On Characterization of Discrete Triangles by Discrete Moments

  • Joviša Žunić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2301)


For a given real triangle T its discretization on a discrete point set S consists of points from S which fall into T. If the number of such points is finite, the obtained discretization of T will be called discrete triangle.

In this paper we show that the discrete moments having the order up to 3 characterize uniquely the corresponding discrete triangle if the discretizationing set S is fixed.

Of a particular interest is the case when S is the integer grid, i.e., S = Z 2. Then the discretization of a triangle T is called digital triangle. It turns out that the proposed characterization preserves a coding of digital triangles from an integer grid of a given size, say m x m within an O(log m) amount of memory space per coded digital triangle. That is the theoretical minimum.


Digital triangle digital shape coding moments 


  1. 1.
    Dorst, L., Smeulders, A. W. M.: Discrete representation of straight lines. IEEE Trans. Pattern Anal. Machine Intell. 6 (1984) 450–463.zbMATHCrossRefGoogle Scholar
  2. 2.
    Forchhammer, S., Kim, C. E.: Digital squares. IEEE Trans. Pattern Anal. Machine Intell. 22 (1988) 672–674.Google Scholar
  3. 3.
    Hu, M., Visual pattern recognition by moment invariants, IRE Trans. Inf. Theory 8 (1962) 179–187.Google Scholar
  4. 4.
    Ivić, A., Koplowitz, J., Žunić, J.: On the number of digital convex polygons inscribed into an (m,m)-grid. IEEE Trans. on Information Theory. 40 (1994) 1681–1686.CrossRefzbMATHGoogle Scholar
  5. 5.
    Jiang, X. Y., Bunke, H.: Simple and fast computation of moments. Pattern Recognition. 24 (1991) 801–806.CrossRefGoogle Scholar
  6. 6.
    Leu, J.-G.: Computing a shape’s moments from its boundary. Pattern Recognition. 24 (1991) 949–957.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lindenbaum, M., Koplowitz, J.: A new parametrization of digital straight lines. IEEE Trans. Pattern Anal. Machine Intell. 13 (1991) 847–852.CrossRefGoogle Scholar
  8. 8.
    Mamistvalov, A. G.: n-Dimensional moment invariants and conceptual mathematical theory of recognition n-dimensional solids. IEEE Trans. Pattern Anal. Machine Intell. 20 (1998) 819–831.CrossRefGoogle Scholar
  9. 9.
    Nakamura, A., Aizawa, K.: Digital squares. Computer Vision, Graphics Image Processing 49 (1990) 357–368.CrossRefGoogle Scholar
  10. 10.
    Singer, M. H.: A general approach to moment calculation for polygons and line segments. Pattern Recognition. 26 (1993). 1019–1028.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Worring, M., Smeulders, A. W. M.: Digitized circular arcs: Characterization and parameter estimation. IEEE Trans. Pattern Anal. Machine Intell. 17 (1995) 587–598.CrossRefGoogle Scholar
  12. 12.
    Žunić, J., Acketa, M. D.: A general coding scheme for families of digital curve segments. Graphical Models and Image Processing 60 (1998) 437–460.CrossRefzbMATHGoogle Scholar
  13. 13.
    Žunić, J., Sladoje, N.: Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments. IEEE Trans. Pattern Anal. Machine Intell. 22 (2000) 407–414.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Joviša Žunić
    • 1
  1. 1.Computer ScienceCardiff UniversityCardiffUK

Personalised recommendations