Google Scholar 

  44. Wright, R. Generalized urn models, Foundations of Physics 20 (1990), 881–903.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calude, C.S., Calude, E. (2002). Automata: From Uncertainty to Quantum. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds) Developments in Language Theory. DLT 2001. Lecture Notes in Computer Science, vol 2295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46011-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46011-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43453-5

  • Online ISBN: 978-3-540-46011-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics